Tuning the Reactivity of Au-Complexes in Au(I)/Chiral Brønsted Acid Cooperative Catalytic System: An Approach to Optically Active Fused 1,2-Dihydroisoquinolines

Nitin T. Patil,^{*} Anil Kumar Mutyala, Ashok Konala, Ramesh Babu Tella

1.	General Information	2
2.	Synthesis and Characterization of Starting Materials	2
	2.1 Preparation of 2-Alkynylbenzaldehydes	2
	2.2 Preparation of 2-Aminobenzamides	3
3.	General Procedure and Characterization Data of Compounds	4
4.	Mechanistic Studies	.19
5.	Diversification of Products	21
6.	¹ H NMR and ¹³ C NMR Spectra of Compounds	22
7.	HPLC Chromatograms	.90
8.	³¹ P NMR Studies	119

1. General Information

All reactions were carried out in oven or flame dried vials with magnetic stirring under nitrogen atmosphere. Dried solvents and liquid reagents were transferred by oven-dried syringes or hypodermic syringe cooled to ambient temperature in a desiccators. All experiments were monitored by analytical thin layer chromatography (TLC). TLC was performed on pre-coated silica gel plates. After elution, plate was visualized under UV illumination at 254 nm for UV active materials. Further visualization was achieved by staining KMnO₄ and charring on a hot plate. Solvents were removed under reduced pressure in a water bath at 35 °C. Silica gel finer than 200 mesh was used for flash column chromatography. Columns were packed as slurry of silica gel in hexane and equilibrated with the appropriate solvent mixture prior to use. The compounds were loaded neat or as a concentrated solution using the appropriate solvent system. The elution was assisted by applying pressure with an air pump.

Melting points are uncorrected. IR spectra were recorded as neat liquids or KBr pellets and absorptions are reported in cm⁻¹. ¹H NMR spectra were recorded on 300, 400 and 500 MHz spectrometers in appropriate solvents using TMS as internal standard or the solvent signals as secondary standards and the chemical shifts were shown in δ scales. Multiplicities of NMR signals were designated as s (singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet), pent (pentet), m (multiplet) etc. ¹³C NMR spectra were recorded on 75, 100 MHz spectrometers. High-resolution mass spectra were obtained by using ESI-QTOF mass spectrometry. The enantiomeric ratios (e.r.) were determined by HPLC analysis employing a Chiralcel OD-H column. Optical rotations were measured on a JASCO digital polarimeter.

2. Synthesis and Characterization of Starting Materials

2.1 Preparation of 2-Alkynylbenzaldehydes

The substrates **1a**, ¹**1b**, ²**1c**, ³**1d**, ⁴**1f**, ⁵**1g**, ⁶**1i**⁷ and **1j**⁷ were prepared according to literature known procedures. 2-alkynylbenzaldehydes **1e** and **1h** were unknown and prepared by Sonogashira reaction as described below.

Preparation of 5-fluoro-2-(p-tolylethynyl)benzaldehyde (1e): To a 25 mL round bottom flask a solution of 2-bromo-5-fluorobenzaldehyde (1.0 g, 4.98 mmol) in Et₃N (6 mL) was taken and purged with dry nitrogen for 25 minutes. To the above flask a solution of 1-ethynyl-4-methylbenzene (0.773 g, 6.66 mmol) in Et₃N (6 mL) was added drop wise. Catalysts PdCl₂(PPh₃)₂ (0.128 g, 0.28 mmol) and CuI (0.031 g, 0.17 mmol) were introduced into the flask under nitrogen atmosphere at room temperature. The reaction mixture was warmed to 65 °C and stirred for 10 h. The reaction mixture was cooled to room temperature and filtered through a short SiO₂ pad and the filtrate was concentrated. The residue was purified by column chromatography by using hexane/ethylacetate (98/02) as eluent to afford **1e**. 79% (932 mg) yield; brown solid; mp 82–84 °C; R_f = 0.36 (hexane/EtOAc = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 10.55 (d, *J* = 3.2 Hz, 1H), 7.62-7.57 (m, 2H), 7.40 (d, *J* = 7.9 Hz, 2H), 7.29-7.22 (m, 1H), 7.15 (d, *J* = 7.7 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 190.5, 163.9, 160.5, 139.4, 137.6, 137.5, 135.1, 135.0, 131.5, 129.3, 123.3, 123.2, 121.4, 121.1, 119.0, 113.7, 113.4, 96.3, 83.2, 21.5; IR (KBr): v_{max} 3027, 2922, 2852, 1692, 1601, 1508, 1260, 1140, 815, 732, 525 cm⁻¹; HRMS calcd for C₁₆H₁₂FO (M⁺+H) 239.0872, found 239.0887.

