Organocatalytic Enantioselective Synthesis of 2,3-Dihydropyridazines

Maitane Fernández, Jose L. Vicario,* Efraím Reyes, Luisa Carrillo and Dolores Badía

[*] Departamento de Química Orgánica II
Facultad de Ciencia y Tecnología
Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU)
P.O. Box 644, 48080 Bilbao (Spain)

Fax: (+34) 94-601-2748 E-mail: joseluis.vicario@ehu.es
Homepage: http://www.ehu.es/GSA

Contents

General Methods page S2
Materials page S2
Experimental Procedures and Characterizations page S3
Determination of Absolute Configuration page S 9
NMR spectra page S10
HPLC chromatograms page S25

General Methods. ${ }^{1}$ NMR spectra were acquired on a Bruker 300 spectrometer, running at 300 and 75 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals $\left(\mathrm{CHCl}_{3}, 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 77.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR $)$. The following abbreviations are used to indicate the multiplicity in ${ }^{1} \mathrm{H}$ NMR spectra: s, singlet; d, doublet; t, triplet; m, multiplet; bs, broad signal. ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a broad band decoupled mode. IR spectra were measured in a Jasco FT/IR 4100 and only characteristic bands are given. Mass spectra (MS) were recorded on an Agilent 7890A gas chromatograph coupled to an Agilent 5975 mass spectrometer (EI). High resolution mass spectra (HRMS) were recorded on a micromass GCT spectrometer using chemical ionization (CI). X-ray data collections were performed in a Oxford Diffraction Xcalibur 2 diffractometer equipped with a Sapphire 2 CCD area detector, and a $\mathrm{MoK} \alpha$ sealed-tube source with graphite monochromator ($\lambda=0.71073 \AA, 0.5 \mathrm{~mm}$ collimator). The sample was kept at $100(1) \mathrm{K}$ with a Oxford Cryosystems Cryostream 700 cooler. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or p-anisaldehyde dip. ${ }^{2}$ Melting points (M.p.) were measured in a Büchi B-540 apparatus and are uncorrected. Optical rotations were measured on a Jasco P-2000 polarimeter. The enantiomeric excess (ee) of the products was determined by chiral stationary phase HPLC in a Waters 2695 chromatograph with a Waters 2998 photodiode array detector (Daicel Chiralpak IC and AD-H columns).

Materials. Analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Merck) was employed.

[^0]
Experimental Procedures and Characterizations

General Procedure for the Preparation of the hydrazone 2.

 (E)-4-methyl- N^{\prime}-(1-oxopropan-2-ylidene)benzenesulfonohydrazide (2). To a suspension of p-toluenesulfonyl hydrazide ($5.0 \mathrm{~g}, 26.8 \mathrm{mmol}$) in ether (15 mL), a 40% methyl glyoxal solution in water ($5.5 \mathrm{~mL}, 32.2 \mathrm{mmol}$) was added, followed by the addition of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ anhydre. The reaction mixture was vigorously stirred at room temperature for 18 h . Solids were removed by filtration and washed with ether. The filtrates were concentrated in vacuo. The crude was purified by FC (n -hexane/EtOAc gradient from 19:1 to $7: 3$) yielding the corresponding hydrazone $2(955 \mathrm{mg}, 3.97 \mathrm{mmol})$ in 15%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.87$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.4,150.8,145.1,134.5,129.9,128.0,21.6,8.3$. IR: 3220.5, 1696.1, $1338.4,1166.7 \mathrm{~cm}^{-1} . \operatorname{MS}$ (EI) m/z (\%): 214 (2), 197 (3), 184 (4), 155 (25), 139 (100), 123 (40), 108 (4), 91 (56), 77 (14), 65 (15), 51 (3). M.p. (n-hexane/EtOAc): $123-125^{\circ} \mathrm{C}$.

General Procedure for the Preparation of 2,3-Dihydropyridazines 4. An ordinary vial equipped with a magnetic stirring bar was charged with catalyst $\mathbf{3 b}(0.06 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{PhCOOH}(0.30 \mathrm{mmol})$ and toluene (6 mL). Then, the α, β-unsatured aldehyde $\mathbf{1}(0.30 \mathrm{mmol})$ was added and the mixture was stirred for 10 minutes prior to the addition of hydrazone $2(0.60 \mathrm{mmol})$. The stirring was maintained at room temperature until the reaction was complete (3-6 days). The reaction mixture was washed twice with a saturated solution of NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude was charged onto silica gel and subjected to FC. The racemic standards for HPLC separation conditions were prepared using a mixture of (R) and (S) catalyst $\mathbf{3 b}(0.06 \mathrm{mmol}, 20 \mathrm{~mol} \%)$.

