Electronic Supplementary Information

Evidence for a reactive (alkene)peroxoiridium(III) intermediate in the oxidation of an alkene complex with O_2

Matthew R. Kelley and Jan-Uwe Rohde*

Department of Chemistry, The University of Iowa, Iowa City, IA 52242

Contents	Page
Experimental Procedures	S2
References	S4
Figure S1. ¹ H, ¹ H COSY spectrum of 2	S4
Figure S2. ¹ H, ¹³ C HSQC spectrum of 2	S5
Table S1. ¹ H and ¹³ C chemical shifts from the ¹ H, ¹³ C HSQC spectrum of 2	S5
Figure S3. IR spectra of 1 , 2 , $2^{-18}O_2$, and the decay products of 2 and $2^{-18}O_2$	S6
Determination of the Self-Diffusion Coefficients of 1 and 2	S7
Figure S4. Plots of $ln(I/I_0)$ versus G^2 for 1 and 2	S8
Figure S5. UV–Vis spectral changes for the reaction of 1 in toluene with O ₂	S9
Table S2. Mass spectrometric data of the decay products of 2 and 2- ¹⁸ O ₂	S9

Experimental Procedures

Materials. All reagents and solvents were purchased from commercial sources and were used as received, unless noted otherwise. Diethyl ether and toluene were deoxygenated by sparging with N_2 and purified by passage through two packed columns of molecular sieves under an N_2 pressure (MBraun solvent purification system). n-Pentane was dried over Na and distilled under N_2 prior to use. Preparation and handling of air- and moisture-sensitive materials were carried out under an inert gas atmosphere by using either standard Schlenk and vacuum line techniques or a glovebox. Dioxygen was dried by passage through a short column of Drierite. Isotope-enriched $^{18}O_2$ (97% ^{18}O) was purchased from Cambridge Isotope Laboratories, Andover, MA, USA. [Ir{PhNC(NMe₂)NPh}(cod)] (1) was synthesized as previously described (cod = 1,5-cyclooctadiene).

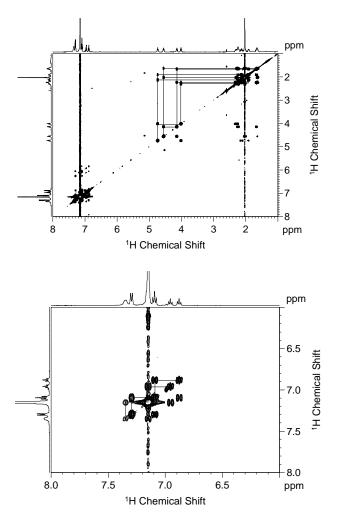
Physical Methods. NMR spectra were recorded on a Bruker Avance MicroBav 300. Avance 400 or Avance 500 spectrometer at ambient temperature, unless noted otherwise. ¹H, ¹³C and ³¹P chemical shifts are reported in parts per million (ppm) and were referenced to residual solvent peaks (for ¹H and ¹³C NMR spectra) or an external standard [H₃PO₄ (85%, 0 ppm) for ³¹P NMR spectra]. Two-dimensional correlated spectroscopy (COSY) and heteronuclear singlequantum coherence (HSQC) experiments were carried out on a Bruker Avance 500 spectrometer at 25 °C using the gradient versions of the COSY and HSQC pulse sequences, and the data were processed using the TopSpin 2.1 software package. For ¹H, ¹H COSY, typical measurement parameters were as follows: time domain data points (TD), 2048 for TD and 512 for TD1; number of scans (NS), 8; and number of dummy scans (DS), 32. The data were processed with zero-filling to 4096 (TD) and 512 (TD1). For ¹H, ¹³C HSQC, typical measurement parameters were as follows: 2048 for TD and 200 for TD1; NS, 16; and DS, 16. The data were processed with zero-filling to 2048 (TD) and 1024 (TD1). The total measurement time for each experiment was approximately 2 h. Self-diffusion coefficients (D) were determined from stimulated-echo experiments using bipolar gradients acquired in two-dimensional mode (stebpgp1s). These experiments were performed on a Bruker Avance 400 spectrometer at 25 °C. Prior to each experiment, the diffusion time (delay between the midpoints of the gradients, Δ) and gradient length (δ) were optimized using the one-dimensional version of the pulse sequence (stebpgp1s1d). The data acquisition for each diffusion experiment took approximately 30 min. Data processing and analysis to determine D were carried out within the TopSpin 2.1 software package.

