Supporting Information-I

Discovery of 2-Aminobuta-1,3-enynes in Asymmetric Organocascade Catalysis: Construction of Drug-like Spirocyclic Cyclohexanes Having Five to Six Contiguous Stereocenters

Dhevalapally B. Ramachary,* Chintalapudi Venkaiah, and Patoju Murali Krishna

School of Chemistry, University of Hyderabad, Central University (P.O.), Hyderabad 500 046, India ramsc@uohyd.ernet.in

General Methods: The ¹H NMR and ¹³C NMR spectra were recorded at 400 MHz and 100 MHz, respectively. The chemical shifts are reported in ppm downfield to TMS ($\delta = 0$) for ¹H NMR and relative to the central CDCl₃ resonance ($\delta = 77.0$) for ¹³C NMR. In the ¹³C NMR spectra, the nature of the carbons (C, CH, CH₂ or CH₃) was determined by recording the DEPT-135 experiment, and is given in parentheses. The coupling constants J are given in Hz. Column chromatography was performed using Acme's silica gel (particle size 0.063-0.200 mm). High-resolution mass spectra were recorded on micromass ESI-TOF MS. GCMS mass spectrometry was performed on Shimadzu GCMS-QP2010 mass spectrometer. IR spectra were recorded on JASCO FT/IR-5300. Elemental analyses were recorded on a Thermo Finnigan Flash EA 1112 analyzer. Mass spectra were recorded on either VG7070H mass spectrometer using EI technique or Shimadzu-LCMS-2010 A mass spectrometer. The X-ray diffraction measurements were carried out at 298 K on an automated Enraf-Nonious MACH 3 diffractometer using graphite monochromated, Mo-K α (λ = 0.71073 Å) radiation with CAD4 software or the X-ray intensity data were measured at 298 K on a Bruker SMART APEX CCD area detector system equipped with a graphite monochromator and a Mo-K α fine-focus sealed tube ($\lambda = 0.71073$ Å). For thin-layer chromatography (TLC), silica gel plates Merck 60 F254 were used and compounds were visualized by S-1

irradiation with UV light and/or by treatment with a solution of *p*-anisaldehyde (23 mL), conc. H_2SO_4 (35 mL), acetic acid (10 mL), and ethanol (900 mL) followed by heating.

Materials: All solvents and commercially available chemicals were used as received. Ynones **1a-e** was prepared according to the literature procedure.^[1]

General Experimental Procedures

Procedure A: General procedure for the primary amine/acid-catalyzed asymmetric cascade *r*-**M reaction:** In an ordinary glass vial equipped with a magnetic stirring bar was added 0.05 mmol of catalyst primary amine **4e** and 0.075 mmol 2-fluoro benzoic acid **5b** in toluene (1.0 mL) were stirred at 25 °C for 5 min and then 0.5 mmol of ynone **1**, 0.25 mmol of aldehyde **2**, 0.25 mmol of 1,3-indandione **3** were added and the reaction mixture was stirred at ambient temperature for 24–36 h. The crude reaction mixture was treated with saturated aqueous ammonium chloride solution; the aqueous layer was extracted with dichloromethane (3 x 10 mL). The combined organic layers were dried (Na₂SO₄), and concentrated. Pure products **6** were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

Procedure B: General procedure for the diamine/acid-catalysed asymmetric cascade *r*-M reaction: In an ordinary glass vial equipped with a magnetic stirring bar, was added 0.05 mmol of chiral diamine 4b and 0.075 mmol of benzoic acid 5a in toulene (1.0 mL) were stirred at 25 °C for 5 min and then 0.5 mmol of ynone 1, 0.25 mmol of aldehyde 2, 0.25 mmol of 1,3-indandione 3 were added and stirred at ambient temperature for 48 h. The crude reaction mixture was treated with saturated aqueous ammonium chloride solution; then the aqueous layer was extracted with dichloromethane (3 x 10 mL). The combined organic layers were dried (Na₂SO₄), and concentrated. Pure products 7 were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

Procedure C: General procedure for the pyrrolidine-catalysed racemic cascade *r***-M reaction:** In an ordinary glass vial equipped with a magnetic stirring bar, was added 0.06 mmol of pyrrolidine, 0.6 mmol of ynone 1, 0.3 mmol of aldehyde 2, 0.3 mmol of indanedione 3 in brine solution (3.0 mL) and stirred at ambient temperature for 48 h. The crude reaction mixture was treated with saturated aqueous ammonium chloride solution; then the aqueous layer was extracted with dichloromethane (3 x 10 mL). The combined

organic layers were dried (Na_2SO_4), and concentrated. Pure racemic products **6** were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

Procedure D: General procedure for the reduction of chiral *r***-M products 6:** In an oven dried round bottom flask, NaBH₄ (0.75 mmol) was added to the stirred solution of *r*-M product **6** (0.5 mmol) in dry methanol (2.0 mL) at 0 °C. Slowly reaction mixture was brought to room temperature and stirred for 0.5 h. The crude reaction mixture was worked up with aqueous NH₄Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na₂SO₄), and concentrated. Pure chiral allylic alcohols **8** were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

Procedure E: General procedure for the selective oxidation of chiral allylic alcohols 8: In an oven dried round bottom flask, *m*-CPBA (1.2 equiv., 0.24 mmol) was added to a stirred solution of allylic alcohol 8 (1.0 equiv., 0.2 mmol) in dry CH₂Cl₂ at 0 °C. After complete consumption of the substrate 8 (as monitored by TLC), the reaction mixture was diluted with CH₂Cl₂, washed with 10% aqueous K₂CO₃ solution, and brine, and dried with Na₂SO₄. Evaporation of solvent under reduced pressure gave crude product, which was purified by column chromatography on silica gel eluting with a mixture of hexane and ethyl acetate to yield the secondary α -hydroxy chiral epoxides 9.

Procedure F: General procedure for the cyclopropanation of chiral allylic alcohols 8:^[2] To a solution of 60 mg (0.13 mmol) of chiral allylic alcohol **8ae** in 2.0 mL of anhydrous CH₂Cl₂ at -10 °C was added dropwise 5.0 equiv. (0.65 mmol) of 1.0 M diethylzinc solution followed by 5.0 equiv. (0.65 mmol) of diiodomethane. The cooling bath was allowed to warm to rt over 3 h and the mixture was stirred for an additional 1 h, after which time TLC analysis showed complete consumption of starting material. A saturated aq. NH₄Cl (5 mL) was added and mixture was diluted with ether (10 mL) and 10% aq. HCl (5 mL). The layers were separated and the organic layer was then successively washed with saturated aq. Na₂SO₃ (5 mL), saturated aq. NaHCO₃ (5 mL) and saturated aq. NaCl (5 mL). The organic layer was dried over Na₂SO₄, and concentrated under reduced pressure gave crude product **10ae**, which was purified by column chromatography (silica gel, hexane/ethyl acetate).

Procedure G: General procedure for the Suzuki coupling on chiral *r***-M product 6ae:**^[3] A 25 mL round bottom flask equipped with magnetic stir bar was added solution of $Pd(PPh_3)_4$ (3.80 mg, 0.0033 mmol) in toluene (0.8 mL) and boronic acid (**a-b**) (16.56 mg, 0.12 mmol) in EtOH (0.35 mL) were added

to a solution of sodium succinate hexahydrate (170 mg, 0.63 mmol) and chiral *r*-M product **6ae** (68.4 mg, 0.15 mmol) in toluene (0.8 mL) and H₂O (0.7 mL) under nitrogen atmosphere. The resulting mixture was stirred at 80 °C for 1 h. The addition of boronic acid (8.28 mg, 0.06 mmol) in the EtOH (0.35 mL) and Pd(PPh₃)₄ (1.9 mg, 0.00165 mmol) in toluene (0.4 mL) were repeated for further three times at 60 min intervals. Then mixture was stirred for further 4 h. Then reaction was cooled to 25 °C and the crude reaction mixture was worked up with mixture of H₂O and Et₂O. The aqueous layer was extracted with Et₂O (2 x 5 mL) and the combined organic layers were washed with 1.0 M NaOH, brine and dried over Na₂SO₄, and concentrated under reduced pressure to gave crude product, which was purified by column chromatography (silica gel, hexane/ethyl acetate).

Figure S1. Crystal structure of functionalized spiro-cyclohexanone (6be).

Figure S2. Crystal structure of functionalized spiro-cyclohexanone (6ee).

Table S1. Synthesis of racemic spirane products 6.[a-c]

^a Reactions were carried out in brine (0.2 M) with 2 equiv. of **1a-e** relative to the **2a-o** (0.2 mmol) and **3** (0.2 mmol) in the presence of 20-mol% of catalyst pyrrolidine. ^b Yield refers to the column purified product. ^c Ratio or *de* is based on HPLC analysis. ^d DL-diamine **4b** (20 mol-%)/**5a** (30 mol-%) used as catalyst in toluene (0.25 M).

Eq-S1: Medicinally important products containing spiro-cyclohexanone scaffolds.

Scheme S1. Controlled experiments to test the interconversion of 6aa and 7aa.

Scheme 1 Synthesis of drug-like spiranes for anticancer studies. *Reaction conditions:* (a) NaBH₄ (1.5 equiv.), dry CH₃OH (0.25 M), 0-25 °C, 0.5 h; (b) Ar-B(OH)₂ (2.0 equiv.), Pd(PPh₃)₄ (0.055 equiv.), C₆H₅CH₃ (2 mL), sodium succinate (4.2 equiv.), C₆H₅CH₃:H₂O (1.14:1; 1.5 mL), EtOH (1.4 mL), 90 °C, 8 h; (c) *m*CPBA (1.2 equiv.), CH₂Cl₂ (0.2 M), 0-25 °C, 2 h; (d) CH₂I₂ (5.0 equiv.), Et₂Zn (5.0 equiv.), CH₂Cl₂ (0.065 M), -10 °C to 25 °C, 4 h.