(R)-3-butyl-6-methyl-2-(p-toluenesulfonyl)-2,3-dihydropyridazine-4carbaldehyde (4a). Following the general procedure $\mathbf{4 a}(84 \mathrm{mg}, 0.25 \mathrm{mmol})$ was isolated by FC (n-hexane/EtOAc gradient from 19:1 to 7:3) in 84% yield starting from aldehyde 1a ($41 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) and hydrazone $2(144 \mathrm{mg}, 0.60 \mathrm{mmol})$ in the presence of $\mathbf{3 b}(36 \mathrm{mg}, 0.06 \mathrm{mmol})$, $\mathrm{PhCOOH}(34 \mathrm{mg}, 0.30 \mathrm{mmol})$ and using toluene (6 mL) as solvent. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~s}$, $1 \mathrm{H}), 5.45(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.09(\mathrm{~m}, 3 \mathrm{H}), 1.08-0.97$ $(\mathrm{m}, 1 \mathrm{H}), 0.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.1,148.2,144.0,138.0,136.3$, 130.6, $129.5,127.7,49.3,32.8,26.0,22.3,21.6,21.2,13.8$. IR: $1680.7,1597.7,1356.7,1165.8 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m/z (\%): 334 ($\mathrm{M}^{+}, 20$), 320 (2), 291 (7), 179 (100), 137.1 (76), 122 (8), 108 (14), 91 (25), 77 (12), 53 (6).

HRMS: Calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}: 335.1429\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found: 335.1443 . The ee was determined by HPLC using a Chiralpak AD-H column [n-hexane $/ i-\mathrm{PrOH}$ ($90: 10$)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; $\tau_{\text {major }}=12.64$ $\min , \tau_{\text {minor }}=16.44 \min (97 \%$ ee $) .[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:-428.3\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(R)-3-methyl-6-methyl-2-(p-toluenesulfonyl)-2,3-dihydropyridazine-4carbaldehyde (4b). Following the general procedure $\mathbf{4 b}(80 \mathrm{mg}, 0.27 \mathrm{mmol})$ was isolated by FC (n-hexane/EtOAc gradient from 19:1 to $7: 3$) in 91% yield starting from aldehyde 1b ($29 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) and hydrazone $2(144 \mathrm{mg}, 0.60 \mathrm{mmol})$ in the presence of $\mathbf{3 b}(36 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{PhCOOH}(34 \mathrm{mg}, 0.30 \mathrm{mmol})$ and using toluene $(6 \mathrm{~mL})$ as solvent. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~s}$, $1 \mathrm{H}), 5.45(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 189.7, $147.4,144.2,140.0,136.4,130.4,129.6,128.0,45.4,21.6,21.2,17.2$. IR: 1679.7, 1596.8 , 1354.8, $1165.8 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 292(\mathrm{M}+20), 207$ (3), 155 (2), 137 (100), 122 (2), 109 (16), 91 (14), 77 (7), 65 (9), 53 (5). HRMS: Calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}\right.$: $293.0960\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found: 293.0972. The ee was determined by HPLC using a Chiralpak AD-H column [n-hexane $/ i-\mathrm{PrOH}$ (90:10)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \tau_{\text {major }}=18.16 \mathrm{~min}, \tau_{\text {minor }}=23.38 \mathrm{~min}(89 \%$ ee $) .[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:-274.7\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(\boldsymbol{R})-3-ethyl-6-methyl-2-(\boldsymbol{p}-toluenesulfonyl)-2,3-dihydropyridazine-4carbaldehyde (4c). Following the general procedure $4 \mathbf{c}(68 \mathrm{mg}, 0.22 \mathrm{mmol})$ was isolated by FC (n-hexane/EtOAc gradient from 19:1 to 7:3) in 74\% yield starting from aldehyde 1c ($32 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) and hydrazone $2(144 \mathrm{mg}, 0.60 \mathrm{mmol})$ in the presence of $\mathbf{3 b}(36 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{PhCOOH}(34 \mathrm{mg}, 0.30 \mathrm{mmol})$ and using toluene $(6 \mathrm{~mL})$ as solvent. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~s}$, $1 \mathrm{H}), 5.42(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.2,147.9,144.0,137.6,136.2,130.8,129.5,127.7,50.3,26.3,21.6,21.1$, 8.6. IR: $1680.7,1597.6,1357.6,1166.7 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m/z (\%): 306 (M+, 16), 207 (2), 151 (100), 136 (5), 123 (9), 106 (12), 91 (21), 78 (11), 65 (13), 51 (5). HRMS: Calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}: 307.1116$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found: 307.1103. The ee was determined by HPLC using a Chiralpak AD-H column [$n-$ hexane $/ i-\mathrm{PrOH}(90: 10)]$; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \tau_{\text {major }}=14.76 \mathrm{~min}, \tau_{\text {minor }}=21.22 \mathrm{~min}(96 \%$ ee $) .[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:-$ $391.7\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(\boldsymbol{R})-6-methyl-3-propyl-2-(p-toluenesulfonyl)-2,3-dihydropyridazine-4carbaldehyde ($\mathbf{4 d}$). Following the general procedure $\mathbf{4 d}(69 \mathrm{mg}, 0.22 \mathrm{mmol}$) was isolated by FC (n-hexane/EtOAc gradient from 19:1 to 7:3) in 72\% yield starting from
aldehyde $\mathbf{1 d}(36 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ and hydrazone $\mathbf{2}(144 \mathrm{mg}, 0.60 \mathrm{mmol})$ in the presence of $\mathbf{3 b}(36 \mathrm{mg}$, 0.06 mmol), $\mathrm{PhCOOH}(34 \mathrm{mg}, 0.30 \mathrm{mmol})$ and using toluene (6 mL) as solvent. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.1,148.2,144.0,138.0,136.2,130.6,129.5,127.7,49.1,35.3$, 21.6, 21.2, 17.3, 13.7. IR: 1681.6, 1597.5, 1355.7, $1167.7 \mathrm{~cm}^{-1}$. MS (EI) m/z (\%): 320 (M+, 21), 291 (6), 207 (8), 165 (100), 151 (3), 137 (25), 122 (11), 108 (14), 91 (26), 65 (14), 51 (6). HRMS: Calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}: 321.1273\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found: 321.1286. The ee was determined by HPLC using a Chiralpak AD-H column [n-hexane $/ i$ - PrOH (90:10)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \tau_{\text {major }}=12.87 \mathrm{~min}, \tau_{\text {minor }}=$ $17.57 \mathrm{~min}(96 \% \mathrm{ee}) .[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:-359.5\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$).