2-((3,5-dimethylphenyl)ethynyl)benzaldehyde (1h): The compound **1h** was prepared following the procedure for the preparation of **1e**; 75% (870 mg) yield; pale yellow solid; mp 95–97 °C; $R_f = 0.41$ (hexane/EtOAc = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 10.62 (s, 1H), 7.92 (d, *J* = 8.3 Hz, 1H), 7.60-7.52 (m, 2H), 7.42 (t, *J* = 6.8 Hz, 1H), 7.16 (s, 2H), 6.98 (s, 1H), 2.33 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 191.7, 138.1, 135.7, 133.7, 133.1, 131.0, 129.3, 128.4, 127.1, 121.9, 96.8, 84.2, 21.0; IR (KBr): v_{max} 2914, 2837, 2750, 1693, 1597, 1476, 1263, 1188, 1086, 845, 768, 684, 640 cm⁻¹; HRMS calcd for C₁₇H₁₄ONa (M⁺+Na) 257.0942 found 257.0943.

2.2 Preparation of 2-Aminobenzamides

¹ S. Takao, K. Yoshinori, M. Norio, H. Kazuhiko, Y. Hiroshi, *Heterocycles* 1986, 24, 2411-2314.

² Y. Reiko, H. Kana, T. Rie, M. Yoshihisa, M. Hideki, Y. Kazuo, I. Minoru, T. Yoshiji, J. Org. Chem. 2008, 73, 5135 - 5138.

³ S. Obika, H. Kono, Y. Yasui, R. Yanada, Y. Takemoto, J. Org. Chem. 2007, 72, 4462-4468.

⁴ G. B. Bajracharya, I. Nakamura, Y. Yamamoto, J. Org. Chem. 2005, **70**, 892-897.

⁵ K. K. Wang, H.-R. Zhang, J. L. Petersen, J. Org. Chem. 1999, 64, 1650-1656.

⁶ N. T. Patil, A. Konala, V. Singh, V. V. N. Reddy, Eur. J. Org. Chem. 2009, 5178-5184.

⁷ K. R. Roesch, R. C. Larock, J. Org. Chem. 2002, 67, 86-94.

All substrates 2a, ${}^{8}2b$, ${}^{9}2c$, ${}^{10}2d$, ${}^{10}2e$, ${}^{11}2f$, ${}^{12}2g^{10}$ and $2h^{13}$ were prepared according to literature known procedures.

3. General Procedure and Characterization Data of Compounds

A dichloroethane (2 mL) solution of 2-alkynyl benzaldehydes **1** (0.2424 mmol), 2aminobenzamides **2** (0.2424 mmol) and 50 mg 4Å molecular sieves were taken in 2.5 mL screw capped vial under nitrogen atmosphere and cooled to -5 °C. Catalysts 5 mol% **4c** and 2 mol% PPh₃AuMe were introduced to the reaction mixture under nitrogen atmosphere at -5 °C. The resulting solution was stirred for 32 h at -5 °C after reaction mixture was warm to room temperature and stirred for 24 h. The crude reaction mixture was filtered through a short pad of active neutral Al₂O₃ with dichloromethane as an eluent and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (active neutral Al₂O₃) using CH₂Cl₂/MeOH (98/02) as eluent to obtain **3**.

(*S*)-8-bromo-4b,5-dihydro-12-phenylisoquinolino[2,1-a]quinazolin-6-one (3a):¹⁴ 92% (90 mg) yield; yellow solid; mp 259–269 °C; R_f = 0.41, (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 9.21 (d, *J* = 5.1 Hz, 1H), 7.82-7.76 (m, 3H), 7.47-7.28 (m, 7H), 7.12 (s, 1H), 7.11 (dd, *J* = 8.2, 2.5 Hz, 1H),

⁸ M. Tobe, Y. Isobe, H. Tomizawa, T. Nagasaki, H. Takahashi, T. Fukazawa, H. Hayashi, *Bioorg. Med. Chem.* 2003, **11**, 383-391.

⁹ A. D. Roy, A. Subramanian, R. Roy, J. Org. Chem. 2006, 71, 382-385.

¹⁰ X. Cheng, S. Vellalath, R. Goddard, B. List, J. Am. Chem. Soc. 2008, 130, 15786-15787.

¹¹ M. Rowley, J. J. Kulagowski, A. P. Watt, D. Rathbone, G. I. Stevenson, R. W. Carling, R. Baker, G. R. Marshall, J. A. Kemp, A. C. Foster, S. Grimwood, R. Hargreaves, C. Hurley, K. L. Saywell, M. D. Tricklebank, P. D. Leeson, J. Med. Chem. 1997, 40, 4053-4068.