Results and discussion for Scheme 1:

With the medicinal applications in mind, we explored the utilization of spiranes **6** bearing aryl bromide in the synthesis of functionalized chiral spiranes **8-11** *via* simple transformations (Scheme 1). Selective reduction of chiral spirotriones (+)-**6ae**/(+)-**6ee** with 1.5 equiv. of NaBH₄ in dry CH₃OH at 0-25 °C for 0.5 h furnished the allylic alcohols (+)-**8ae**/(+)-**8ee** in each 95% yield with 90% *ee* and >99% *de* respectively (Scheme 1). Interestingly, selective oxidation of the resulting pure allylic alcohols (+)-**8ae**/(+)-**8ee** with 1.2 equiv. of *m*CPBA in dry CH₂Cl₂ at 0-25 °C for 2 h furnished the chiral epoxides (–)-**9ae**/(–)-**9ee** in 90/85% yield with 90% *ee* and >99% *de* respectively. Simmons–Smith cyclopropanation of the chiral allylic alcohol (+)-**8ae** with each 5.0 equiv. of CH₂I₂ and Et₂Zn in dry CH₂Cl₂ at –10 to 25 °C for 4 h furnished the cyclopropane alcohol (–)-**10ae** in 60% yield with 90% *ee* and >99% *de*. These high-yielding reactions on **6ae**/**6ee** produces five to six contiguous stereogenic centers and the resulting chiral spiranes **8-10** could be good compounds for the anticancer studies.^[4]

Given our interest to synthesize library of chiral biphenyls to study the cell functions, ^[5c] herein we combined the asymmetric *r*-M reaction with Suzuki coupling to generate the optically pure biphenyl-substituted spirotriones **11** without racemization. Interestingly, Pd-catalyzed Suzuki reaction of (+)-**6ae** bearing aryl bromide with 4-hydroxyphenylboronic acid (**a**), Pd(PPh₃)₄ and sodium succinate in

toluene/ethanol/water (4:2:1) at 90 °C for 8 h furnished the product (+)-**11aea** in 70% yield without racemization (Scheme 1). Another biphenyl-based chiral spirotrione (+)-**11aeb** was also prepared in 76% yield with 90% *ee*. Compounds (+)-**11aea** and (+)-**11aeb** are drug-like molecules for the treatment of cancer cells, which is emphasizing the value of this *r*-M and Suzuki coupling approach to the pharmaceuticals.^[4]

(S)-1',3'-diphenylspiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6aa): Prepared by following the

procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 80:15, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 10.82$ min (major), $t_{\rm R} = 15.84$ min (minor). Mp 175 °C; $[\alpha]_{\rm D}^{25} = +44.44^{\circ}$ (*c* = 0.20 g/100 mL, CHCl₃, >99 % *ee*); IR (Neat): $v_{\rm max}$ 3061, 2924, 2855, 1740, 1703, 1595, 1495, 1454,

1410, 1329, 1254, 1163, 1078, 1024, 918, 885, 764, 737 and 698 cm⁻¹; ¹H NMR (CDCl₃) δ 7.82 (1H, d, *J* = 7.6 Hz), 7.64 (1H, t, *J* = 7.2 Hz), 7.58-7.52 (2H, m), 7.19 (1H, t, *J* = 7.2 Hz), 7.12 (2H, t, *J* = 7.2 Hz), 6.98-6.94 (7H, m), 6.50 (1H, s), 4.12 (1H, dd, *J* = 14.4, 3.2 Hz), 3.70 (1H, t, *J* = 15.2 Hz), 2.67 (1H, dd, *J* = 16.8, 3.6 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 200.0 (C, C=O), 198.3 (C, C=O), 197.6 (C, C=O), 156.1 (C), 142.8 (C), 142.2 (C), 137.4 (C), 136.3 (C), 135.6 (2 x CH), 132.3 (CH), 129.1 (CH), 128.5 (2 x CH), 128.3 (2 x CH), 128.2 (2 x CH), 127.9 (CH), 126.5 (2 x CH), 123.2 (CH), 122.9 (CH), 65.0 (C), 48.5 (CH), 38.4 (CH₂); LRMS m/z 379.00 (M + H⁺), calcd for C₂₆H₁₈O₃ 378.13; Anal. calcd for C₂₆H₁₈O₃ (378.13): C, 82.52; H, 4.79; Found: C, 82.45; H, 4.71%.

(*S*)-1'-(4-fluorophenyl)-3'-phenylspiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6ab): Prepared by following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, λ = 254 nm), t_R = 12.59 min (major), t_R = 14.55 min (minor). Mp 110 °C; $[\alpha]_D^{25}$ = +57.91° (*c* = 0.52 g/100 mL, CHCl₃, 92% *ee*); IR (Neat): v_{max} 3059, 2897, 1734, 1699,

1605, 1510, 1445, 1404, 1339, 1298, 1242, 1163,1032, 934, 901, 830, 793, 770, 735, 694 and 648 cm⁻¹;

¹H NMR (CDCl₃) δ 7.84 (1H, d, *J* = 7.6 Hz), 7.69 (1H, t, *J* = 7.2 Hz), 7.62 (1H, t, *J* = 7.6 Hz), 7.57 (1H, d, *J* = 7.6 Hz), 7.20 (1H, t, *J* = 7.2 Hz), 7.13 (2H, t, *J* = 7.6 Hz), 7.00-6.93 (4H, m), 6.69 (2H, t, *J* = 8.8 Hz), 6.49 (1H, s), 4.12 (1H, dd, *J* = 14.8, 3.6 Hz), 3.66 (1H, t, *J* = 15.2 Hz), 2.66 (1H, dd, *J* = 16.8, 3.6 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 200.0 (C, C=O), 198.4 (C, C=O), 197.2 (C, C=O), 162.1 (C, d, *J* = 196.7 Hz), 156.0 (C), 142.9 (C), 142.2 (C), 137.4 (C), 135.94 (CH), 135.91 (CH), 132.4 (C, d, *J* = 2.6 Hz), 132.3 (CH), 130.0 (2 x CH, d, *J* = 6.5 Hz), 129.2 (CH), 128.6 (2 x CH), 126.7 (2 x CH), 123.3 (CH), 123.0 (CH), 115.3 (2 x CH, d, *J* = 17.1 Hz), 65.0 (C), 47.6 (CH), 38.7 (CH₂); LRMS m/z 397.00 (M + H⁺), calcd for C₂₆H₁₇FO₃ 396.12; Anal. calcd for C₂₆H₁₇FO₃ (396.12): C, 78.78; H, 4.32; Found: C, 78.65; H, 4.41%.

(R)-1'-(2-fluorophenyl)-3'-phenylspiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6ac): Prepared by

following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_R = 10.50$ min (major), $t_R = 13.67$ min (minor). Mp 195 °C; $[\alpha]_D^{25} = +91.88^\circ$ (*c* = 0.21 g/100 mL, CHCl₃, 93% *ee*); IR (Neat): v_{max} 3057, 2924, 2853, 1742, 1707,

1676, 1595, 1493, 1454, 1330, 1264, 1196, 1101, 1024, 887, 762, 739 and 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.90 (1H, d, J = 7.2 Hz), 7.70 (1H, br t, J = 7.6 Hz), 7.63–7.60 (2H, m), 7.21 (1H, t, J = 7.2 Hz), 7.14 (2H, t, J = 7.6 Hz), 7.07 (1H, t, J = 7.6 Hz), 6.98–6.94 (3H, m), 6.82 (1H, t, J = 7.6 Hz), 6.72 (1H, t, J = 9.2 Hz), 6.53 (1H, s), 4.50 (1H, dd, J = 14.4, 3.6 Hz), 3.65 (1H, t, J = 16.8 Hz), 2.64 (1H, dd, J = 16.8, 4 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 198.7 (C, C=O), 198.1 (C, C=O), 197.1 (C, C=O), 160.0 (C, d, J = 248 Hz), 156.3 (C), 142.6 (C), 142.3 (C), 137.5 (C), 135.8 (CH), 135.7 (CH), 132.4 (CH), 129.7 (CH, d, J = 9 Hz), 129.5 (CH, d, J = 4 Hz), 129.2 (CH), 128.6 (2 x CH), 126.6 (2 x CH), 124.1 (CH, d, J = 3 Hz), 123.8 (C, d, J = 14 Hz), 123.4 (CH), 123.1 (CH), 115.8 (CH, d, J = 22.8 Hz), 64.4 (C), 41.4 (CH), 38.5 (CH₂); LRMS m/z 397.00 (M + H⁺), calcd for C₂₆H₁₇FO₃ 396.12; Anal. calcd for C₂₆H₁₇FO₃ (396.12): C, 78.78; H, 4.32; Found: C, 78.70; H, 4.40%.

(*S*)-1'-(4-chlorophenyl)-3'-phenylspiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6ad): Prepared by following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, λ = 254 nm), t_R = 15.26 min (major), t_R = 21.44 min (minor). Mp 145 °C; $[\alpha]_D^{25}$ = +59.26° (*c* = 0.54 g/100 mL, CHCl₃, 93% *ee*); IR (Neat): v_{max} 3057, 2920, 1734, 1701, 1674, 1591, 1489, 1252, 1092, 1015 and 887 cm⁻¹; ¹H NMR (CDCl₃) δ 7.85 (1H, d, *J* = 7.6 Hz), 7.70 (1H, t, *J* = 7.2 Hz), 7.63 (1H, t, *J* = 7.2 Hz), 7.57 (1H, d, *J* = 7.6 Hz), 7.20 (1H, t, *J* = 7.2 Hz), 7.13 (2H, t, *J* = 7.6 Hz), 6.99–6.92 (6H, m), 6.81 (1H, s), 4.11 (1H, dd, *J* = 14.8, 3.6 Hz), 3.66 (1H, t, *J* = 16.4 Hz), 2.64 (1H, dd, *J* = 17.2, 4.0 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 199.9 (C, C=O), 198.3 (C, C=O), 197.2 (C, C=O), 156.0 (C), 142.8 (C), 142.2 (C), 137.3 (C), 136.1 (2 x CH), 135.1 (C), 133.9 (C), 132.3 (CH), 129.7 (2 x CH), 129.2 (CH), 128.6 (4 x CH), 126.7 (2 x CH), 123.4 (CH), 123.1 (CH), 64.8 (C), 47.6 (CH), 38.5 (CH₂); LRMS m/z 413.00 (M + H⁺), calcd for C₂₆H₁₇ClO₃ 412.09; Anal. calcd for C₂₆H₁₇ClO₃ (412.09): C, 75.64; H, 4.15; Found: C, 75.51; H, 4.19%.