(\boldsymbol{R})-6-methyl-3-octyl-2-(p-toluenesulfonyl)-2,3-dihydropyridazine-4carbaldehyde (4e). Following the general procedure $\mathbf{4 e}(74 \mathrm{mg}, 0.19 \mathrm{mmol})$ was isolated by FC (n-hexane/EtOAc gradient from 19:1 to $7: 3$) in 63% yield starting from aldehyde $\mathbf{1 e}(60 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ and hydrazone $2(144 \mathrm{mg}, 0.60 \mathrm{mmol})$ in the presence of $\mathbf{3 b}$ ($36 \mathrm{mg}, 0.06 \mathrm{mmol}$), $\mathrm{PhCOOH}(34 \mathrm{mg}, 0.30 \mathrm{mmol})$ and using toluene (6 mL) as solvent. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.37(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.07(\mathrm{~m}, 14 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.1,148.2,144.0,138.0,136.3,130.6,129.5,127.7,49.3,33.1$, 31.8, 29.3, 29.3, 29.2, 23.9, 22.6, 21.6, 21.2, 14.1. IR: 1681.6, 1596.5, $1358.6,1167.7 \mathrm{~cm}^{-1}$. MS (EI) m/z (\%): 390 (M+, 14), 291 (7), 235 (100), 207 (12), 137 (45), 109 (10), 91 (15), 65 (6). HRMS: Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}$: $391.2055\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found: 391.2056. The ee was determined by HPLC using a Chiralpak AD-H column [n-hexane $/ i$-PrOH (90:10)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \tau_{\text {major }}=9.22 \mathrm{~min}, \tau_{\text {minor }}=$ $10.83 \mathrm{~min}(97 \% \mathrm{ee}) .[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:-274.0\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(S)-3-dimethoxymethyl-6-methyl-2-(p-toluenesulfonyl)-2,3-dihydropyridazine-4-carbaldehyde (4f). Following the general procedure $\mathbf{4 f}(64 \mathrm{mg}, 0.18 \mathrm{mmol})$ was isolated by FC (n-hexane/EtOAc gradient from $19: 1$ to $7: 3$) in 61% yield starting from aldehyde $\mathbf{1 f}(38 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ and hydrazone $\mathbf{2}(144 \mathrm{mg}, 0.60 \mathrm{mmol})$ in the presence of $\mathbf{3 b}(36 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{PhCOOH}(34 \mathrm{mg}, 0.30 \mathrm{mmol})$ and using toluene $(6 \mathrm{~mL})$ as solvent. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~s}$, $1 \mathrm{H}), 5.59(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.7$, 147.9, 144.1, 136.0, 133.4, 130.5, 129.4, 127.9, 104.0, 56.0, 55.1, 49.1, 21.6, 21.2. IR: 1685.5, 1353.8, 1168.7, $1119.5 \mathrm{~cm}^{-1}$. MS (EI) m/z (\%): 278 (14), 214 (6), 185 (9), 171 (4), 155 (8), 139 (2), 123 (100), 106 (6), 91 (31), 79 (5), 65 (16), 51 (4). HRMS: Calculated for
$\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\right]^{+}$: $353.1171\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found: 353.1176. The ee was determined by HPLC using a Chiralpak AD-H column [n-hexane $/ i-\operatorname{PrOH}(90: 10)$]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \tau_{\text {major }}=17.42 \mathrm{~min}, \tau_{\text {minor }}=$ $21.97 \mathrm{~min}(97 \% \mathrm{ee}) .[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:-545.1\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(R, Z)-3-(hex-3-en-1-yl)-6-methyl-2-(p-toluenesulfonyl)-2,3-dihydropyridazine-4-carbaldehyde (4g). Following the general procedure $\mathbf{4 g}$ ($74 \mathrm{mg}, 0.21 \mathrm{mmol}$) was isolated by FC (n-hexane/EtOAc gradient from 19:1 to $7: 3$) in 68% yield starting from aldehyde $\mathbf{1 g}(45 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ and hydrazone $2(144 \mathrm{mg}, 0.60 \mathrm{mmol})$ in the presence of $\mathbf{3 b}(36 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{PhCOOH}(34 \mathrm{mg}, 0.30$ $\mathrm{mmol})$ and using toluene (6 mL) as solvent. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.07(\mathrm{~m}$, $1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.0,148.4,144.1,137.8,136.2,132.8,130.6,129.5,127.7,127.1,49.1,33.2,22.0$, 21.6, 21.2, 20.5, 14.2. IR: 1681.6, 1595.8, 1353.6, $1166.7 \mathrm{~cm}^{-1}$. MS (EI) m/z (\%): $360(\mathrm{M}+2), 291$ (100), 226 (1), 205 (92), 155 (3), 135 (52), 106 (46), 91 (25), 65 (13). HRMS: Calculated for [$\left.\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}$: $361.1586\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found: 361.1601 . The ee was determined by HPLC using a Chiralpak AD-H column [n-hexane $/ i$ - $\mathrm{PrOH}(93: 7)$]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \tau_{\text {major }}=16.54 \mathrm{~min}, \tau_{\text {minor }}=21.86 \mathrm{~min}(97 \% \mathrm{ee}) .