¹² M.-J. Hour, L.-J. Huang, X.-Y. Kuo, K. Bastow, Y. Nakanishi, E. Hamel, K. -H. Lee, J. Med. Chem. 2000, 43, 4479-4487.

¹³ N. T. Patil, R. D. Kavthe, V. S. Raut, V. S. Shinde, B. Sridhar, J. Org. Chem. 2010, 75, 1277-1280.

¹⁴ N. T. Patil, A. K. Mutyala, P. G. V. V. Lakshmi, P. V. K. Raju, B. Sridhar, Eur. J. Org. Chem. 2010, 1999-2007.

6.05 (d, *J* = 8.7 Hz, 1H), 5.69 (d, *J* = 4.9 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 160.5, 143.1, 141.3, 135.4, 134.3, 131.9, 131.3, 129.3, 129.2, 128.3, 128.2, 125.7, 123.3, 118.7, 116.9, 111.3, 67.1; IR (KBr): v_{max} 3520, 3167, 3051, 2920, 1684, 1597, 1473, 1364, 1025, 814, 758, 698 cm⁻¹; HRMS calcd for C₂₂H₁₆BrN₂O (M⁺+H) 403.0446, found 403.0438; 98:02 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{major} = 13.60, t_{minor} = 29.86; [α]_D^{29.8} = -147.5 (c = 0.07, CHCl₃).

(*S*)-4b,5-dihydro-12-phenylisoquinolino[2,1-a]quinazolin-6-one (3b):^{14]} 82% (64.5 mg) yield; yellow solid; mp 192–194 °C; $R_f = 0.38$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (500 MHz, DMSO-d₆): δ 8.76 (s, 1H), 7.78-7.75 (m, 3H), 7.39-7.22 (m, 7H), 6.98-6.93 (m, 2H), 6.74 (t, *J* = 7.4 Hz, 1H), 6.13 (d, *J* = 8.4 Hz, 1H), 5.73 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 161.8, 143.9, 141.9, 134.8, 132.9, 132.1, 129.1, 128.9, 128.7, 128.2, 128.1, 127.3, 126.7, 126.5, 125.8, 125.6, 123.4, 122.3, 119.7, 116.5, 67.2; IR (KBr): v_{max} 3498, 3164, 2987, 1710, 1622, 1432, 1082, 752, 685, 672 cm⁻¹; HRMS calcd for C₂₂H₁₇N₂O (M⁺ + H) 325.1340, found 325.1331; 94:06 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; $\lambda = 307$ nm; t_{minor} = 15.32, t_{major} = 23.67; [α]_D^{29.1} = -80.1(c = 0.7, CHCl₃).

(*S*)-7-fluoro-4b,5-dihydro-12-phenylisoquinolino[2,1-a]quinazolin-6-one (3c):¹⁴ 76% (63 mg) yield; white solid; mp 231–233 °C; $R_f = 0.40$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 7.59 (s, 2H), 7.39-7.16 (m, 8H), 6.90-6.83 (m, 1H), 6.83 (s, 1H), 6.46 (t, J = 8.7 Hz, 1H), 5.98 (d, J = 8.3 Hz, 1H), 5.83 (d, J = 4.5 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 163.1, 159.7, 158.9, 146.0, 141.7, 138.3, 136.4, 134.6, 133.7, 131.9, 129.1, 128.8, 128.7, 128.3, 128.1, 127.3, 127.0, 126.5, 125.7, 123.4, 118.5, 116.9, 112.8, 111.5, 108.3, 101.6, 67.0; IR (KBr): v_{max} 3187, 3071, 2929, 1669, 1613, 1468, 1359, 1113, 804, 755, 691, 470 cm⁻¹; HRMS calcd for C₂₂H₁₆N₂OF (M⁺+H) 343.1246, found 343.1244; 90:10 e.r.;

HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 16.85, t_{major} = 26.09; $[\alpha]_D^{29.8} = -125.2$ (c = 0.07, CHCl₃).

(*S*)-7-chloro-4b,5-dihydro-12-phenylisoquinolino[2,1-a]quinazolin-6-one (3d): 59% (51 mg) yield; mp 213–216 °C; R_f = 0.39 (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, DMSO-d₆): δ 9.15 (d, *J* = 5.9 Hz, 1H), 7.87-7.67 (m, 2H), 7.47-7.35 (m, 8H), 7.0 (t, *J* = 8.3 Hz, 1H), 6.84 (d, *J* = 7.4 Hz, 1H), 6.15 (d, *J* = 8.3 Hz, 1H), 5.7 (S, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 159.6, 146.5, 141.7, 134.5, 133.4, 132.4, 131.9, 129.0, 128.4, 128.1, 123.5, 66.6; IR (KBr): 3286, 3186, 3066, 2927, 2851, 1675, 1597, 1472, 1318, 1172, 816, 754, 542; HRMS calcd for C₂₂H₁₆N₂OCl (M⁺+H) 359.0951, found 359.0956; 81:19 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 16.54, t_{major} = 26.36; [α]_D^{32.7} = -51.6 (c = 0.5, CHCl₃).