(S)-1'-(4-bromophenyl)-3'-phenylspiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6ae): Prepared

by following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_R = 14.56$ min (major), $t_R = 24.82$ min (minor). Mp 102 °C; $[\alpha]_D^{25} = +57.68^\circ$ (*c* = 0.20 g/100 mL, CHCl₃, 92% *ee*); IR (Neat): v_{max} 3059, 2920, 2849, 1740,

1703, 1674, 1593, 1489, 1445, 1412, 1352, 1330, 1254, 1163, 1076, 1011, 887, 824, 762, 737, and 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.84 (1H, d, *J* = 7.6 Hz), 7.70 (1H, t, *J* = 6.8 Hz), 7.63 (1H, t, *J* = 7.6 Hz), 7.57 (1H, d, *J* = 7.2 Hz), 7.18 (1H, d, *J* = 7.2 Hz), 7.14–7.10 (4H, m), 6.94–6.87 (4H, m), 6.47 (1H, s), 4.10 (1H, dd, *J* = 14.4, 3.2 Hz), 3.66 (1H, t, *J* = 14.8 Hz), 2.64 (1H, dd, *J* = 16.8, 3.6 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 199.8 (C, C=O), 198.2 (C, C=O), 197.1 (C, C=O), 156.0 (C), 142.8 (C), 142.1 (C), 137.3 (C), 136.0 (2 x CH), 135.6 (C), 132.2 (CH), 131.5 (2 x CH), 130.0 (2 x CH), 129.2 (CH), 128.5 (2 x CH), 126.6 (2 x CH), 123.4 (CH), 123.0 (CH), 122.0 (C), 64.7 (C), 47.6 (CH), 38.4 (CH₂); LRMS m/z 456.00 (M⁺), calcd for C₂₆H₁₇BrO₃ 456.04; Anal. calcd for C₂₆H₁₇BrO₃ (456.04): C, 68.29; H, 3.75; Found: C, 68.35; H, 3.71%.

(S)-3'-phenyl-1'-(p-tolyl)spiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6af): Prepared by

following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_R = 11.89$ min (major), $t_R = 19.95$ min (minor). Mp 145 °C; $[\alpha]_D^{25} = +49.74^\circ$ (*c* = 0.50 g/100 mL, CHCl₃, 93% *ee*); IR (Neat): v_{max} 3057, 2919, 1738, 1701,

1667, 1593, 1443, 1333, 1250, 885, 814, 789, 762, 732 and 694 cm⁻¹; ¹H NMR (CDCl₃) δ 7.83 (1H, d, *J* = 7.6 Hz), 7.65 (1H, t, *J* = 6.8 Hz), 7.59–7.53 (2H, m), 7.19 (1H, t, *J* = 7.2 Hz), 7.12 (2H, t, *J* = 7.6 Hz),

6.94 (2H, d, J = 7.6 Hz), 6.87 (2H, d, J = 8 Hz), 6.78 (2H, d, J = 7.6 Hz), 6.48 (1H, s), 4.09 (1H, dd, J = 14.4, 3.2 Hz), 3.68 (1H, t, J = 15.2 Hz), 2.64 (1H, dd, J = 16.8, 3.6 Hz), 2.06 (3H, s, CH₃); ¹³C NMR (CDCl₃, DEPT-135) δ 200.2 (C, C=O), 198.5 (C, C=O), 197.9 (C, C=O), 156.2 (C), 143.0 (C), 142.4 (C), 137.7 (C), 137.6 (C), 135.7 (2 x CH), 133.4 (C), 132.4 (CH), 129.1 (CH), 129.0 (2 x CH), 128.6 (2 x CH), 128.2 (2 x CH), 126.6 (2 x CH), 123.3 (CH), 123.0 (CH), 65.2 (C), 48.3 (CH), 38.8 (CH₂), 20.8 (CH₃); LRMS m/z 393.00 (M + H⁺), calcd for C₂₇H₂₀O₃ 392.14; Anal. calcd for C₂₇H₂₀O₃ (392.14): C, 82.63; H, 5.14; Found: C, 82.48; H, 5.09%.

(S)-3'-phenyl-1'-(o-tolyl)spiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6ag): Prepared by following

the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 9.04$ min (major), $t_{\rm R} =$ 15.06 min (minor). Mp 180 °C; $[\alpha]_{\rm D}^{25} = +189.67^{\circ}$ (*c* = 0.13 g/100 mL, CHCl₃, 98% *ee*); IR (Neat): $v_{\rm max}$ 3061, 2920, 2853, 1737, 1699, 1674, 1591, 1485, 1464,

1310, 1256, 889, 756, 700, 584 and 552 cm⁻¹; ¹H NMR (CDCl₃) δ 7.95 (1H, d, *J* = 7.6 Hz), 7.70 (1H, t, *J* = 7.2 Hz), 7.58 (1H, t, *J* = 7.2 Hz), 7.51 (1H, d, *J* = 7.6 Hz), 7.22–7.12 (3H, m), 7.04 (1H, d, *J* = 7.6 Hz), 6.96 (2H, d, *J* = 7.6 Hz), 6.90 (1H, d, *J* = 7.2 Hz), 6.85–6.78 (2H, m), 6.52 (1H, s), 4.49 (1H, dd, *J* = 14.4, 3.6 Hz), 3.58 (1H, t, *J* = 14.4 Hz), 2.60 (1H, dd, *J* = 17.2, 4.0 Hz), 2.24 (3H, s, CH₃); ¹³C NMR (CDCl₃, DEPT-135) δ 199.5 (C, C=O), 199.1 (C, C=O), 197.8 (C, C=O), 156.9 (C), 142.8 (2 x C), 137.6 (C), 136.2 (C), 135.74 (CH), 135.70 (CH), 135.2 (C), 132.4 (CH), 131.2 (CH), 129.1 (CH), 128.6 (2 x CH), 127.6 (CH), 126.9 (CH), 126.6 (2 x CH), 126.0 (CH), 123.4 (CH), 122.9 (CH), 64.7 (C), 43.6 (CH), 40.0 (CH₂), 19.5 (CH₃); LRMS m/z 393.00 (M + H⁺), calcd for C₂₇H₂₀O₃ 392.14; Anal. calcd for C₂₇H₂₀O₃ (392.14): C, 82.63; H, 5.14; Found: C, 82.56; H, 5.18%.

(S)-1'-(4-methoxyphenyl)-3'-phenylspiro[cyclohex[3']ene-2',2'-indene]-1,3',5'-trione (6ah): Prepared

by following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 13.69$ min (major), $t_{\rm R} = 18.55$ min (minor). Mp 115 °C; $[\alpha]_{\rm D}^{25} =$ +30.78° (*c* = 0.12 g/100 mL, CHCl₃, 98% *ee*); IR (Neat): v_{max} 3057, 2926,

2849, 1736, 1703, 1672, 1611, 1514, 1443, 1256, 1182, 1032, 887, 831, 764, 737 and 698 cm⁻¹; ¹H NMR (CDCl₃) δ 7.84 (1H, d, *J* = 7.6 Hz), 7.67 (1H, t, *J* = 6.8 Hz), 7.61–7.55 (2H, m), 7.20 (1H, t, *J* = 7.2 Hz), 7.13 (2H, t, *J* = 7.6 Hz), 6.93 (4H, m), 6.52 (2H, d, *J* = 8.8 Hz), 6.49 (1H, s), 4.09 (1H, dd, *J* = 14.8, 3.6 S-11

Hz), 3.66 (1H, t, J = 16.8 Hz), 3.60 (3H, s, OCH₃), 2.64 (1H, dd, J = 16.8, 4.0 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 200.4 (C, C=O), 198.6 (C, C=O), 197.8 (C, C=O), 159.0 (C), 156.2 (C), 143.0 (2 x C), 142.4 (C), 137.6 (C), 135.7 (2 x CH), 132.4 (CH), 129.4 (2 x CH), 129.1 (CH), 128.6 (2 x CH), 126.6 (2 x CH), 123.3 (CH), 123.0 (CH), 113.7 (2 x CH), 65.2 (C), 55.1 (CH₃, OCH₃), 47.9 (CH), 38.9 (CH₂); LRMS m/z 409.00 (M + H⁺), calcd for C₂₇H₂₀O₄ 408.14; Anal. calcd for C₂₇H₂₀O₄ (408.14): C, 79.40; H, 4.94; Found: C, 79.32; H, 4.98%.

(S)-1'-(4-nitrophenyl)-3'-phenylspiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6ai): Prepared by

following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 29.12$ min (major), $t_{\rm R} = 39.07$ min (minor). Mp 160 °C; $[\alpha]_{\rm D}^{25} =$

+57.42° (*c* = 0.41 g/100 mL, CHCl₃, 94% *ee*); IR (Neat): v_{max} 3063, 2924, 2857, 2205,1740, 1703, 1597, 1522, 1493, 1445, 1348, 1256, 1182, 1111, 889, 858, 812, 764, 737 and 698 cm⁻¹; ¹H NMR (CDCl₃) δ 7.84–7.81 (3H, m), 7.65 (1H, t, *J* = 7.2 Hz), 7.57 (1H, t, *J* = 7.6 Hz), 7.51 (1H, d, *J* = 7.6 Hz), 7.18 (2H, d, *J* = 8.4 Hz), 7.13 (1H, t, *J* = 7.2 Hz), 7.06 (2H, t, *J* = 7.6 Hz), 6.88 (2H, d, *J* = 7.2 Hz), 6.43 (1H, s), 4.23 (1H, dd, *J* = 14.4, 3.6 Hz), 3.68 (1H, t, *J* = 16.0 Hz), 2.64 (1H, dd, *J* = 16.8, 3.6 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 199.1 (C, C=O), 197.6 (C, C=O), 196.0 (C, C=O), 155.6 (C), 147.1 (C), 143.7 (C), 142.3 (C), 141.6 (CH), 136.8 (C), 136.2 (C), 136.2 (2 x CH), 132.0 (CH), 129.3 (2 x CH), 129.1 (CH), 128.4 (2 x CH), 126.4 (2 x CH), 123.3 (2 x CH), 123.0 (CH), 64.2 (C), 47.3 (CH), 37.9 (CH₂); LRMS m/z 422.00 (M – H⁺), calcd for C₂₆H₁₇NO₅ 423.11; Anal. calcd for C₂₆H₁₇NO₅ (423.11): C, 73.75; H, 4.05; N, 3.31; Found: C, 73.65; H, 4.09; N, 3.38%.