[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:-$ $236.3\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(S)-3-[(benzyloxy)methyl]-6-methyl-2-(p-toluenesulfonyl)-2,3-dihydropyridazine-4-carbaldehyde (4h). Following the general procedure 4 h ($82 \mathrm{mg}, 0.21 \mathrm{mmol}$) was isolated by FC (n-hexane/EtOAc gradient from 19:1 to $7: 3$) in 69% yield starting from aldehyde $\mathbf{1 h}(53 \mathrm{mg}$, $0.30 \mathrm{mmol})$ and hydrazone $2(144 \mathrm{mg}, 0.60 \mathrm{mmol})$ in the presence of $\mathbf{3 b}(36 \mathrm{mg}, 0.06 \mathrm{mmol})$, PhCOOH $(34 \mathrm{mg}, 0.30 \mathrm{mmol})$ and using toluene (6 mL) as solvent. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~s}, 1 \mathrm{H})$, $7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.33-4.18 (m, 2H), 3.48-3.31 (m, 2H), $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.8$, $147.0,144.1,137.6,136.2,135.3,132.1,129.4,128.2,128.0,127.5,127.3,73.0,69.9,48.8,21.6,21.1$. IR: 1679.7, 1595.8, 1353.8, 1165.8, $1090.6 \mathrm{~cm}^{-1}$. MS (EI) m/z (\%): 398 (M+, 2), 355 (4), 281 (4), 241 (5), 207 (18), 171 (4), 121 (4), 107 (63), 91 (100), 77 (90), 65 (14), 51 (25). HRMS: Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right]^{+}: 399.1379\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found: 399.1375. The ee was determined by HPLC using a Chiralpak IC column [n-hexane $/ i$ - PrOH (85:15)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \tau_{\text {major }}=73.07 \mathrm{~min}, \tau_{\text {minor }}=62.73$ $\min (96 \%$ ee $) .[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:-103.8\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(R)-6-methyl-3-phenyl-2-(p-toluenesulfonyl)-2,3-dihydropyridazine-4carbaldehyde (4i). Following the general procedure $4 \mathbf{i}(52 \mathrm{mg}, 0.15 \mathrm{mmol})$ was isolated by FC (n-hexane/EtOAc gradient from 19:1 to $7: 3$) in 49% yield starting from aldehyde $\mathbf{1 i}(76 \mu \mathrm{~L}, 0.60 \mathrm{mmol})$ and hydrazone $2(72 \mathrm{mg}, 0.30 \mathrm{mmol})$ in the presence of 3b ($36 \mathrm{mg}, 0.06 \mathrm{mmol}$), $\mathrm{PhCOOH}(34 \mathrm{mg}, 0.30 \mathrm{mmol})$ and using toluene (6 mL) as solvent. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}$, $4 \mathrm{H}), 7.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 189.7,145.7,143.7,138.3,137.9,135.6,129.9,128.9,128.7,128.5,127.9,127.3,52.8,21.5$, 21.2. IR: 1688.4, 1599.7, 1359.6, $1168.7 \mathrm{~cm}^{-1}$. MS (EI) m/z (\%): 354 (M+, 100), 327 (2), 281 (3), 226 (1), 199 (53), 171 (60), 155 (30), 144 (11), 115 (24), 91 (32), 65 (16). HRMS: Calculated for [$\left.\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}$: $355.1116\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found: 355.1117 . The ee was determined by HPLC using a Chiralpak IC column [$n-$ hexane $/ i-\operatorname{PrOH}(80: 20)]$; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; $\tau_{\text {major }}=84.87 \mathrm{~min}, \tau_{\text {minor }}=45.38 \mathrm{~min}(89 \%$ ee $)$. $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:-$ 33.3 ($c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(R)-6-methyl-3-(4-nitrophenyl)-2-(p-toluenesulfonyl)-2,3-dihydropyridazine-4-carbaldehyde ($\mathbf{4 j}$). Following the general procedure $\mathbf{4 j}$ ($62 \mathrm{mg}, 0.16 \mathrm{mmol}$) was isolated by FC (n-hexane/EtOAc gradient from 19:1 to $7: 3$) in 52% yield starting from aldehyde $\mathbf{1 j}(108 \mathrm{mg}, 0.60 \mathrm{mmol})$ and hydrazone $2(72 \mathrm{mg}, 0.30 \mathrm{mmol}$) in the presence of $\mathbf{3 b}$ ($36 \mathrm{mg}, 0.06 \mathrm{mmol}$), $\mathrm{PhCOOH}(34 \mathrm{mg}, 0.30$ mmol) and using toluene (6 mL) as solvent. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}$, $1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.5,147.8,146.0,144.7,144.6,137.2$, $135.3,130.6,129.3,128.0,127.8,123.7,51.2,21.5,21.2$. IR: 1681.6, 1597.7, 1521.6, 1346.1, 1303.6, $1166.7 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m/z (\%): 399 (M+, 100), 327 (2), 281 (14), 253 (9), 241 (70), 227 (77), 198 (66), 171 (60), 169 (37), 139 (16), 115 (21), 91 (69), 65 (21). HRMS: Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\right]^{+}: 400.0967$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found: 400.0984. The ee was determined by HPLC using a Chiralpak IC column [n-hexane $/ i-$ $\operatorname{PrOH}(80: 20)]$; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \tau_{\text {major }}=103.45 \mathrm{~min}, \tau_{\text {minor }}=60.82 \mathrm{~min}(95 \%$ ee $) .[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:-96.7(c=$ $1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(R)-3-(4-methoxyphenyl)-6-methyl-2-(p-toluenesulfonyl)-2,3-dihydropyridazine-4-carbaldehyde ($\mathbf{4 k}$). Following the general procedure $\mathbf{4 k}$ ($69 \mathrm{mg}, 0.18 \mathrm{mmol}$) was isolated by FC (n-hexane/EtOAc gradient from 19:1 to 7:3) in 60% yield starting from aldehyde $\mathbf{1 k}(98 \mathrm{mg}, 0.60 \mathrm{mmol})$ and hydrazone $2(72 \mathrm{mg}, 0.30 \mathrm{mmol}$) in the presence of $\mathbf{3 b}$ ($36 \mathrm{mg}, 0.06 \mathrm{mmol}$), $\mathrm{PhCOOH}(34 \mathrm{mg}, 0.30$ mmol) and using toluene (6 mL) as solvent. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.53(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3$