IR spectra were recorded on a Bruker Vertex 70 Fourier-transform IR spectrometer using samples prepared by grinding the solid compound with KBr and pressing the mixture into a disk. Low-resolution mass spectral data were acquired on a quadrupole ion trap ThermoFinnigan LCQ Deca mass spectrometer using an electrospray ionization source or on a single quadrupole ThermoFinnigan Voyager mass spectrometer using an electron impact ionization source (equipped with a solids probe). High-resolution mass spectral data were acquired on a time-of-flight Waters GCT Premier mass spectrometer using an electron impact ionization source (equipped with a solids probe). UV–Visible spectra were recorded on an HP 8453A diode array spectrophotometer (Agilent Technologies).

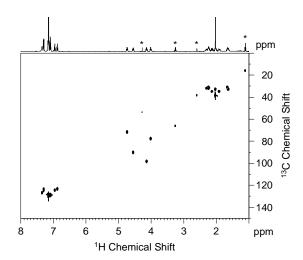
Generation and Characterization of [Ir{PhNC(NMe₂)NPh}(η^4 -cod)(η^2 -O₂)] (2). In a typical experiment, a 15–20 mM solution of 1 (4.0–5.4 mg, 0.0075–0.010 mmol) in 0.5 ml of

 C_6D_6 was placed in an NMR tube and purged with $O_2(g)$ at 20 °C for 40 s. The progress of the reaction was monitored by 1H NMR spectroscopy. Under these conditions, **1** (bright yellow solution) converted into the intermediate, **2** (pale yellow solution), in about 3 h, and **2** was typically fully decayed (dark green solution) within 12 h after the addition of O_2 to **1**. For quantification, 5 equiv of 1,2-dichloroethane (3.0–3.9 μ l, 3.8–4.9 mg, 0.038–0.050 mmol) was added to the solution of **2**, and the yield was estimated by comparing the integrations of the 1,2-dichloroethane (δ , 2.90 ppm) and alkene proton signals (ca. 75%). For IR spectroscopy, 0.15 ml of a solution of **2** was mixed with KBr. The mixture was evaporated to dryness (20 °C, *in vacuo*) and pressed into a disk. For labeling experiments, 5 ml (ca. 0.2 mmol) of $^{18}O_2$ (97% $^{18}O_2$) was added to a 15–20 mM solution of **1** (0.0075–0.010 mmol) in 0.5 ml of C_6D_6 .

¹H NMR (500 MHz, C₆D₆, δ): 7.35 (br d, 2H, Ar H), 7.30 (d, J = 8.1 Hz, 2H, Ar H), 7.15 (Ar H; this signal partially overlaps with the residual solvent peak), 7.09 (t, J = 7.7 Hz, 2H, Ar H), 6.96 (t, J = 7.2 Hz, 1H, Ar H), 6.88 (t, J = 7.7 Hz, 1H, Ar H), 4.74 (br dt, 1H, =CHCH₂–), 4.55 (br dt, 1H, =CHCH₂–), 4.14 (br dt, 1H, =CHCH₂–), 4.01 (br dt, 1H, =CHCH₂–), 2.34–2.19 (m, 3H, =CHCH₂–), 2.17–2.09 (m, 1H, =CHCH₂–), 2.06–1.98 (m, 1H, =CHCH₂–), 2.03 (s, 6H, NCH₃), 1.94–1.88 (m, 1H, =CHCH₂–), 1.70–1.60 (m, 2H, =CHCH₂–). ¹H NMR (300 MHz, CDCl₃, δ): 7.35 (br d, 4H, Ar H), 7.23–7.15 (m, 3H, Ar H), 7.11–7.08 (m, 2H, Ar H), 6.97 (t, J = 7.1 Hz, 1H, Ar H), 4.63–4.56 (m, 1H, =CHCH₂–), 4.53–4.46 (m, 1H, =CHCH₂–), 4.14–4.05 (m, 1H, =CHCH₂–), 3.93–3.84 (m, 1H, =CHCH₂–), 2.69–2.59 (m, 2H, =CHCH₂–), 2.56 (s, 6H, NCH₃), 2.54–2.27 (m, 4H, =CHCH₂–), 2.18–2.05 (m, 2H, =CHCH₂–). IR (KBr, cm⁻¹): 865 (ν ₀₀), 575 and 459 (ν _{1ro}). IR of 2-¹⁸O₂ (KBr, cm⁻¹): 813 (ν ₀₀), 550 (sh) and 442 (ν _{1ro}).