(S)-4-(1',3',5-trioxo-1-phenyl-1',3'-dihydrospiro[cyclohex[6]ene-2,2'-inden]-3-yl)benzonitrile (6aj):

Prepared by following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 29.51$ min (major), $t_{\rm R} = 33.55$ min (minor). Mp 145 °C; $|\alpha|_{\rm D}^{25} = +61.81^{\circ}$ (*c* = 0.50 g/100 mL, CHCl₃, 90% *ee*); IR (Neat): v_{max}

3067, 2915, 2228 (C=N), 1738 (C=O), 1701 (C=O), 1667, 1589,1410, 1327, 1233, 1020, 882, 839, 781, 762, 743, 692 and 565 cm⁻¹; ¹H NMR (CDCl₃) δ 7.84 (1H, d, *J* = 7.6 Hz), 7.71 (1H, t, *J* = 6.8 Hz), 7.64 (1H, t, *J* = 7.6 Hz), 7.56 (1H, d, *J* = 7.6 Hz), 7.31 (2H, d, *J* = 8 Hz), 7.21–7.10 (5H, m), 6.91 (2H, d, *J* = 7.2 Hz), 6.48 (1H, s), 4.18 (1H, dd, *J* = 14.8, 3.6 Hz), 3.69 (1H, t, *J* = 15.2 Hz), 2.66 (1H, dd, *J* = 16.8, 3.6 S⁻¹²

Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 199.5 (C, C=O), 197.9 (C, C=O), 196.5 (C, C=O), 155.8 (C), 142.6 (C), 142.0 (2 x C), 137.1 (C), 136.4 (2 x CH), 132.3 (CH), 132.2 (2 x CH), 129.3 (CH), 129.2 (2 x CH), 128.7 (2 x CH), 126.7 (2 x CH), 123.5 (CH), 123.2 (CH), 118.0 (C, C=N), 112.0 (C), 64.5 (C), 47.9 (CH), 38.0 (CH₂); LRMS m/z 402.00 (M – H⁺), calcd for C₂₇H₁₇NO₃ 403.12; Anal. calcd for C₂₇H₁₇NO₃ (403.12): C, 80.38; H, 4.25; N, 3.47; Found: C, 80.26; H, 4.32; N, 3.41%.

(S)-3-(1',3',5-trioxo-1-phenyl-1',3'-dihydrospiro[cyclohex[6]ene-2,2'-inden]-3-yl)benzonitrile (6ak):

Prepared by following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_R = 25.20$ min (major), $t_R = 28.75$ min (minor). Mp 135 °C; $[\alpha]_D^{25} = +56.61^\circ$ (*c* = 0.46 g/100 mL, CHCl₃, 87% *ee*); IR (Neat): v_{max} 3067, 2922, 2853, 2230

(C=N), 1738 (C=O), 1703 (C=O), 1593, 1429, 1250, 1159, 1024, 882, 762 and 692 cm⁻¹; ¹H NMR (CDCl₃) δ 7.89 (1H, d, *J* = 7.6 Hz), 7.71 (1H, t, *J* = 7.2 Hz), 7.63 (1H, t, *J* = 7.2 Hz), 7.58 (1H, d, *J* = 7.2 Hz), 7.30–7.27 (3H, m), 7.22–7.11 (4H, m), 6.93 (2H, d, *J* = 7.2 Hz), 6.49 (1H, s), 4.16 (1H, dd, *J* = 14.8, 3.6 Hz), 3.68 (1H, t, *J* = 16.0 Hz), 2.66 (1H, dd, *J* = 16.4, 3.6 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 199.4 (C, C=O), 197.9 (C, C=O), 196.4 (C, C=O), 155.7 (C), 142.6 (C), 141.9 (C), 138.2 (C), 137.0 (C), 136.2 (2 x CH), 132.8 (CH), 132.2 (CH), 131.7 (2 x CH), 129.3 (2 x CH), 128.6 (2 x CH), 126.6 (2 x CH), 123.4 (CH), 123.2 (CH), 117.9 (C, *C*=N), 112.6 (C), 64.5 (C), 47.5 (CH), 38.0 (CH₂); LRMS m/z 402.00 (M – H⁺), calcd for C₂₇H₁₇NO₃ 403.12; Anal. calcd for C₂₇H₁₇NO₃ (403.12): C, 80.38; H, 4.25; N, 3.47; Found: C, 80.25; H, 4.32; N, 3.41%.

(S)-3'-phenyl-1'-(4-(trifluoromethyl)phenyl)spiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6al):

Prepared by following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 14.50$ min (major), $t_{\rm R} = 18.86$ min (minor). Mp 90 °C; $[\alpha]_{\rm D}^{25} = +57.78^{\circ}$ (*c* = 0.50 g/100 mL, CHCl₃, 91% *ee*); IR (Neat): v_{max} 3059,

2915, 2207, 1734, 1699, 1674, 1595, 1424, 1330, 1233, 1165, 1128, 1067, 885, 785, 760, 692 and 604 cm⁻¹; ¹H NMR (CDCl₃) δ 7.83 (1H, d, *J* = 7.6 Hz), 7.67 (1H, t, *J* = 7.2 Hz), 7.62–7.54 (2H, m), 7.26 (2H, d, *J* = 7.6 Hz), 7.21–7.11 (5H, m), 6.94 (2H, d, *J* = 7.6 Hz), 6.49 (1H, s), 4.19 (1H, dd, *J* = 14.8, 3.6 Hz), 3.71 (1H, t, *J* = 15.2 Hz), 2.67 (1H, dd, *J* = 16.4, 3.6 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 199.7 (C, C=O), 198.1 (C, C=O), 196.8 (C, C=O), 156.0 (C), 142.8 (C), 142.1 (C), 140.6 (C), 137.2 (C), 136.1 (2 x s⁻¹³)

CH), 132.3 (CH), 130.1 (C, q, *C*F₃), 129.3 (CH), 128.8 (2 x CH), 128.6 (2 x CH), 126.7 (2 x CH), 125.4 (2 x CH), 125.4 (C), 123.4 (CH), 123.1 (CH), 64.7 (C), 48.0 (CH), 38.2 (CH₂); LRMS m/z 447.00 (M + H⁺), calcd for $C_{27}H_{17}F_3O_3$ 446.11; Anal. calcd for $C_{27}H_{17}F_3O_3$ (446.11): C, 72.64; H, 3.84; Found: C, 72.51; H, 3.91%.

(S)-methyl 4-(1',3',5-trioxo-1-phenyl-1',3'-dihydrospiro[cyclohex[6]ene-2,2'-inden]-3-yl)benzoate

MeO₂C-C

(6am): Prepared by following the procedure A and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 14.90$ min (major), $t_{\rm R} =$ 19.39 min (minor). Mp 85 °C; $[\alpha]_{\rm D}^{25} = +71.78^{\circ}$ (*c* = 0.50 g/100 mL,

CHCl₃, 95% *ee*); IR (Neat): v_{max} 3059, 2919, 2851, 1703, 1680, 1607, 1437, 1285, 1186, 1111, 1019, 889, 737 and 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.82 (1H, d, J = 7.6 Hz), 7.68–7.63 (3H, m), 7.59–7.52 (2H, m), 7.18 (1H, t, J = 7.2 Hz), 7.13–7.07 (4H, m), 6.93 (2H, d, J = 7.6 Hz), 6.48 (1H, s), 4.18 (1H, dd, J = 14.8, 4.0 Hz), 3.79 (3H, s, CO₂CH₃), 3.71 (1H, t, J = 15.2 Hz), 2.66 (1H, dd, J = 16.4, 3.6 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 199.7 (C, C=O), 198.1 (C, C=O), 197.0 (C, C=O), 166.3 (C, O-C=O), 156.0 (C), 142.8 (C), 142.1 (C), 141.6 (C), 137.3 (C), 136.1 (2 x CH), 132.3 (CH), 129.7 (C), 129.6 (2 x CH), 129.2 (CH), 128.6 (2 x CH), 128.5 (2 x CH), 126.7 (2 x CH), 123.4 (CH), 123.1 (CH), 64.7 (C), 52.1 (CH₃, CO₂Me), 48.1 (CH), 38.3 (CH₂); LRMS m/z 437.00 (M + H⁺), calcd for C₂₈H₂₀O₅ 436.46; Anal. calcd for C₂₈H₂₀O₅ (436.46): C, 77.05; H, 4.62; Found: C, 77.18; H, 4.58%.

(R)-1-phenyl-3-(thiophen-2-yl)spiro[cyclohex[6]ene-2,2'-indene]-1',3',5-trione (6an): Prepared by

following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 14.04$ min (major), $t_{\rm R} = 16.26$ min (minor). Mp 205 °C; $[\alpha]_{\rm D}^{25} = +42.08^{\circ}$ (*c* = 0.17 g/100 mL, CHCl₃, 96% *ee*); IR (Neat): $v_{\rm max}$ 2917, 1734, 1705, 1676, 1597, 1262, 885 and

737 cm⁻¹; ¹H NMR (CDCl₃) δ 7.88 (1H, d, J = 7.2 Hz), 7.73–7.69 (1H, m), 7.65 (2H, m), 7.20 (1H, t, J = 7.2 Hz), 7.13 (2H, t, J = 7.6 Hz), 6.93 (2H, d, J = 7.2 Hz), 6.87 (1H, d, J = 4.8 Hz), 6.69 (1H, d, J = 3.2 Hz), 6.60 (1H, dd, J = 8.4, 3.6 Hz), 6.48 (1H, s), 4.45 (1H, dd, J = 14.8, 4.0 Hz), 3.61 (1H, t, J = 14.8 Hz), 2.83 (1H, dd, J = 17.2, 4 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 200.2 (C, C=O), 198.0 (C, C=O), 196.6 (C, C=O), 156.1 (C), 143.2 (C), 142.4 (C), 139.4 (C), 137.4 (C), 135.8 (2 x CH), 132.3 (CH), 129.2 (CH), 128.6 (2 x CH), 127.2 (CH), 126.6 (2 x CH), 126.5 (CH), 124.9 (CH), 123.5 (CH), 123.1 (CH), 65.1 (C),

43.8 (CH), 40.1 (CH₂); LRMS m/z 385.00 (M + H⁺), calcd for $C_{24}H_{16}O_3S$ 384.08; Anal. calcd for $C_{24}H_{16}O_3S$ (384.08): C, 74.98; H, 4.19; Found: C, 74.87; H, 4.23%.