$\mathrm{Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.8,160.0,145.5,143.5,138.5,135.7,130.2,129.6$, 128.8, 128.8, 127.9, 113.7, 55.3, 52.4, 21.5, 21.2. IR: 1682.6, 1608.3, 1354.8, 1168.7, $1085.7 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m/z (\%): 384 (M+, 100), 327 (2), 281 (6), 253 (5), 229 (50), 201 (44), 171 (15), 169 (37), 128 (11), 91 (35), 65 (14). HRMS: Calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right]^{+}: 385.1222\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found: 385.1237. The ee was determined by HPLC using a Chiralpak IC column [n-hexane/i-PrOH (80:20)]; flow rate 1.0 $\mathrm{mL} / \mathrm{min} ; \tau_{\text {major }}=133.94 \mathrm{~min}, \tau_{\text {minor }}=77.78 \mathrm{~min}(85 \%$ ee $) .[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:+21.4\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(R)-3-(4-cyanophenyl)-6-methyl-2-(p-toluenesulfonyl)-2,3-dihydropyridazine-4-carbaldehyde (41). Following the general procedure $\mathbf{4 1}$ $(82 \mathrm{mg}, 0.22 \mathrm{mmol}$) was isolated by FC (n-hexane/EtOAc gradient from 19:1 to $1: 1$) in 72% yield starting from aldehyde $11(94 \mathrm{mg}, 0.60 \mathrm{mmol})$ and hydrazone 2 ($72 \mathrm{mg}, 0.30 \mathrm{mmol}$) in the presence of $\mathbf{3 b}$ ($36 \mathrm{mg}, 0.06 \mathrm{mmol}$), $\mathrm{PhCOOH}(34 \mathrm{mg}, 0.30$ mmol) and using toluene (6 mL) as solvent. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4,2 \mathrm{H}), 7.11$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.55$ (s, 1H), 6.48 (s, $1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.5,145.9,144.4,142.8,137.2,135.3$, $132.3,130.5,129.2,127.8,127.8,118.2,112.4,52.2,21.6,21.2$. IR: 2228.3, 1677.8, 1595.8, 1357.6, $1165.8 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 379(\mathrm{M}+, 100), 281$ (2), 224 (59), 196 (59), 155 (20), 127 (16), 91 (55), 65 (19). HRMS: Calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right]^{+}: 380.1069\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found: 380.1063. The ee was determined by HPLC using a Chiralpak IC column [n-hexane $/ i-\operatorname{PrOH}(80: 20)$]; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; $\tau_{\text {major }}=148.17 \mathrm{~min}, \tau_{\text {minor }}=81.53 \mathrm{~min}(94 \% \mathrm{ee}) .[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:-48.3\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
 dihydropyridazine-4-carbaldehyde ($\mathbf{4 m}$). Following the general procedure $\mathbf{4 m}$ $(64 \mathrm{mg}, 0.16 \mathrm{mmol}$) was isolated by FC (n-hexane/EtOAc gradient from 19:1 to 1:1) in 55% yield starting from aldehyde $\mathbf{1 m}(94 \mathrm{mg}, 0.60 \mathrm{mmol})$ and hydrazone $2(72 \mathrm{mg}, 0.30 \mathrm{mmol})$ in the presence of $\mathbf{3 b}(36 \mathrm{mg}, 0.06 \mathrm{mmol})$, $\mathrm{PhCOOH}(34$ $\mathrm{mg}, 0.30 \mathrm{mmol})$ and using toluene (6 mL) as solvent. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.50-6.46(\mathrm{~m}, 2 \mathrm{H}), 2.34$ (s, 3H), 2.29 ($\mathrm{s}, 3 \mathrm{H}$).$^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.6,151.7,151.6,146.6,144.7,134.4,134.0,131.8$, 129.1, 127.9, 112.4, 111.3, 45.2, 21.5, 21.2. IR: 1681.6, 1532.2, 1501.3, 1348.0, $1310.4,1161.9 \mathrm{~cm}^{-1}$. MS (EI) m/z (\%): 389 (M+, 100), 234 (30), 188 (56), 155 (19), 132 (39), 91 (76), 65 (18). HRMS: Calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}\right]^{+}: 390.0760\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found: 390.0757. The ee was determined by HPLC using a Chiralpak AD-H column [n-hexane $/ i$ - PrOH (90:10)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \tau_{\text {major }}=76.54 \mathrm{~min}, \tau_{\text {minor }}=$ $59.32 \mathrm{~min}(90 \% \mathrm{ee}) .[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:+19.9\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Determination of the absolute configuration.