(*S*)-9-chloro-4b,5-dihydro-12-phenylisoquinolino[2,1-a]quinazolin-6-one (3e):¹⁴ 64% (53 mg) yield; yellow solid; mp 197–199 °C; $R_f = 0.41$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, DMSO-d₆): δ 9.15 (s, 1H), 7.82 (d, *J* = 6.8 Hz, 2H), 7.68 (d, *J* = 8.7 Hz, 1H), 7.49-7.34 (m, 8H), 6.78 (t, *J* = 8.8 Hz, 1H), 6.05 (s, 1H), 5.73 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 161.4, 145.6, 141.7, 137.9, 134.7, 132.3, 129.8, 129.7, 128.9, 128.8, 126.4, 126.1, 123.8, 120.3, 117.9, 117.2, 116.2, 67.8; IR (KBr): v_{max} 3369, 3164, 3056, 2923, 1668, 1614, 1456, 1324, 1133, 1032, 767 cm⁻¹; HRMS calcd for C₂₂H₁₆N₂OCl (M⁺+H) 359.0951, found 359.0939; 97:03 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; $\lambda = 307$ nm; $t_{minor} = 17.33$, $t_{major} = 31.60$; [α]_D^{28.4} = -104.6 (c = 0.5, CHCl₃).

(*S*)-4b,5-dihydro-8-methoxy-12-phenylisoquinolino[2,1-a]quinazolin-6-one (3f): 71% (60 mg) yield; white solid; mp 216–218 °C; R_f = 0.33 (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 7.89 (d, *J* = 7.7 Hz, 1H), 7.64 (bs, 1H), 7.42-7.40 (m, 1H), 7.45-7.16 (m, 7H), 7.02 (t, *J* = 8.3 Hz, 1H), 6.89-6.78 (m, 3H), 6.24 (d, *J* = 8.3 Hz, 1H), 5.94 (d, *J* = 4.0 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆): δ 161.8, 153.1, 142.0, 137.4, 135.0, 132.0, 129.0, 128.2, 127.8, 126.0, 125.3, 123.7, 119.6, 110.8, 67.2, 55.2; IR (KBr): v_{max} 3429, 3060, 2933, 1669, 1609, 1516, 1486, 1349, 1286, 1156, 1029, 823, 768, 700, 641, 555 cm⁻¹; HRMS calcd for C₂₃H₁₉N₂O₂ (M⁺+H) 355.1446, found .355.1445; 95:05 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 15.42, t_{major} = 25.18; [α]_D^{28.4} = -117.8 (c = 0.5, CHCl₃).

(*S*)-4b,5-dihydro-7-methyl-12-phenylisoquinolino[2,1-a]quinazolin-6-one (3g): 65% (53 mg) yield; white solid; mp 217–219 °C; $R_f = 0.38$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 8.74 (d, *J* = 5.3 Hz, 1H), 7.74-7.61 (m, 2H), 7.36-7.16 (m, 8H), 6.76 (t, *J* = 7.9 Hz, 1H), 6.50 (d, *J* = 7.2 Hz, 1H), 5.98 (d, *J* = 8.1 Hz, 1H), 5.57 (s, 1H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃ + DMSO-d₆): δ 163.2, 145.3, 142.8, 140.7, 135.6, 132.5, 131.5, 130.5, 129.2, 128.5, 128.0, 126.4, 125.7, 124.3, 67.3, 22.2; IR (KBr): v_{max} 3439, 3200, 3064, 2924, 1732, 1668, 1599, 1467, 1247, 1039, 759, 693, 533 cm⁻¹; HRMS calcd for C₂₃H₁₉N₂O (M⁺+H) 339.1497, found 339.1508; 93:07 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 14.52, t_{major} = 18.46; [α]_D^{29.8} = -88.47 (c = 0.5, CHCl₃).