(S)-1'-(4-fluorophenyl)-3'-(p-tolyl)spiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6bb): Prepared by following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, λ = 254 nm), t_R = 11.58 min (major), t_R = 20.83 min (minor). Mp 200 °C; $|\alpha|_D^{25} = +42.27^\circ$ (*c* = 0.60 g/100 mL, CHCl₃, 94% *ee*); IR (Neat): v_{max}

3067, 2920, 2855, 1738, 1699, 1672, 1601, 1510, 1233, 889, 835, 814, 785, 754, 588, 550 and 498 cm⁻¹; ¹H NMR (CDCl₃) δ 7.84 (1H, d, *J* = 7.6 Hz), 7.69 (1H, t, *J* = 7.2 Hz), 7.62 (1H, t, *J* = 7.2 Hz), 7.57 (1H, d, *J* = 7.2 Hz), 6.97 (2H, br t, *J* = 8.8 Hz), 6.92 (2H, d, *J* = 8.0 Hz), 6.82 (2H, d, *J* = 8.0 Hz), 6.68 (2H, t, *J* = 8.4 Hz), 6.48 (1H, S), 4.10 (1H, dd, *J* = 14.8, 3.6 Hz), 3.64 (1H, t, *J* = 16.0Hz), 2.63 (1H, dd, *J* = 16.4, 3.6 Hz), 2.20 (3H, s, CH₃); ¹³C NMR (CDCl₃, DEPT-135) δ 200.2 (C, C=O), 198.4 (C, C=O), 197.3 (C, C=O), 162.1 (C, d, *J* = 246 Hz), 156.2 (C), 142.9 (C), 142.2 (C), 139.4 (C), 135.9 (2 x CH), 134.6 (C), 132.4 (C, d, *J* = 3 Hz), 131.9 (CH), 130.0 (2 x CH, d, *J* = 8.0 Hz), 129.3 (2 x CH), 126.4 (2 x CH), 123.4 (CH), 123.0 (CH), 115.3 (2 x CH, d, *J* = 21.2 Hz), 64.9 (C), 47.8 (CH), 38.7 (CH₂), 21.2 (CH₃); LRMS m/z 409.00 (M – H⁺), calcd for C₂₇H₁₉FO₃ 410.13; Anal. calcd for C₂₇H₁₉FO₃ (410.13): C, 79.01; H, 4.67; Found: C, 79.15; H, 4.61%.

(S)-1'-(4-bromophenyl)-3'-(p-tolyl)spiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6be): Prepared by

following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, λ = 254 nm), $t_{\rm R}$ = 12.25 min (major), $t_{\rm R}$ = 18.95 min (minor). Mp 170 °C; $[\alpha]_{\rm D}^{25}$ = +33.56° (*c* = 0.46 g/100 mL, CHCl₃, 92% *ee*); IR (Neat): v_{max}

3057, 2920, 2857, 1740, 1701,1665, 1590, 1489, 1327, 1242,1011, 887, 810, 764, 586 and 542 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.86 (1H, d, *J* = 7.5 Hz), 7.72 (1H, t, *J* = 7.5 Hz), 7.65 (1H, t, *J* = 7.5 Hz), 7.59 (1H, d, *J* = 7.5 Hz), 7.14 (2H, d, *J* = 8.0 Hz), 6.94 (2H, d, *J* = 8.0 Hz), 6.89 (2H, d, *J* = 9.0 Hz), 6.83 (2H, d, *J* = 8.0 Hz), 6.49 (1H, s), 4.09 (1H, dd, *J* = 14.5, 3.5 Hz), 3.65 (1H, t, *J* = 15 Hz), 2.64 (1H, dd, *J* = 17.0, 4.0 Hz), 2.22 (3H, s, CH₃); ¹³C NMR (CDCl₃, DEPT-135) δ 200.0 (C, C=O), 198.3 (C, C=O), 197.1 (C, C=O), 156.1 (C), 142.9 (C), 142.2 (C), 139.4 (C), 136.02 (CH), 136.00 (CH), 135.7 (C), 134.5 s-15

(C), 131.9 (CH), 131.5 (2 x CH), 130.0 (2 x CH), 129.3 (2 x CH), 126.6 (2 x CH), 123.4 (CH), 123.1 (CH), 122.0 (C), 64.7 (C), 47.8 (CH), 38.4 (CH₂), 21.1 (CH₃); LRMS m/z 470.00 (M⁺), calcd for $C_{27}H_{19}BrO_3$ (470.05); Anal. calcd for $C_{27}H_{19}BrO_3$ (470.05): C, 68.80; H, 4.06; Found: C, 68.71; H, 4.12%.

(S)-1'-(4-fluorophenyl)-3'-(4-methoxyphenyl)spiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6cb):

Prepared by following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 16.51$ min (major), $t_{\rm R} =$ 26.76 min (minor). Mp 195 °C; $[\alpha]_{\rm D}^{25} = +21.06^{\circ}$ (*c* = 0.26 g/100 mL,

CHCl₃, 94% *ee***);** IR (Neat): v_{max} 3077, 3013, 2926, 2849, 1738, 1699, 1672, 1605, 1510, 1416, 1331, 1290, 1250, 1179, 1117, 1032, 897, 839, 787 and 756 cm⁻¹; ¹H NMR (CDCl₃) δ 7.85 (1H, d, *J* = 7.6 Hz), 7.71 (1H, t, *J* = 7.2 Hz), 7.65 (1H, t, *J* = 7.2 Hz), 7.60 (1H, d, *J* = 7.2 Hz), 6.99 (2H, br t, *J* = 8.4 Hz), 6.90 (2H, d, *J* = 8.4 Hz), 6.69 (2H, t, *J* = 8.4 Hz), 6.66 (2H, d, *J* = 8.4 Hz), 6.50 (1H, s), 4.11 (1H, dd, *J* = 14.8, 3.6 Hz), 3.71 (3H, s, OCH₃), 3.64 (1H, t, *J* = 16.8 Hz), 2.65 (1H, dd, *J* = 16.4, 3.6 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 200.4 (C, C=O), 198.5 (C, C=O), 197.3 (C, C=O), 162.1 (C, d, *J* = 246.1 Hz), 160.4 (C), 155.8 (C), 142.9 (C), 142.2 (C), 135.97 (CH), 135.92 (CH), 132.4 (C, d, *J* = 3.0 Hz), 131.6 (CH), 130.0 (2 x CH, d, *J* = 8.0 Hz), 129.8 (C), 128.1 (2 x CH), 123.4 (CH), 123.0 (CH), 115.3 (2 x CH, d, *J* = 21.2 Hz), 114.1 (2 x CH), 65.0 (C), 55.2 (CH₃, OCH₃), 47.9 (CH), 38.6 (CH₂); LRMS m/z 427.00 (M + H⁺), calcd for C₂₇H₁₉FO₄ 426.13; Anal. calcd for C₂₇H₁₉FO₄ (426.13): C, 76.05; H, 4.49; Found: C, 76.15; H, 4.41%. **(S)-1'-(4-bromophenyl)-3'-(4-methoxyphenyl)spiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6ce):**

Prepared by following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 19.08$ min (major), $t_{\rm R} =$

29.07 min (minor). Mp 140 °C; $[\alpha]_D^{25} = +10.42^\circ$ (*c* = 0.50 g/100 mL, CHCl₃, 95% *ee*); IR (Neat): v_{max} 2922, 2853, 1742, 1703, 1651, 1602, 1512, 1460, 1258, 1175, 1024, 884 and 820 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.86 (1H, d, *J* = 8.0 Hz), 7.73 (1H, t, *J* = 7.5 Hz), 7.66 (1H, t, *J* = 7 Hz), 7.61 (1H, d, *J* = 7.5 Hz), 7.13 (2H, d, *J* = 8 Hz), 6.88 (4H, d, *J* = 8.5 Hz), 6.65 (2H, d, *J* = 8.5 Hz), 6.48 (1H, s), 4.08 (1H, dd, *J* = 14.5, 3.5 Hz), 3.70 (3H, s, OCH₃), 3.63 (1H, t, *J* = 16.5 Hz), 2.63 (1H, dd, *J* = 17.0, 4.0 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 200.1 (C, C=O), 198.4 (C, C=O), 197.1 (C, C=O), 160.4 (C), 155.7 (C), 142.9 (C), 142.1 (C), 136.1 (CH), 136.0 (CH), 135.7 (C), 131.5 (2 x CH), 130.0 (2 x CH), 129.7 (C), 128.1 (2 x CH),

123.4 (CH), 123.1 (CH), 122.0 (C), 114.1 (3 x CH), 64.8 (C), 55.2 (CH₃, OCH₃), 47.9 (CH), 38.4 (CH₂); LRMS m/z 486.00 (M⁺), calcd for $C_{27}H_{19}BrO_4$ 486.05; Anal. calcd for $C_{27}H_{19}BrO_4$ (486.05): C, 66.54; H, 3.93; Found: C, 66.48; H, 3.88%.

(S)-1'-(4-bromophenyl)-3'-(4-chlorophenyl)spiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6de):

Prepared by following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as viscous liquid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 15.38$ min (major), $t_{\rm R} = 23.65$ min (minor). $[\alpha]_{\rm D}^{25} = +15.24^{\circ}$ (*c* = 0.17 g/100 mL, CHCl₃, 91% *ee*); IR

(Neat): v_{max} 3067, 2924, 2857, 1736, 1703, 1674, 1591, 1489, 1252, 1094, 1013, 889, 818 and 704 cm⁻¹; ¹H NMR (CDCl₃) δ 7.84 (1H, d, *J* = 7.6 Hz), 7.73 (1H, t, *J* = 7.2 Hz), 7.66 (1H, t, *J* = 7.2 Hz), 7.60 (1H, d, *J* = 7.2 Hz), 7.13 (2H, d, *J* = 8.8 Hz), 7.11 (2H, d, *J* = 8.8 Hz), 6.87 (4H, d, *J* = 8.0 Hz), 6.44 (1H, s), 4.08 (1H, dd, *J* = 14.4, 3.2 Hz), 3.64 (1H, t, *J* = 16 Hz), 2.64 (1H, dd, *J* = 16.8, 3.2 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 199.8 (C, C=O), 198.1 (C, C=O), 196.9 (C, C=O), 154.7 (C), 142.7 (C), 142.1 (C), 136.3 (2 x CH), 135.8 (C), 135.4 (2 x C), 132.7 (CH), 131.6 (2 x CH), 130.0 (2 x CH), 128.9 (2 x CH), 128.1 (2 x CH), 123.5 (CH), 123.2 (CH), 122.1 (C), 64.7 (C), 47.7 (CH), 38.4 (CH₂); LRMS m/z 493.00 (M+2 + H⁺), calcd for C₂₆H₁₆BrClO₃ 490.00; Anal. calcd for C₂₆H₁₆BrClO₃ (490.00): C, 63.50; H, 3.28; Found: C, 63.41; H, 3.22%.