For comparison, ¹H NMR of **1** (300 MHz, C_6D_6 , δ): 7.12 (t, J = 7.4 Hz, 4H, Ar H), 6.83 (t, J = 7.4 Hz, 2H, Ar H), 6.77 (d, J = 7.3 Hz, 4H, Ar H), 3.90 (br m, 4H, =CHCH₂-), 2.14 (br m, 4H, =CHCH₂-), 1.99 (s, 6H, NCH₃), 1.42 (m, 4H, =CHCH₂-).

Reaction of 2 with Triphenylphosphine. A solution of **2** in C_6D_6 was prepared as described above (ca. 3 h for the formation of **2**) and then purged with Ar for 5 min to remove excess O_2 . A solution of 0.075-0.100 mmol of PPh₃ (10 equiv with respect to Ir) in 0.2 ml of C_6D_6 was added to the solution of **2**, and the progress of the reaction was monitored by ^{31}P NMR spectroscopy. The intermediate was fully decayed within 4 h (pale orange solution). $^{31}P\{^1H\}$ NMR (121.5 MHz, C_6D_6 , δ): 25.5 (s, OPPh₃), -4.4 (s, PPh₃), -9.1 (s).


Reaction of the Decay Products of 2 with 1,5-Cyclooctadiene. A 15–20 mM solution of **1** in C₆D₆ was purged with O₂ as described above, allowed to stand for at least 16 h, and then purged with Ar for 5 min to remove excess O₂. After addition of 0.015–0.020 or 0.075–0.100 mmol of cod (2 or 10 equiv with respect to Ir), the solution was kept at 20 °C for 1 d and then heated at 70 °C for 1 d (NMR tube equipped with a J. Young valve). During this time the color of the solution changed from dark green to orange. 4-cycloocten-1-one³ and **1** were identified as products by ¹H NMR spectroscopy and EIMS. Quantifications (against 1,2-dichloroethane as a standard) were performed in triplicate. The average yields were 0.88 (±0.13) equiv of 4-cycloocten-1-one and 0.30 (±0.05) equiv of **1**. Data for 4-cycloocten-1-one were as follows: ¹H NMR (300 MHz, C₆D₆, δ): 5.65 (m, 1H, =CHCH₂–), 5.37 (m, 1H, =CHCH₂–), 2.66 (m, 1H, =CHCH₂–), 2.24 (m, 3H, =CHCH₂–), 2.10 (m, 2H, =CHCH₂–), 1.40–1.31 (m, 4H, =CHCH₂–). EIMS (70 eV) m/z: M⁺⁺ calcd for C₈H₁₂O, 124.1; found, 124.3 (the expected fragmentation pattern⁴ was observed as follows: 109.3, 96.3, 81.3, 67.2, 54.2). For the reaction carried out using ¹⁸O₂, EIMS (70 eV) m/z: 126.3 (M⁺⁺; fragmentation pattern: 111.3, 96.3, 81.3, 67.2, 54.2).

References

- 1 W. L. F. Armarego and C. L. L. Chai, *Purification of Laboratory Chemicals*, 6th edn., Butterworth-Heinemann, Oxford, U.K., 2009.
- 2 J.-U. Rohde, M. R. Kelley and W.-T. Lee, *Inorg. Chem.*, 2008, **47**, 11461.
- 3 (a) M. P. del Rio, M. A. Ciriano and C. Tejel, *Angew. Chem., Int. Ed.*, 2008, **47**, 2502; (b) M. Faraj, J. Martin, C. Martin, J.-M. Bregeault and J. Mercier, *J. Mol. Catal.*, 1985, **31**, 57.
- 4 NIST/EPA/NIH Mass Spectral Library, data version NIST 98 [CD-ROM]; National Institute of Standards and Technology, U.S. Department of Commerce: Washington, DC, 1998.
- 5 (a) P. S. Pregosin, P. G. A. Kumar and I. Fernandez, *Chem. Rev.*, 2005, **105**, 2977; (b) A. Macchioni, G. Ciancaleoni, C. Zuccaccia and D. Zuccaccia, *Chem. Soc. Rev.*, 2008, **37**, 479.