(*S*)-8-chloro-4b,5-dihydro-10-methyl-12-phenylisoquinolino[2,1-a]quinazolin-6-one (3h): 36% (33 mg) yield; yellow solid; mp 194–196 °C; $R_f = 0.38$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 7.89 (d, *J* = 2.0 Hz, 1H), 7.35-7.32 (m, 1H), 7.21-7.09 (m, 6H), 7.00 (d, *J* = 2.0 Hz, 1H), 6.90 (d, *J* = 7.0 Hz, 2H), 6.40 (s, 1H) 6.13 (d, *J* = 2.0 Hz, 1H), 5.77 (s, 1H), 1.70 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 162.7, 141.8, 140.9, 136.2, 135.3, 134.0, 132.5, 131.5, 130.0, 128.6, 128.1, 127.6, 126.6, 125.7, 124.8, 124.1, 105.3, 68.2, 17.7; IR (KBr): v_{max} 3368, 3058, 2922, 1669, 1602, 1454, 1315, 1130, 1033,

880, 760, 693, 512 cm⁻¹; HRMS calcd for $C_{23}H_{18}N_2OCl (M^++H)$ 373.1107, found 373.1112; 81:19 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 12.67, t_{major} = 11.04; [α]_D^{32.6}= -35.1(c = 0.5, CHCl₃).

(*S*)-4b,5-dihydro-2-methyl-12-phenylisoquinolino[2,1-a]quinazolin-6-one (3i): 74% (61 mg) yield; white solid; mp 232–234 °C; R_f = 0.39 (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 7.85 (d, *J* = 7.4 Hz, 1H), 7.64-7.51 (m, 2H), 7.39-7.19 (m, 4H), 7.04-6.75 (m, 5H), 6.66 (s, 1H), 6.16 (d, *J* = 8.3 Hz, 1H), 5.85 (d, *J* = 3.8 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆): δ 161.6, 143.9, 141.8, 137.4, 134.9, 132.7, 131.9, 129.0, 128.4, 127.1, 126.1, 125.6, 123.3, 119.6, 116.4, 67.1, 20.6; IR (KBr): v_{max} 3396, 3191, 3060, 2922, 1673, 1602, 1511, 1339, 1077, 1027, 757, 699, 535 cm⁻¹; HRMS calcd for C₂₃H₁₉N₂O (M⁺+H) 339.1497, found 339.1492; 90:10 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 12.90, t_{major} = 18.24; [α]_D^{29.1} = -90.8 (c = 0.5, CHCl₃).

(*S*)-3-fluoro-4b,5-dihydro-12-phenylisoquinolino[2,1-a]quinazolin-6-one (3j): 86% (71 mg) yield; white solid; mp 156–158 °C; $R_f = 0.39$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 8.28 (bs, 1H), 7.87 (d, *J* = 8.5 Hz, 1H), 7.72 (d, *J* = 6.6 Hz, 2H), 7.40-7.34 (m, 3H), 7.23-7.18 (m, 2H), 7.03-6.95 (m, 2H), 6.95 (s, 1H), 6.82 (t, *J* = 7.6 Hz, 1H), 6.18 (d, *J* = 8.3 Hz, 1H), 5.87 (d, *J* = 4.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 164.2, 161.3, 141.8, 135.0, 133.4, 129.2, 129.1, 128.4, 128.1, 127.1, 126.2, 120.6, 117.5, 115.6, 114.8, 111.8, 111.5, 67.8; IR (KBr): v_{max} 3430, 3190, 3067, 2924, 1672, 1604, 1492, 1358, 1265, 1188, 1028, 950, 837, 754, 693 cm⁻¹; HRMS calcd for C₂₂H₁₆FN₂O (M⁺+H) 343.1246, found 343.1240; 99:01 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; $\lambda = 307$ nm; t_{minor} = 13.03, t_{major} =15.52; [α]_D^{29.1} = -162.0 (c = 0.5, CHCl₃).

(*S*)-8-bromo-3-fluoro-4b,5-dihydro-12-phenylisoquinolino[2,1-a]quinazolin-6-one (3k): 89% (91mg) yield; pale yellow solid; mp 175–177 °C; $R_f = 0.42$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 8.01 (d, *J* = 2.5 Hz, 1H), 7.75-7.67 (m, 3H), 7.45-7.38 (m, 3H), 7.27-6.98 (m, 5H), 6.11 (d, *J* = 8.69 Hz, 1H), 5.85 (d, *J* = 4.9 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 160.3, 143.0, 140.7, 135.5, 134.2, 129.4, 129.2, 128.4, 128.0, 125.6, 118.6, 115.4, 115.1, 111.5, 111.0, 110.7, 66.7; IR (KBr): v_{max} 3341, 3170, 2921, 1682, 1598, 1479, 1363, 1271, 1185, 821, 759, 697 cm⁻¹; HRMS calcd for C₂₂H₁₅BrN₂OF (M⁺+H) 421.0351, found 421.0350; 99:01 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 11.84, t_{major} = 15.72; [α]_D^{29.8} = -172.4 (c = 0.07, CHCl₃).