(1'S,6'R)-6'-methyl-1',3'-diphenylspiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6ea): Prepared

by following the procedure **A** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OJ-H column (hexane/2-propanol = 90:10, flow rate 0.6 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 12.10$ min (major), $t_{\rm R} = 23.91$ min (minor). Mp 195 °C; $[\alpha]_{\rm D}^{25} = +95.3^{\circ}$ (*c* =

0.20 g/100 mL, CHCl₃, 99% ee; >99% de); IR (Neat): v_{max} 3027, 2930, 1740, 1707, 1667, 1591, 1493, 1455, 1375, 1331, 1273, 1236, 878, 766, 700, 592, 546 and 527 cm⁻¹; ¹H NMR (CDCl₃) δ 7.83 (1H, d, J = 7.6 Hz), 7.64 (1H, t, J = 7.2 Hz), 7.54 (1H, t, J = 7.2 Hz), 7.49 (1H, d, J = 7.2 Hz), 7.20 (1H, t, J = 7.2 Hz), 7.11 (2H, t, J = 7.6 Hz), 6.96–6.93 (7H, m), 6.49 (1H, s), 3.78 (1H, d, J = 13.2 Hz), 3.65 (1H, quintet, J = 7.2 Hz), 1.01 (3H, d, J = 6.8 Hz, CHCH₃); ¹³C NMR (CDCl₃, DEPT-135) δ 200.2 (C, C=O), 199.8 (C, C=O), 198.9 (C, C=O), 154.8 (C), 142.9 (C), 142.6 (C), 137.5 (C), 135.8 (C), 135.6 (2 x CH), 132.1 (CH), 129.1 (CH), 128.5 (3 x CH), 128.4 (3 x CH), 127.7 (CH), 126.7 (2 x CH),

123.2 (CH), 123.0 (CH), 65.5 (C), 55.1 (CH), 40.3 (CH), 12.7 (CH₃); LRMS m/z 393.00 (M + H⁺), calcd for $C_{27}H_{20}O_3$ 392.14; Anal. calcd for $C_{27}H_{20}O_3$ (392.14): C, 82.63; H, 5.14; Found: C, 82.45; H, 5.21%.

(1'*S*,6'*R*)-1'-(4-bromophenyl)-6'-methyl-3'-phenylspiro[cyclohex[3']ene-2',2'-indene]-1',3',5'-trione (6ee): Prepared by following the procedure A and purified by column chromatography using EtOAc/hex

ane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 16.47$ min (major), $t_{\rm R} = 21.64$ min (minor). Mp 125 °C; $[\alpha]_{\rm D}^{25} = +67.79^{\circ}$ (*c* = 1.15 g/100 mL, CHCl₃, 90% *ee*; >99% *de*); IR (Neat): v_{max} 3059, 2973, 2933,

2876, 1738, 1703, 1669, 1487, 1445, 1337, 1265, 1238, 1072, 1009, 909, 878, 820, 783, 766, 747, 702 and 548 cm⁻¹; ¹H NMR (CDCl₃) δ 7.83 (1H, d, J = 7.6 Hz), 7.68 (1H, t, J = 7.2 Hz), 7.59 (1H, t, J = 7.2 Hz), 7.52 (1H, d, J = 7.6 Hz), 7.27–7.07 (5H, m), 6.91–6.86 (4H, m), 6.45 (1H, s), 3.76 (1H, d, J = 17.6 Hz), 3.63–3.55 (1H, m), 0.98 (3H, d, J = 6.8 Hz, CHCH₃); ¹³C NMR (CDCl₃, DEPT-135) δ 199.9 (C, C=O), 199.2 (C, C=O), 198.8 (C, C=O), 154.7 (C), 142.7 (C), 142.4 (C), 137.2 (C), 136.0 (2 x CH), 135.1 (C), 131.9 (CH), 131.6 (2 x CH), 129.1 (CH), 128.5 (4 x CH), 126.8 (2 x CH), 123.3 (CH), 123.1 (CH), 121.8 (C), 65.2 (C), 54.2 (CH), 40.2 (CH), 12.7 (CH₃); LRMS m/z 470.00 (M⁺), calcd for C₂₇H₁₉BrO₃ (470.05); C, 68.80; H, 4.06; Found: C, 68.71; H, 4.12%.

(*R*)-1-phenyl-3-((*S*)-1,4-dioxaspiro[4.5]decan-2-yl)spiro[cyclohex[6]ene-2,2'-indene]-1',3',5-trione (6ao): Prepared by following the procedure A and purified by column chromatography using

EtOAc/hexane and isolated as solid. Mp 120 °C; $[\alpha]_D^{25} = -15.82^\circ$ (c = 0.28g/100 mL, CHCl₃, >99% ee, >99 de); IR (Neat): v_{max} 3061, 2934, 2859, 1757, 1744, 1713, 1674, 1597, 1447, 1256, 1161, 1107, 939, 887, 847, 764, 737 and 698 cm⁻¹; ¹H NMR (CDCl₃) δ 8.12 (1H, d, J = 7.6 Hz), 7.94–7.82 (3H, m), 7.22 (1H, t, J = 7.2 Hz), 7.14 (2H, t, J = 7.6 Hz), 6.91 (2H, d, J = 7.6 Hz), 6.39 (1H, s), 3.87–3.80 (2H, m), 3.62 (1H, t, J = 6 Hz), 3.28 (1H, dd, J

= 17.2, 14.0 Hz), 3.02 (1H, br d, J = 13.6 Hz), 2.55 (1H, dd, J = 17.2, 3.6 Hz), 1.70–1.35 (6H, m), 1.18– 1.07 (4H, m); ¹³C NMR (CDCl₃, DEPT-135) δ 201.2 (C, C=O), 197.9 (C, C=O), 196.1 (C, C=O), 156.9 (C), 143.5 (C), 142.2 (C), 137.4 (C), 136.2 (CH), 135.6 (CH), 132.2 (CH), 129.1 (CH), 128.5 (2 x CH), 126.6 (2 x CH), 123.9 (CH), 123.0 (CH), 110.8 (C, O-C-O), 73.0 (CH), 65.7 (CH₂), 62.7 (C), 46.1 (CH), 35.3 (CH₂), 33.7 (CH₂), 32.3 (CH₂), 24.9 (CH₂), 23.8 (CH₂), 23.3 (CH₂); LRMS m/z 441.00 (M – H⁺), calcd for C₂₈H₂₆O₅ 442.18; Anal. calcd for C₂₈H₂₆O₅ (442.18): C, 76.00; H, 5.92; Found: C, 76.18; H, 5.86%.

(R,Z)-2-phenyl-6-((S)-1,4-dioxaspiro[4.5]decan-2-yl)-5,6-dihydroindeno[1,2-b]oxocine-4,7-dione (7ao):

Prepared by following the procedure **B** and purified by column chromatography using EtOAc/hexane and isolated as viscous liquid. $[\alpha]_D^{25} = -59.02^\circ$ (c = 0.43 g/100 mL, CHCl₃, >99% *ee*, >99 *de*); IR (Neat): v_{max} 3063, 2936, 2859, 1711, 1661, 1609, 1449, 1368, 1331, 1263, 1163, 1103, 928, 862, 764, 735 and 692 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.91–7.89 (2H, m), 7.57–7.52 (3H, m), 7.44–7.42 (1H, m), 7.23–7.22 (2H, m), 6.87–6.85 (1H, m), 6.32 (1H, s), 4.40 (1H, q, J = 6.0 Hz), 4.06 (1H, t, J = 8.0 Hz), 3.94 (1H, t, J = 6.5 Hz), 3.67 (1H, t, J = 12.0 Hz), 3.16–3.11 (1H, m), 2.79 (1H, dd, J = 11.5, 5.0 Hz), 1.67–1.55 (6H, m), 1.42–1.38 (4H, m); ¹³C NMR

(CDCl₃, DEPT-135) δ 201.1 (C, C=O), 194.1 (C, C=O), 173.6 (C), 163.1 (C), 140.3 (C), 133.4 (CH), 133.3 (C), 131.2 (CH), 130.4 (C), 129.8 (CH), 129.1 (2 x CH), 125.8 (2 x CH), 122.4 (CH), 122.1 (C), 119.4 (CH), 114.2 (CH), 110.2 (C, O-C-O), 77.0 (CH), 67.4 (CH₂), 40.7 (CH₂), 36.1 (CH₂), 35.2 (CH), 34.7 (CH₂), 25.2 (CH₂), 24.0 (CH₂), 23.8 (CH₂); LRMS m/z 441.00 (M – H⁺), calcd for C₂₈H₂₆O₅ 442.18; Anal. calcd for C₂₈H₂₆O₅ (442.18): C, 76.00; H, 5.92; Found: C, 76.12; H, 5.88%.

(S,Z)-2,6-diphenyl-5,6-dihydroindeno[1,2-b]oxocine-4,7-dione (7aa): Prepared by following the

procedure **B** and purified by column chromatography using EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 85:15, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 10.70$ min (major), $t_{\rm R} = 14.45$ min (minor). Mp 105 °C; $[\alpha]_{\rm D}^{25} = +51.8^{\circ}$ (*c* = 0.62 g/100 mL, CHCl₃, 91% *ee*); IR (Neat): $v_{\rm max}$ 3057, 2924, 2853, 1726, 1653, 1632, 1613, 1493, 1447, 1362, 1325, 1262, 1072,

968, 862, 775, 762, 733, 702 and 687 cm⁻¹; ¹H NMR (CDCl₃) δ 7.97 (2H, br s), 7.58 (3H, br s), 7.47 (2H, d, J = 7.2 Hz), 7.36 (3H, t, J = 6.8 Hz), 7.28–7.19 (3H, m), 6.93 (1H, d, J = 6.4 Hz), 6.39 (1H, s), 4.21 (1H, dd, J = 12.4, 4.8 Hz), 3.99 (1H, t, J = 11.6 Hz), 2.88 (1H, dd, J = 10.8, 4.8 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 199.8 (C, C=O), 193.6 (C, C=O), 172.7 (C), 164.8 (C), 141.1 (2 x C), 140.6 (C), 133.4 (CH), 131.3 (CH), 130.2 (C), 129.5 (CH), 129.0 (2 x CH), 128.8 (2 x CH), 127.5 (2 x CH), 127.1 (CH), 125.7 (2 x CH), 125.1 (C), 122.3 (CH), 119.4 (CH), 114.9 (CH), 47.0 (CH), 31.8 (CH₂); LRMS m/z 379.00 (M + H⁺), calcd for C₂₆H₁₈O₃ 378.13; Anal. calcd for C₂₆H₁₈O₃ (378.13): C, 82.52; H, 4.79; Found: C, 82.45; H, 4.71%.