(R)-[6-methyl-3-(4-nitrophenyl)-2-(p-toluenesulfonyl)-2,3-dihydropyridazin-4-yl]methanol (5j). To a solution of the dihydropyridazine $\mathbf{4 j}$ ($42 \mathrm{mg}, 0.10 \mathrm{mmol}$) in methanol (3 mL), $\mathrm{NaBH}_{4}(\sim 50$ mg) was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 20 minutes prior to the addition of a saturated solution of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and then stirred at room temperature 30 minutes more. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ mL) and the collected organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents were removed under reduced pressure. The crude was purified by FC (n-hexane/EtOAc 1:1) yielding the corresponding alcohol $5 \mathbf{j}(32 \mathrm{mg}, 0.08 \mathrm{mmol})$ in 76%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 4.19-4.01(\mathrm{~m}$, $2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4,147.9,144.2,143.9,143.6,135.6$, $128.9,128.5,127.6,123.6,114.0,62.1,55.0,21.7,21.4$. IR: $3418.2,1596.8,1520.6,1343.2,1304.5$, $1161.9 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 401\left(\mathrm{M}^{+}, 2\right), 385$ (49), 355 (12), 281 (11), 253 (20), 230 (72), 207 (90), 184 (100), 171 (19), 139 (22), 115 (19), 91 (91), 65 (22). HRMS: Calculated for [$\left.\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\right]^{+}$: 402.1124[(M+H) ${ }^{+}$; found: 402.1139. M.p. (n-hexane/EtOAc): $188-190{ }^{\circ} \mathrm{C}$. The ee was determined by HPLC using a Chiralpak AD-H column [n-hexane $/ i$ - PrOH (90:10)]; flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; \tau_{\text {major }}=70.74$ $\min , \tau_{\text {minor }}=112.60 \mathrm{~min}(93 \%$ ee $) .[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:-47.5\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The absolute configuration of the dihydropyrazidine $\mathbf{5 j}$ was determined by single-crystal X-ray analysis. The same stereochemistry was assumed for assigning the configuration of the rest of the compounds.