Figure S1. Top: 1 H, 1 H COSY spectrum of **2** in benzene- d_6 (ca. 15 mM, 500 MHz, 25 °C). The solid lines indicate correlations among alkene proton resonances and between alkene and methylene proton resonances. Bottom: Expanded view of the aromatic region of the 1 H, 1 H COSY spectrum of **2**. The solid lines indicate correlations among aromatic proton resonances.

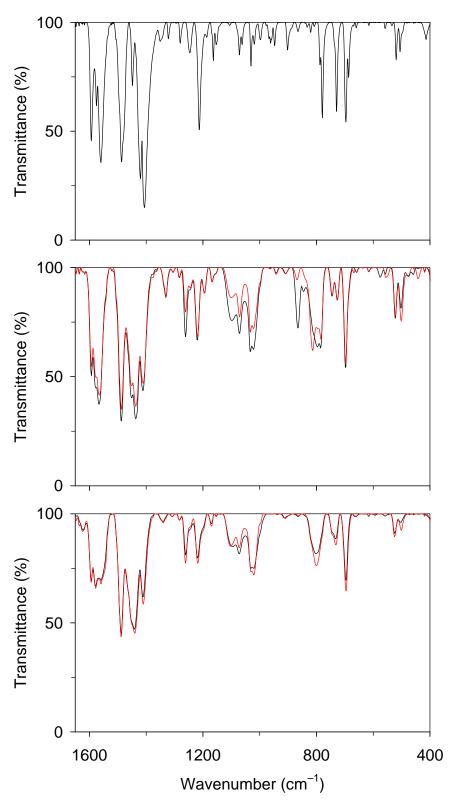
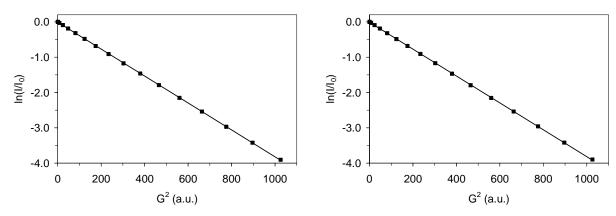


Figure S2. 1 H, 13 C HSQC spectrum of **2** in benzene- d_6 (ca. 15 mM, 500 MHz, 25 °C). The asterisks denote solvent peaks (CH₂Cl₂, Et₂O, and an unknown contaminant).

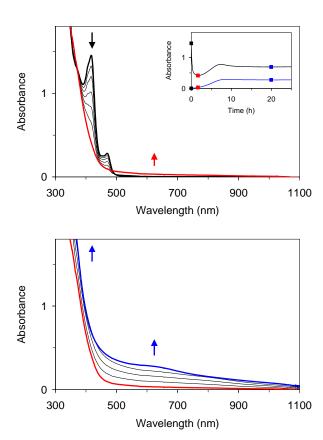
Table S1. ¹H and ¹³C chemical shifts, δ (ppm), from the ¹H, ¹³C heteronuclear single-quantum coherence (HSQC) spectrum of [Ir{PhNC(NMe₂)NPh}(cod)(O₂)] (**2**) in benzene- d_6 .