(*S*)-8-bromo-4b,5-dihydro-12-p-tolylisoquinolino[2,1-a]quinazolin-6-one (3l): 93% (94 mg yield; yellow solid; mp 240–242 °C; $R_f = 0.43$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 7.98 (d, J = 2.2 Hz, 1H), 7.60-7.44 (m, 3H), 7.33-7.19 (m, 5H), 7.07 (dd, J = 8.7, 2.5 Hz, 1H), 6.87 (s, 1H), 6.09 (d, J = 8.9 Hz, 1H), 5.88 (d, J = 4.5 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆): δ 162.8, 143.0, 141.9, 139.5, 135.8, 132.2, 131.8, 130.5, 129.8, 128.7, 128.0, 127.0, 126.2, 125.4, 123.5, 119.6, 68.1, 21.3; IR (KBr): v_{max} 3369, 3167, 3047, 2917, 1679, 1600, 1474, 1352, 1185, 810, 748 cm⁻¹; HRMS calcd for C₂₃H₁₈BrN₂O (M⁺+H) 417.0603, found 417.0609; 98:02 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; $\lambda = 307$ nm; t_{minor} = 12.23, t_{major} = 21.95; [α]_D^{29.1} = -124.1 (c = 0.5, CHCl₃).

(*S*)-4b,5-dihydro-12-p-tolylisoquinolino[2,1-a]quinazolin-6-one (3m): 84% (69 mg) yield; white solid; mp 256–258 °C; R_f = 0.40, (CH₂Cl₂/MeOH = 98/02); ¹H NMR (500 MHz, CDCl₃): δ 7.87 (d, *J* = 7.1 Hz, 1H), 7.54-7.44 (m, 3H), 7.27-7.26 (m, 3H), 7.18-7.14 (m, 3H), 6.98 (t, *J* = 7.1 Hz, 1H), 6.81 (t, *J* = 7.1 Hz, 1H), 6.73 (s, 1H), 6.19 (d, *J* = 8.1 Hz, 1H), 5.91 (d, *J* = 4.1 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 163.9, 144.0, 142.1, 139.2, 133.5, 133.2, 132.4, 130.0, 129.7, 128.6, 128.0, 127.8, 127.1, 126.5, 125.2, 123.7, 122.1, 120.6, 118.2, 117.3, 68.1, 21.4; IR (KBr): v_{max} 3426, 3187, 3046, 2917, 1670, 1604, 1484, 1404, 1362, 1336, 1045, 816, 753 cm⁻¹; HRMS calcd for C₂₃H₁₉N₂O (M⁺+H), 339.1497 found 339.1484; 97:03 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 14.04, t_{maior} = 19.48; [α]_D^{29.1} = -150.7 (c = 1.9, CHCl₃).

(*S*)-3-fluoro-4b,5-dihydro-12-p-tolylisoquinolino[2,1-a]quinazolin-6-one (3n): 93% (81mg) white solid; mp 273–275 °C; R_f = 0.39, (CH₂Cl₂/MeOH = 98/02); ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, *J* = 6.8 Hz, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 2H), 7.20-7.16 (m, 4H), 7.01-6.94 (m, 2H), 6.86 (s, 1H), 6.79 (t, *J* = 7.8 Hz, 1H), 6.21 (d, *J* = 8.8 Hz, 1H), 5.82 (d, *J* = 4.9 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆): δ 163.5, 161.6, 160.2, 143.8, 138.7, 132.9, 131.9, 129.6, 128.9, 128.7, 128.6, 127.5, 127.4, 127.2, 125.5, 124.6, 119.7, 116.3, 115.1, 114.8, 110.9, 110.6, 66.8, 20.7; IR (KBr): v_{max} 3391, 3187, 3043, 2923, 1668, 1604, 1481, 1357, 1265, 1181, 1042, 827, 752, 553 cm⁻¹; HRMS calcd for C₂₃H₁₈N₂OF (M⁺+H) 357.1403, found 357.1420; 99:01 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 12.31, t_{major} = 13.32; [α]_D^{29.1} = -179 (c = 0.5, CHCl₃).

(*S*)-8-bromo-3-fluoro-4b,5-dihydro-12-p-tolylisoquinolino[2,1-a]quinazolin-6-one (3o): 95% (100 mg) yellow solid; mp 256–258 °C; $R_f = 0.42$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, DMSO-d₆): δ 8.41 (bs, 1H), 7.96 (d, *J* = 2.3 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.23-7.16 (m, 4H), 7.08 (dd, *J* = 9.1, 2.3 Hz, 1H), 7.00 (td, *J* = 8.3, 2.3 Hz, 1H), 6.93 (s, 1H), 6.09 (d, *J* = 9.1 Hz, 1H), 5.82 (d, *J* = 5.3 Hz, 1H),

2.40 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 164.5, 162.7, 143.1, 139.6, 136.1, 131.6, 130.6, 130.3, 129.9, 128.4, 127.0, 126.0, 119.2, 115.7, 115.4, 114.4, 112.9, 111.6, 111.3, 67.7, 21.3; IR (KBr): v_{max} 3423, 3066, 2921, 1678, 1596, 1485, 1348, 1267, 1182, 1267, 816 cm⁻¹; HRMS calcd for C₂₃H₁₇Br FN₂O (M⁺+H) 435.0508, found 435.0330; 97:03 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 11.02, t_{major} = 12.42; $[\alpha]_D^{32.8}$ = -136.5 (c = 0.5, CHCl₃).