Figure S1: X-ray determined crystal structure.

NMR spectra of compound 2

Figure S2: NMR spectra of compound 2.

NMR spectra of compounds 4a-q

Figure S3: NMR spectra of compound 4a.

Figure S4: NMR spectra of compound $\mathbf{4 b}$.

Figure S5: NMR spectra of compound $\mathbf{4 c}$.

Figure S6: NMR spectra of compound 4d.

Figure S7: NMR spectra of compound $\mathbf{4 e}$.

Figure S8: NMR spectra of compound $\mathbf{4 f}$.

Figure S9: NMR spectra of compound $\mathbf{4 g}$.

Figure S10: NMR spectra of compound $\mathbf{4 h}$.

Figure S11: NMR spectra of compound $4 \mathbf{4}$.

Figure S12: NMR spectra of compound $\mathbf{4 j}$.

Figure S13: NMR spectra of compound $\mathbf{4 k}$.

Figure S14: NMR spectra of compound 41.

Figure S15: NMR spectra of compound $\mathbf{4 m}$.

NMR spectra of compounds 5j

Figure S16: NMR spectra of compound $\mathbf{5 j}$.

HPLC chromatograms of racemic and enantioenriched compounds 4a-m

Peak Results

	Rा	Area $\left(\mu N^{\prime} \mathrm{sec}\right)$	Hegrt (UV)	\% Ares
1	12,494	9125710	511382	56,47
2	15,207	141561	6492	153

Figure S17: HPLC chromatogram of compound $\mathbf{4 a}$.

	RT	\% Area
1	18,409	94,60
2	23,353	5,40

Figure S18: HPLC chromatogram of compound $\mathbf{4 b}$.

	RT	\% Area
1	14,760	47,58
2	21,217	52,42

Peak Results

	Fr	$\begin{gathered} \text { Area } \\ \left(\mathrm{N}^{\prime} \mathrm{N}^{\prime} \mathrm{sec}\right) \end{gathered}$	$\begin{gathered} \text { Hight } \\ \text { (0.V) } \end{gathered}$	\% Ares
1	14,699	E2105\%6	306119	97,99
2	20,858	127215	4502	20

Figure S19: HPLC chromatogram of compound $\mathbf{4 c}$.

Peak Results

	RT	Area ($\left.\mu \sqrt{ }{ }^{\prime \prime 2} \mathrm{zec}\right)$	Hight (0.M)	\% Ares
1	12,775	6595021	350070	39,14
2	17,345	132115	5193	185

Figure S20: HPLC chromatogram of compound $\mathbf{4 d}$.

Palak Results

	Rा	Area $(N / 3 e c)$	Heght (μV)	\% Ares
1	3,273	5550056	409153	46,95
2	10,834	6340905	385133	53,15

Paak Results

	Fr	$\begin{gathered} \text { Area } \\ \text { ON'sec } \end{gathered}$	Hegrt (6N)	\% Ares
1	3,252	14996296	1029515	98.53
2	10,886	223182	14047	1,47

Figure S21: HPLC chromatogram of compound $\mathbf{4 e}$.

	RT	\% Area
1	17,422	46,21
2	21,966	53,79

	RT	\% Area
1	17,780	98,68
2	22,043	1,32

Figure S22: HPLC chromatogram of compound $\mathbf{4 f}$.