Assignment		$\delta(^{1}H)$	δ (13C)
Ar	Group A	7.35	126.8
		7.15^{a}	128.0^{a}
		6.96	124.4
	Group B	7.30	123.9
		7.09	128.9
		6.88	123.3
$=CHCH_2-$	1-H, C-1	4.74	71.7
	2-H, C-2	4.01	77.7
	5-H, C-5	4.55	90.1
	6-H, C-6	4.14	98.3
$=CHCH_2-$	$3-H_{ab}, C-3$	2.31, 2.23	32.0
	$4-H_{ab}, C-4$	2.02, 1.63	32.8
	$7-H_{ab}, C-7$	2.23, 1.66	31.4
	8-H _{ab} , C-8	2.13, 1.91	34.8
NCH ₃	.1	2.03	38.1

^a The resonance signals centered at δ (¹H) = 7.15 ppm and δ (¹³C) = 128.0 ppm partially overlap with the residual solvent peaks.


Figure S3. Top: IR spectrum of **1** (—, black). Middle: IR spectra of **2** (—, black) and **2**- $^{18}O_2$ (—, red). Bottom: IR spectra of the decay products of **2** (—, black) and **2**- $^{18}O_2$ (—, red).

Determination of the Self-Diffusion Coefficients of 1 and 2


Diffusion ¹H NMR experiments to determine D values were conducted in triplicate, and, for each experiment, data of six (1) or ten (2) suitable peaks were averaged. The average D values from three measurements were $8.4 (\pm 0.1) \cdot 10^{-10}$ and $8.2 (\pm 0.3) \cdot 10^{-10}$ m²·s⁻¹ for 1 and 2, respectively. Intermediate 2 was found to decay by $\leq 10\%$ over the course of each measurement, introducing a minor error into D. Shown below are representative results for the NMe₂ resonance signals of 1 and 2. The plots in Figure S4 confirm the expected linear relationship between $\ln(I/I_0)$ and $G^{2.5}$

```
SIMFIT RESULTS for 1
==========
INTENSITY fit : Diffusion : Variable Gradient :
I=I[0]*exp(-D*SOR(2*PI*gamma*Gi*LD)*(BD-LD/3)*1e4)
16 points for Peak 5, NMe2 resonance signal
Converged after 31 iterations!
Results
           Comp. 1
I[0]
              = 9.978e-001
Diff Con.
              = 8.569e-010 m2/s
                 4.258e+003 Hz/G
Gamma
                     5.000m
Little Delta
              =
Big Delta
              =
                    26.950m
         6.239e-005
RSS
     =
         1.975e-003
SD
Point
         Gradient
                                                 Difference
                        Expt
                                      Calc
       6.740e-001
                     1.000e+000
                                   9.960e-001
                                                 -3.970e-003
   1
    2
                     9.691e-001
                                                 -4.901e-004
       2.765e+000
                                   9.686e-001
                     9.107e-001
                                   9.107e-001
                                                 -4.593e-005
    3
       4.855e+000
                                   8.276e-001
    4
                                                 1.404e-003
       6.945e+000
                     8.262e-001
    5
       9.036e+000
                     7.252e-001
                                   7.271e-001
                                                 1.921e-003
    6
       1.113e+001
                     6.158e-001
                                   6.175e-001
                                                 1.712e-003
    7
       1.322e+001
                     5.040e-001
                                   5.069e-001
                                                 2.941e-003
   8
       1.531e+001
                     4.006e-001
                                   4.023e-001
                                                 1.717e-003
   9
       1.740e+001
                     3.086e-001
                                   3.087e-001
                                                 8.304e-005
                                   2.289e-001
                                                 -1.889e-003
   10
       1.949e+001
                     2.308e-001
                                   1.641e-001
                                                 -2.139e-003
   11
       2.158e+001
                     1.663e-001
                                   1.138e-001
                                                 -2.183e-003
   12
       2.367e+001
                     1.159e-001
        2.576e+001
                     7.857e-002
                                   7.621e-002
                                                 -2.354e-003
   13
        2.785e+001
                     5.113e-002
                                   4.936e-002
                                                 -1.762e-003
   14
   15
        2.994e+001
                     3.254e-002
                                   3.090e-002
                                                 -1.641e-003
        3.203e+001
                     2.010e-002
                                   1.870e-002
                                                 -1.395e-003
______
```

```
SIMFIT RESULTS for 2
==========
INTENSITY fit : Diffusion : Variable Gradient :
I=I[0]*exp(-D*SQR(2*PI*qamma*Gi*LD)*(BD-LD/3)*1e4)
16 points for Peak 9, NMe2 resonance signal
Converged after 34 iterations!
Results
             Comp. 1
I[0]
                   9.960e-001
Diff Con.
                   8.577e-010 \text{ m}2/\text{s}
Gamma
                   4.258e+003 Hz/G
Little Delta
                        5.000m
Big Delta
                       26.950m
RSS
           1.151e-004
SD
           2.682e-003
Point
          Gradient
                           Expt
                                                      Difference
                                          Calc
        6.740e-001
                        1.000e+000
                                       9.942e-001
                                                      -5.792e-003
    2
        2.765e+000
                        9.694e-001
                                       9.669e-001
                                                      -2.516e-003
    3
        4.855e+000
                        9.074e-001
                                                      1.526e-003
                                       9.089e-001
    4
        6.945e+000
                        8.232e-001
                                                      2.794e-003
                                       8.260e-001
    5
        9.036e+000
                        7.220e-001
                                       7.255e-001
                                                      3.568e-003
    6
        1.113e+001
                        6.119e-001
                                       6.161e-001
                                                      4.200e-003
    7
        1.322e+001
                        5.039e-001
                                       5.057e-001
                                                      1.837e-003
    8
        1.531e+001
                        4.014e-001
                                       4.013e-001
                                                      -1.201e-004
    9
        1.740e+001
                        3.087e-001
                                       3.078e-001
                                                      -8.452e-004
   10
        1.949e+001
                        2.295e-001
                                       2.282e-001
                                                      -1.347e-003
   11
        2.158e+001
                        1.656e-001
                                       1.636e-001
                                                      -2.039e-003
   12
        2.367e+001
                        1.156e-001
                                       1.133e-001
                                                      -2.217e-003
   13
        2.576e+001
                        7.865e-002
                                       7.590e-002
                                                      -2.750e-003
   14
        2.785e+001
                        5.168e-002
                                       4.914e-002
                                                      -2.536e-003
   15
        2.994e+001
                        3.256e-002
                                       3.075e-002
                                                      -1.810e-003
        3.203e+001
                        2.018e-002
                                       1.860e-002
                                                      -1.572e-003
   16
```