(*S*)-12-(4-tert-butylphenyl)-4b,5-dihydroisoquinolino[2,1-a]quinazolin-6-one (3p): 86% (79 mg) yield; white solid; mp 256–258 °C; $R_f = 0.45$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (500 MHz, CDCl₃): δ 9.15 (d, *J* = 4.9 Hz, 1H), 7.82 (d, *J* = 8.9 Hz, 2H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 8.9 Hz, 2H), 7.45-7.40 (m, 5H), 7.15 (t, *J* = 6.9 Hz, 1H), 6.85 (t, *J* = 6.9 Hz, 1H), 6.23 (d, *J* = 7.9 Hz, 1H), 5.75 (d, *J* = 4.9 Hz, 1H), 1.39 (s, 9H); ¹³C NMR (75 MHz, DMSO-d₆): δ 161.8, 151.7, 144.0, 141.9, 132.9, 132.1, 132.0, 128.1, 127.8, 127.2, 125.9, 125.4, 123.3, 119.6, 116.3, 115.9, 67.2, 34.4, 30.9; IR (KBr): v_{max} 3384, 3195, 2959, 1663, 1602, 1474, 1355, 1160, 1120, 831, 753, 534 cm⁻¹; HRMS calcd for C₂₆H₂₄N₂ONa (M⁺+Na) 403.1786, found 403.1769; 93:07 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} =12.74, t_{major} = 22.99; [α]_D^{29.8} = -152.6 (c = 0.07, CHCl₃).

(*S*)-12-(4-tert-butylphenyl)-8-bromo-4b,5-dihydroisoquinolino[2,1-a]quinazolin-6-one (3q): 91% (101 mg) yield; white solid; mp 196–198 °C; $R_f = 0.47$, (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 8.92 (bs, 1H), 8.02 (s, 1H), 7.70 (d, J = 8.1 Hz, 2H), 7.55-7.41 (m, 3H), 7.39-7.28 (m, 3H), 7.08 (dd, J = 8.7, 2.1 Hz, 1H), 7.01 (s, 1H), 6.15 (d, J = 8.7 Hz, 1H), 5.92 (d, J = 4.3 Hz, 1H), 1.37 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 163.2, 152.7, 143.2, 141.8, 135.9, 132.8, 132.2, 131.7, 130.4, 128.6, 128.1, 125.9, 125.4, 123.5, 119.3, 115.4, 112.7, 68.1, 34.7, 31.2; IR (KBr): v_{max} 3394, 3191, 3071, 2964, 1667, 1600, 1478, 1355, 1264, 1189, 1126, 1022, 834, 753, 530 cm⁻¹; HRMS calcd for C₂₆H₂₄BrN₂O

(M⁺+H) 459.1071, found 459.1068; 97:03 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 11.54, t_{major} = 34.25; [α]_D^{28.4} = -145.8 (c = 0.07, CHCl₃).

(*S*)-12-(4-tert-butylphenyl)-4b,5-dihydro-8-methoxyisoquinolino[2,1-a]quinazolin-6-one (3r): 81% (80.5mg) yield; white solid; mp 214–216 °C; $R_f = 0.41$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 7.43-7.16 (m, 9H), 7.15 (d, *J* = 6.9 Hz, 1H), 6.61 (dd, *J* = 9.1, 3.0 Hz, 1H), 6.46 (s, 1H), 6.20 (d, *J* = 9.1 Hz, 1H), 5.98 (s, 1H), 3.74 (s, 3H), 1.32 (s, 9H); ¹³C NMR (75 MHz, DMSO-d₆): δ 161.7, 152.9, 151.6, 142.1, 137.6, 132.2, 128.1, 127.6, 125.8, 125.6, 125.3, 123.5, 119.7, 110.7, 67.2, 55.2, 34.4, 30.9; IR (KBr): v_{max} 3376, 3211, 3066, 2961, 1673, 1492, 1328, 1269, 1217, 1164, 1044, 835, 757, 541 cm⁻¹; HRMS calcd for C₂₇H₂₅N₂O₂ (M⁻-H) 409.1226, found 409.1215; 90:10 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 12.50, t_{major} = 22.38; [α]_D^{29.8} = -124.2 (c = 0.07, CHCl₃).