Peak Results

	Rा	Area $\left(\mu V^{\prime 2} \mathrm{sec}\right)$	Hegrt (ωV)	\% Area
1	16,539	4913822	199211	47,98
2	21,865	5333350	166028	52,02

Peak Reaults

	RT	$\begin{gathered} \text { Arsa } \\ \left(\begin{array}{l} \\ \hline \end{array} \mathrm{zec}\right) \end{gathered}$	Hegt (W)	\$i Area
1	15,213	11527226	495138	98,33
2	20,067	195417	695	1,67

Figure S23: HPLC chromatogram of compound $\mathbf{4 g}$.

	Fr	Ares 	Heght (W)	3 Arso
1	E2,733	6536+15	56978	51,87
2	73,066	6064059	42937	48,13

Peak Reaults

	RT	Ares (ulvec)	Hegt (WV)	4, Are3
1	64,583	27949	3123	1,99
2	34,063	13781619	100947	98,01

Figure S24: HPLC chromatogram of compound $\mathbf{4 h}$.

Peak Reaults

	Fr	Area ($\mathrm{N} \mathrm{N}^{\prime 2}$ zec)	Heght (H / V)	\%Arse
1	45,379	2931594	37732	53,97
2	34,868	2499990	15318	43,03

Peak Results

	Fr	Area (ul/"sec)	$\begin{aligned} & \text { Height } \\ & (\mathrm{HN}) \end{aligned}$	\% Ares
1	45,725	871714	10351	5.44
2	185,997	15156654	81084	94,56

Figure S25: HPLC chromatogram of compound $4 \mathbf{i}$.

Peak Results

	Rा	Ares $(\mu / 2 e c)$	Heght HV/)	\% Area
1	60,824	10799393	34308	53,41
2	103,452	9448293	45714	45,59

Peak Results

	RT	Ares (12V"eec)	Hight (1N)	\% Are2
1	56,513	413213	4115	2.43
2	92,281	1652255	57124	9757

Figure S26: HPLC chromatogram of compound $\mathbf{4 j}$.

Peak Reaults

	Rा	Area $\left(\mu N^{\prime} \mathrm{sec}\right)$	Heght (ωN)	$\%$ Area
1	72,775	10037121	$69 \% 14$	50,75
2	133,541	9742171	35150	49,25

Peak Results

	FTI	$\begin{aligned} & \text { Ares } \\ & \left(\mathrm{N}^{\prime} \sec \right) \end{aligned}$	$\begin{array}{\|l\|} \hline-\mathrm{t} / \mathrm{gtt} \\ (\mu \mathrm{~N}) \end{array}$	\% Ares
1	75.947	483294	3472	771
2	131.772	5736888	21312	92,29

Figure S27: HPLC chromatogram of compound $\mathbf{4 k}$.

Peak Results

	[r T	$\begin{gathered} \text { Area } \\ \left(H N^{\prime} \mathrm{sec}\right) \end{gathered}$	$\begin{gathered} \text { Hegth } \\ (\mathrm{NV}) \end{gathered}$	\% Aves
1	81,530	31497400	153558	51,61
2	148,172	29532254	65696	48,39

Peak Resuits

	RT	Area $\left(\\|^{\prime} \mathrm{sec}\right)$	$\begin{array}{\|l\|} \hline-\mathrm{H} / \mathrm{ght} \\ (\mu \mathrm{~N}) \end{array}$	\% Ares
1	85,654	200970	1099	3.03
2	154,359	6408058	14868	96.97

Figure S28: HPLC chromatogram of compound 41.

Peak Results

	Fare	FTI	Ares	Heplt	4, Ares
1		59319	1785854	124727	48.5
2		76.537	18510561	1198s	51,42

Peak Results

	Fr	Area ($4 /{ }^{\prime \prime} \mathrm{sec}$)	Height (ωN)	\% Area
1	59,363	1730838	13398	4,84
2	77,817	34985419	134310	95,16

Figure S29: HPLC chromatogram of compound $\mathbf{4 m}$.

HPLC chromatograms of racemic and enantioenriched compound 5j

Peak Results

Peak Re8ults				
	Rा	Ares $\left(\mu V^{\prime} \mathrm{sec}\right)$	Hejght $(\mu \mathrm{V})$	\% Ares
1	72714	21380055	177578	49,21
2	112604	22066200	115829	50,79

Paak Results

	RT	Area ($\left.\mu^{\prime} / \mathrm{sec}\right)$	leight ($\mu \mathrm{V}$)	\% Ares
1	73,312	24757209	204086	96,47
2	116, $\mathrm{ns9}$	907253	5802	3,53

Figure S30: HPLC chromatogram of compound $\mathbf{5 j}$.

[^0]: ${ }^{1}$ SGIker technical support (MEC, GV/EJ and European Social Fund) is gratefully acknowledged (NMR, HRMS and X-ray analysis).
 ${ }^{2}$ E. Stahl, Thin Layer Chromatography, Springer-Verlag, Berlin, 1969.