Figure S4. Plots of the natural logarithm of the intensity quotient, $\ln(I/I_0)$, *versus* the square of the gradient strength, G^2 , for the NMe₂ resonance signals of **1** (left; $R^2 = 0.99996$) and **2** (right; $R^2 = 0.99995$).

Figure S5. Reaction of 2 mM **1** in toluene with O_2 at 20 °C as monitored by electronic absorption spectroscopy (path length, 0.5 cm). Top: Decay of **1** (—, black) to afford intermediate **2** (—, red; t = 1.7 h). Bottom: Decay of **2** (—, red) to afford the product solution (—, blue; t = 20 h). Inset (top): Time course of the reaction of **1** with O_2 [$\lambda = 417$ nm (—, black) and 630 nm (—, blue)]. The squares indicate the reaction times associated with the spectra shown (black, **1**; red, **2**; and blue, decay products of **2**).

Table S2. Mass-to-charge ratios (m/z) from the electrospray ionization (ESI) and electron impact (EI) mass spectra of the decay products of $[Ir{PhNC(NMe_2)NPh}(cod)(O_2)]$ (2).

	ESI(+)MS			EIMS		
Complex	$\{LH + H\}^+$	$\{2 - O_2H\}^+$	$\{2 - OH\}^{+}$	$\{2 - H\}^{+}$	$\{2 - H_2O\}^{+\bullet}$	$\left\{ \mathrm{Ir}\mathrm{L}_{3}\right\} ^{+\bullet}$
Found	240.2	538.3	554.2	570.1	553.1712	907.3577
Calcd	240.2	538.2	554.2	570.2	553.1705	907.3662
Found ($^{18}O_2$)	240.2	538.4	556.3	574.3	555.4	907.5

^a The reaction of [Ir{PhNC(NMe₂)NPh}(cod)] (1) with O_2 (or ¹⁸ O_2) was carried out as described in the Experimental Procedures Section, and the resulting solution was allowed to stand for at least 16 h. ^b LH = PhN=C(NMe₂)NHPh. ^c High-resolution mass spectral data are reported with four decimal places.