(1'S,5'R)-1'-(4-bromophenyl)-5'-hydroxy-3'-phenylspiro[cyclohex[3']ene-2',2'-indene]-1',3'-dione (8ae):

Prepared by following the procedure **D** and purified by column chromatography using EtOAc/hexane and isolated as viscous liquid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 30.82$ min (major), $t_{\rm R} = 36.92$ min (minor). $[\alpha]_{\rm D}^{25} = +6.22^{\circ}$ (*c* = 0.50 g/100 mL, CHCl₃, 90% *ee*; >99 *de*); IR

(Neat): v_{max} 3416 (OH), 3060, 2930, 2865, 1738 (C=O), 1701 (C=O), 1593, 1491, 1443, 1410, 1350, 1252, 1051, 1032, 889, 824, 764, 737, and 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.68 (1H, d, *J* = 7.2 Hz), 7.59–7.54 (3H, m), 7.07 (2H, d, *J* = 6.8 Hz), 7.04–6.99 (3H, m), 6.89 (2H, d, *J* = 7.6 Hz), 6.84 (2H, d, *J* = 8.0 Hz), 6.28 (1H, s), 4.71 (1H, br s, CHOH), 3.60 (1H, d, *J* = 13.6 Hz, ArCH), 2.95 (1H, br s, OH), 2.83 (1H, q, *J* = 12.8 Hz), 2.26 (1H, dd, *J* = 12.0, 6.0 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 202.4 (C, C=O), 201.7 (C, C=O), 142.6 (C), 142.3 (C), 139.1 (C), 137.54 (C), 137.50 (CH), 137.0 (C), 135.7 (CH), 135.6 (CH), 131.2 (2 x CH), 130.0 (2 x CH), 128.1 (2 x CH), 127.8 (2 x CH), 127.6 (CH), 122.9 (CH), 122.6 (CH), 121.3 (C), 67.6 (OCH), 64.5 (C), 46.1 (CH), 33.4 (CH₂); LRMS m/z 459.00 (M + 2 – H⁺), calcd for C₂₆H₁₉BrO₃ 458.05; Anal. calcd for C₂₆H₁₉BrO₃ (458.05): C, 67.99; H, 4.17; Found: C, 67.83; H, 4.21%.

(1'S,5'R,6'R)-1'-(4-bromophenyl)-5'-hydroxy-6'-methyl-3'-phenylspiro[cyclohex[3']ene-2',2'-indene]-

1',3'-dione (8ee): Prepared by following the procedure D and purified by column chromatography using

EtOAc/hexane and isolated as viscous liquid. $[\alpha]_D^{25} = +19.46^\circ$ (*c* = 0.68 g/100 mL, CHCl₃, 90% *ee;* >99% *de*); IR (Neat): v_{max} 3462 (OH), 2974, 2928, 2868, 1740 (C=O), 1701 (C=O), 1591, 1489, 1240, 1031, 764 and 702 cm⁻¹; ¹H NMR (CDCl₃) δ 7.72 (1H, d, *J* = 7.2 Hz), 7.60 (1H, t, *J* = 6.4 Hz), 7.55–7.50 (2H, m), 7.09–7.01 (5H, m), 6.89 (2H, d, *J* = 6.8 Hz), 6.81 (2H, br s), 6.22 (1H, s), 4.19 (1H, br s, CHOH), 3.35 (1H, d, *J* = 12.4 Hz, ArCH),

2.85–2.78 (1H, m), 2.41 (1H, br s, O*H*), 0.92 (3H, d, J = 6.4 Hz, CHC*H*₃); ¹³C NMR (CDCl₃, DEPT-135) δ 202.2 (C, C=O), 202.0 (C, C=O), 142.6 (C), 142.5 (C), 139.0 (C), 136.8 (C), 136.6 (CH), 135.8 (C), 135.6 (CH), 135.6 (CH), 131.2 (2 x CH), 128.1 (3 x CH), 127.9 (3 x CH), 127.6 (CH), 122.9 (CH), 122.7 (CH), 121.1 (C), 73.9 (CH), 65.1 (C), 52.6 (CH), 36.1 (CH), 16.1 (CH₃); LRMS m/z 472.00 (M⁺), calcd for C₂₇H₂₁BrO₃ 472.07; Anal. calcd for C₂₇H₂₁BrO₃ (472.07): C, 68.51; H, 4.47; Found: C, 68.51; H, 4.43%.

(15,35,5R,6R)-3-(4-bromophenyl)-5-hydroxy-1-phenyl-7-oxaspiro[bicyclo[4.1.0]heptane-2,2'-indene]-

1',3'-dione (9ae): Prepared by following the procedure E and purified by column chromatography using

EtOAc/hexane and isolated as gummy solid. $[\alpha]_D^{25} = -81.40^\circ$ (c = 0.50 g/100 mL, CHCl₃, 90% *ee;* >99% *de*); IR (Neat): v_{max} 3430 (OH), 3061, 2930, 1744 (C=O), 1705 (C=O), 1593, 1489, 1449, 1426, 1258, 1180, 1049, 1011, 947, 870, 824, 770, 737, 700 and 669 cm⁻¹; ¹H NMR (CDCl₃) δ 7.73 (1H, d, J = 7.6 Hz), 7.59 (1H, t, J = 7.6 Hz), 7.49 (1H, t, J = 7.2 Hz), 7.39 (1H, d, J = 7.6 Hz), 7.13 (2H, d, J = 8.4 Hz), 7.03–6.98 (5H, m), 6.92 (2H, d, J = 8.4 Hz), 4.53–4.49 (1H,

m), 3.60–3.56 (2H, m), 2.93 (1H, q, J = 12.8 Hz), 2.08–2.04 (2H, m); ¹³C NMR (CDCl₃, DEPT-135) δ 200.8 (C, C=O), 197.8 (C, C=O), 143.1 (C), 142.2 (C), 137.5 (C), 136.2 (C), 135.7 (CH), 135.5 (CH), 131.2 (2 x CH), 130.6 (2 x CH), 128.4 (2 x CH), 128.3 (CH), 127.7 (2 x CH), 122.8 (CH), 122.7 (CH), 121.2 (C), 68.7 (CH), 67.7 (C), 61.8 (CH), 60.2 (C), 44.0 (CH), 30.2 (CH₂); LRMS m/z 475.00 (M + H⁺), calcd for C₂₆H₁₉BrO₄ 474.05; Anal. calcd for C₂₆H₁₉BrO₄ (474.05): C, 65.70; H, 4.03; Found: C, 65.81; H, 4.08%.

(1S,3S,4R,5R,6R)-3-(4-bromophenyl)-5-hydroxy-4-methyl-1-phenyl-7-oxaspiro[bicyclo[4.1.0]heptane-2,2'-indene]-1',3'-dione (9ee): Prepared by following the procedure **E** and purified by column

chromatography using EtOAc/hexane and isolated as viscous liquid. $[\alpha]_D^{25} = -$ **59.36°** (*c* = **0.54** g/100 mL, 90% *ee;* >99% *de*); IR (Neat): v_{max} 3482 (OH), 3061, 2971, 2930, 2876, 1742 (C=O), 1705 (C=O), 1593, 1489, 1449, 1412, 1352, 1258, 1047, 1013, 945, 903, 880, 770, 737 and 702 cm⁻¹; ¹H NMR (CDCl₃) δ 7.74 (1H, d, *J* = 7.6 Hz), 7.59 (1H, t, *J* = 7.2 Hz), 7.48 (1H, t, *J* = 7.6 Hz), 7.36 (1H, d,

J = 7.6 Hz), 7.22 (1H, br s), 7.05–6.97 (7H, m), 6.68 (1H, br s), 4.01 (1H, d, J = 8.8 Hz), 3.59 (1H, br s), 3.29 (1H, d, J = 12.0 Hz), 2.92–2.85 (1H, m), 0.91 (3H, d, J = 6.8 Hz, CHCH₃); ¹³C NMR (CDCl₃, DEPT-135) δ 200.5 (C, C=O), 198.2 (C, C=O), 142.9 (C), 141.9 (C), 136.2 (C), 135.6 (CH), 135.5 (C), 135.4 (CH), 132.6 (CH), 131.2 (CH), 131.0 (2 x CH), 128.3 (3 x CH), 127.7 (2 x CH), 122.7 (2 x CH), 121.1 (C), 74.5 (CH), 67.3 (C), 61.7 (CH), 61.3 (C), 50.8 (CH), 32.8 (CH), 15.3 (CH₃); LRMS m/z 489.00 (M + H⁺), calcd for C₂₇H₂₁BrO₄ 488.06; Anal. calcd for C₂₇H₂₁BrO₄ (488.06): C, 66.27; H, 4.33; Found: C, 66.15; H, 4.38%.

(1R,3S,5R,6S)-3-(4-bromophenyl)-5-hydroxy-1-phenylspiro[bicyclo[4.1.0]heptane-2,2'-indene]-1',3'-

dione (10ae): Prepared by following the procedure \mathbf{F} and purified by column chromatography using

EtOAc/hexane and isolated as viscous liquid. $[\alpha]_D^{25} = -72.08^\circ$ (*c* = 0.23 g/100 mL, CHCl₃, 90% *ee*; >99% *de*); IR (Neat): v_{max} 3426 (OH), 3057, 2932, 1740 (C=O), 1701 (C=O), 1593, 1489, 1411, 1350, 1258, 1119, 1040, 876, 826, 799, 770, 737, 702 and 667 cm⁻¹; ¹H NMR (CDCl₃) δ 7.76 (1H, d, *J* = 7.6 Hz), 7.63 (1H, t, *J* = 7.2 Hz), 7.52 (1H, t, *J* = 7.6 Hz), 7.32 (1H, d, *J* = 7.6 Hz), 7.12 (2H, d, *J* = 8 Hz), 7.00–6.73 (7H, m), 4.68 (1H, m), 3.46 (1H, d, *J* = 13.6 Hz), 2.43 (1H,

q, J = 12.8 Hz), 2.21 (1H, t, J = 5.6 Hz), 2.05–1.98 (2H, m), 1.89 (1H, br s, OH), 0.87 (1H, dd, J = 8.8, 6 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 201.9 (2 x C, C=O), 142.7 (C), 142.4 (C), 142.2 (C), 138.3 (C), 135.4 (CH), 135.3 (CH), 131.1 (2 x CH), 131.0 (CH), 130.7 (2 x CH), 127.7 (2 x CH), 127.0 (2 x CH), 122.7 (CH), 122.5 (CH), 121.0 (C), 68.0 (CH), 58.4 (C), 44.3 (CH), 36.6 (C), 30.9 (CH₂), 26.8 (CH), 12.4 (CH₂); LRMS m/z 471.00 (M – H⁺), calcd for C₂₇H₂₁BrO₃ 472.07; Anal. calcd for C₂₇H₂₁BrO₃ (472.07): C, 68.51; H, 4.47; Found: C, 68.42; H, 4.52%.

(S)-3'-(4'-hydroxy-[1,1'-biphenyl]-4-yl)-1'-phenylspiro[cyclohex[6']ene-2',2'-indene]-1',3',5'-trione (11aea): Prepared by following the procedure **G** and purified by column chromatography using

EtOAc/hexane and isolated as solid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 23.72$ min (major), $t_{\rm R} = 34.53$ min (minor). Mp 125 °C; $[\alpha]_{\rm D}^{25} = +34.83^{\circ}$ (*c* = 0.68 g/100 mL, CHCl₃, 90% *ee*); IR (Neat): v_{max} 3028 (OH), 2917, 1740 (C=O), 1704

(C=O), 1663, 1591, 1499, 1445, 1331, 1252, 1024, 887, 824, 762, 696, and 527 cm⁻¹; ¹H NMR (CDCl₃) δ 7.84 (1H, d, *J* = 7.6 Hz), 7.64–7.61 (1H, m), 7.56–7.55 (2H, m), 7.24–7.12 (7H, m), 7.03 (2H, d, *J* = 8.0 Hz), 6.96 (2H, d, *J* = 7.6 Hz), 6.83 (2H, d, *J* = 8.4 Hz), 6.52 (1H, s), 4.16 (1H, dd, *J* = 14.8, 3.6 Hz), 3.73 (1H, t, *J* = 16.4 Hz), 2.71 (1H, dd, *J* = 16.8, 3.6 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 200.4 (C, C=O), 198.6 (C, C=O), 198.4 (C, C=O), 157.0 (C), 156.0 (C), 143.0 (C), 142.3 (C), 140.5 (C), 137.4 (C), 135.9 (2 x CH), 134.5 (C), 132.2 (CH), 132.1 (C), 129.3 (CH), 128.7 (4 x CH), 128.0 (2 x CH), 126.6 (2 x CH), 126.4 (2 x CH), 123.4 (CH), 123.1 (CH), 115.8 (2 x CH), 65.2 (C), 48.3 (CH), 38.6 (CH₂); LRMS m/z 471.00 (M + H⁺), calcd for C₃₂H₂₂O₄ 470.15; Anal. calcd for C₃₂H₂₂O₄ (470.15): C, 81.69; H, 4.71; Found: C, 81.57; H, 4.82%.

(S)-3'-(4'-(hydroxymethyl)-[1,1'-biphenyl]-4-yl)-1'-phenylspiro[cyclohex[6']ene-2',2'-indene]-1',3',5'-

trione (11aeb): Prepared by following the procedure G and purified by column chromatography using

EtOAc/hexane and isolated as viscous liquid. The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H column (hexane/2-propanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), $t_{\rm R} = 28.86$ min (major), $t_{\rm R} = 33.99$ min (minor). $|\alpha|_{\rm D}^{25} = +26.44^{\circ}$ (*c* = 0.78 g/100 mL, CHCl₃, 90% *ee*); IR (Neat):

 v_{max} 3540 (OH), 2922, 2855, 1732 (C=O), 1698 (C=O), 1667, 1590, 1497, 1404, 1323, 1252, 1044, 812, 777, 762, 694, 594 and 569 cm⁻¹; ¹H NMR (CDCl₃) δ 7.83 (1H, d, *J* = 7.6 Hz), 7.64–7.60 (1H, m), 7.55 (2H, br s), 7.37–7.31 (4H, m), 7.20 (3H, m), 7.13 (2H, t, *J* = 7.6 Hz), 7.04 (2H, d, *J* = 8 Hz), 6.95 (2H, d, *J* = 7.6 Hz), 6.50 (1H, s), 4.69 (2H, s, CH₂OH), 4.15 (1H, dd, *J* = 14.4, 3.2 Hz), 3.71 (1H, t, *J* = 15.2 Hz), 2.68 (1H, dd, *J* = 16.4, 3.2 Hz); ¹³C NMR (CDCl₃, DEPT-135) δ 200.2 (C, C=O), 198.4 (C, C=O), 197.7 (C, C=O), 156.3 (C), 143.0 (C), 142.3 (C), 140.4 (2 x C), 139.3 (C), 137.5 (C), 135.8 (2 x CH), 135.5 (C), 132.4 (CH), 129.2 (CH), 128.8 (2 x CH), 128.6 (2 x CH), 127.4 (2 x CH), 126.9 (4 x CH), 126.6 (2 x CH), 123.4 (CH), 123.0 (CH), 65.1 (C), 64.9 (CH₂), 48.3 (CH), 38.5 (CH₂); LRMS m/z 485.00 (M + H⁺), calcd for C₃₃H₂₄O₄ 484.00; Anal. calcd for C₃₃H₂₄O₄ (484.00): C, 81.80; H, 4.99; Found: C, 81.65; H, 5.06%.

(*S*,*E*)-1-(6-methoxyquinolin-4-yl)-N-(4-phenylbut-3-yn-2-ylidene)-1-((1*S*,2*S*,4*S*,5*R*)-5-vinylquinuclidin-2yl)methanamine (A'): ¹H NMR (CDCl₃) δ 8.73 (1H, d, *J* = 4.4 Hz), 8.01 (1H, d, *J* = 9.2 Hz), 7.77 (1H, br

s), 7.56–7.53 (1H, m), 7.41–7.32 (6H, m), 5.83–5.74 (1H, m), 5.64 (1H, d, J = 9.6 Hz), 4.96 (2H, m), 3.65 (3H, s, OCH₃), 3.37–3.32 (1H, m), 3.26 (1H, dd, J = 14.0, 10.4 Hz), 2.84–2.75 (2H, m), 2.62 (2H, br s), 2.29 (3H, s, CH₃), 1.62–1.56 (3H, m), 1.41–1.36 (1H, m), 0.89–0.85 (1H, m); ¹³C NMR (CDCl₃, DEPT-135) δ 157.6 (C), 151.2 (C), 147.7 (CH), 145.7 (C), 144.8 (C), 141.7 (CH), 131.7 (2 x CH), 131.7 (CH), 129.7 (CH), 128.6 (2 x CH), 128.4 (C), 121.8 (CH), 121.4

(CH), 121.2 (C), 114.3 (CH₂), 102.7 (CH), 96.3 (C), 83.7 (C), 61.3 (CH), 56.2 (CH₂), 55.3 (CH₃, OCH₃), 41.2 (CH₂), 39.8 (CH), 28.3 (CH₂), 28.0 (2 x CH), 27.7 (CH₃), 25.2 (CH₂); LRMS m/z 450.70 (M + H⁺), calcd for $C_{30}H_{31}N_{3}O$ (449.5868).

References:

- a) S. Rondeau-Gagne, C. Curutchet, F. Grenier, G. D. Scholes, *Tetrahedron* 2010, *66*, 4230-4242;
 b) A. Zanka, *Organic Process Research & Development* 1998, *2*, 60-62.
- 2. A. B. Charette, H. Lebel, J. Org. Chem. 1995, 60, 2966-2967.
- M. Prieto, S. Mayor, K. Rodriguez, P. Lloyd-Williams, E. Giralt, J. Org. Chem. 2007, 72, 1047-1050.
- (a) D. R. Schroender and F. R. Stermitz, *Tetrahedron* 1985, 41, 4309; (b) J. N. Xiang, P. Nambi,
 E. H. Ohlstein and J. D. Elliott, *Bioorg. Med. Chem.*, 1998, 6, 695; (c) D. R. Zitsane, I. T. Ravinya, I. A. Riikure, Z. F. Tetere, E. Y. Gudrinietse and U. O. Kalei, *Russ. J. Org. Chem.*, 2000, 36, 496; (d) D. Kuck, *Chem. Rev.*, 2006, 106, 4885; (e) D. Pizzirani, M. Roberti, S. Grimaudo, A. Di Cristina, R. M. Pipitone, M. Tolomeo and M. Recanatini, *J. Med. Chem.*, 2009, 52, 6936.
- (a) D. B. Ramachary, N. S. Chowdari and C. F. Barbas III, *Angew. Chem. Int. Ed.*, 2003, 42, 4233; (b) L. –Y. Wu, G. Bencivenni, M. Mancinelli, A. Mazzanti, G. Bartoli and P. Melchiorre, *Angew. Chem. Int. Ed.*, 2009, 48, 7196; (c) D. B. Ramachary, Y. V. Reddy, A. Banerjee and S. Banerjee, *Org. Biomol. Chem.*, 2011, 9, 7282.

Spectra's for the controlled NMR experiments to prove *in situ* formation of 2-aminobuta-1,3-enyne:

Check CIF/PLATON (standard) for Datablock: DBR-12a [6be]

Bond precision:		C-C = 0.0042 A			Ţ	Navelength=1.54184
Cell:	a=8.50	36(15)	b=12.3169(10)		c=21.639(4)	
	alpha=		beta=90		gamma=9	0
Temperature:293 K						
		Calculat	ed			Reported
Volume		2266.4(6)			2266.4(6)
Space group		P 21 21	21			P2(1)2(1)2(
Hall group		P 2ac 2a	.b			?
Moiety formu	ıla	C27 H19	Br C	03		?
Sum formula		C27 H19	Br C	03		C27 H19 Br O3
Mr		471.32				471.33
Dx,g cm-3		1.381				1.381
Ζ		4				4
Mu (mm-1)		2.674				2.674
F000		960.0				960.0
F000'		959.74				
h,k,lmax		10,15,26				10,15,26
Nref		2591[45	37]			4488
Tmin,Tmax		0.374,0.	586			0.400,0.617
Tmin'		0.283				
Correction m	ethod=	MULTI-SC	CAN			
Data complet	eness=	1.73/0.9	9	Theta(max):	= 73.110	

```
Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012
```

```
R(reflections) = 0.0355( 3736) wR2(reflections) = 0.0964( 4488)
S = 1.051 Npar= 286
```

PLATON version of 18/07/2011; check.def file version of 04/07/2011

Datablock DBR-12a - ellipsoid plot

Check CIF/PLATON (standard) for Datablock: DBR-09-09-11 [6ee]

Bond precision: C-C = 0.0073 AWavelength=1.54184 Cell: a=8.0571(2) b=11.5261(2) c=12.1322(2) alpha=90 beta=99.462(2) gamma=90 Temperature: 298 K Calculated Reported Volume 1111.35(4) 1111.35(4) Space group P 21 P 1 21 1 Hall group P 2yb ? Moiety formula ? C27 H19 Br O3 Sum formula C27 H19 Br O3 C27 H19 Br O3 Mr 471.32 471.33 Dx,g cm-3 1.408 1.408 2 2 Ζ Mu (mm-1) 2.727 2.727 F000 480.0 480.0 F000' 479.87 h,k,lmax 9,14,14 9,14,14 Nref 2220[4216] 3712 0.366,0.466 0.394,0.516 Tmin,Tmax Tmin' 0.277 Correction method= MULTI-SCAN Data completeness= 1.67/0.88 Theta(max) = 70.030

```
R(reflections) = 0.0684(3457) wR2(reflections) = 0.1932(3712)
S = 1.041 Npar= 281
```

PLATON version of 18/07/2011; check.def file version of 04/07/2011

Datablock DBR-09-09-11 - ellipsoid plot