(*S*)-12-(4-tert-butylphenyl)-7-fluoro-4b,5-dihydroisoquinolino[2,1-a]quinazolin-6-one (3s): 91% (88 mg); white solid; mp 230–232 °C; R_f = 0.46, (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 7.60 (d, *J* = 7.6 Hz, 2H), 7.48-7.40 (m, 4H), 7.33-7.30 (m, 2H), 7.26-7.19 (m, 1H), 6.99-6.91 (m, 1H), 6.83 (s, 1H), 6.53 (t, *J* = 9.1 Hz, 1H), 6.08 (d, *J* = 8.3 Hz, 1H), 5.84 (d, *J* = 4.5 Hz, 1H), 1.39 (s, 9H); ¹³C NMR (75 MHz, DMSO-d₆): δ 163.6, 160.2, 159.5, 152.4, 146.8, 142.4, 134.3, 134.2, 132.6, 132.3, 128.8, 128.6, 126.4, 126.2, 125.9, 123.9, 113.2, 108.7, 108.4, 67.6, 34.9, 31.5; IR (KBr): v_{max} 3406, 3096, 2964, 1668, 1616, 1475, 1324, 1120, 1077, 834, 802, 752, 573 cm⁻¹; HRMS calcd for C₂₆H₂₄FN₂O (M⁺+H) 399.1872, found 399.1860; 98:02 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 14.66, t_{major} = 27.77; [α]_D^{29.8} =-183.6 (c = 0.07, CHCl₃).

(*S*)-4b,5-dihydro-12-(3-methoxyphenyl)isoquinolino[2,1-a]quinazolin-6-one (3t): 78% (67 mg) yield; white solid; mp 171–173 °C; $R_f = 0.32$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 8.23 (bs, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.48 (d, *J* = 5.7 Hz, 1H), 7.30-7.16 (m, 6H), 7.01 (t, *J* = 8.3 Hz, 1H), 6.88-6.79 (m, 3H), 6.22 (d, *J* = 8.3 Hz, 1H), 5.95 (d, *J* = 4.9 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 164.1, 160.1, 142.2, 136.8, 133.5, 133.2, 132.2, 130.6, 130.0, 128.6, 128.1, 125.4, 123.9, 120.7, 119.0, 118.1, 117.7, 114.8, 111.9, 68.1, 55.4; IR (KBr): v_{max} 3391, 3185, 3050, 2922, 1679, 1602, 1483, 1263, 1135, 1042, 750, 695 cm⁻¹; HRMS calcd for C₂₃H₁₉N₂O₂ (M⁺+H) 355.1446, found 355.1435; 94:06 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 16.75, t_{maior} = 26.59; [α]_D^{29.8} = -117.3 (c = 0.07, CHCl₃).

(*S*)-4b,5-dihydro-12-(3,5-dimethylphenyl)isoquinolino[2,1-a]quinazolin-6-one (3u): 91% (80 mg) yield; white solid; mp 264–266 °C; $R_f = 0.41$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 9.35 (d, *J* = 4.7 Hz, 1H), 7.92 (d, *J* = 7.6 Hz, 2H), 7.68 (m, 2H), 7.60-7.47 (m, 4H), 7.32-7.21 (m, 2H), 7.02-6.93 (m, 1H), 6.43 (t, *J* = 8.3 Hz, 1H), 5.91 (d, *J* = 4.7 Hz, 1H), 2.54 (s, 6H); ¹³C NMR (75 MHz, DMSO-d₆): δ 161.7, 144.0, 142.2, 138.1, 135.0, 134.1, 132.8, 132.1, 130.7, 128.1, 127.8, 127.1, 125.4, 123.3, 119.5, 116.3, 67.2, 20.9; IR (KBr): v_{max} 3347, 3180, 3040, 2918, 1668, 1602, 1484, 1333, 1224, 842, 754, 536 cm⁻¹; HRMS calcd for C₂₄H₂₀N₂ONa (M⁺+Na) 375.1473, found 375.1478; 95:05 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 12.39, t_{major} = 17.15; [α]_D^{28.4} = -141.3 (c = 0.07, CHCl₃).

(*S*)-8-bromo-4b,5-dihydro-12-(3,5-dimethylphenyl)isoquinolino[2,1-a]quinazolin-6-one (3v): 92% (94 mg) yield; pale yellow solid; mp 254–256 °C; $R_f = 0.36$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, DMSO-d₆): δ 9.56 (d, *J* = 4.9 Hz, 1H), 8.06 (d, *J* = 2.1 Hz, 1H), 7.73 (s, 2H), 7.65-7.59 (m, 5H), 7.50 (dd, *J* = 8.9, 2.3 Hz, 1H), 7.34 (s, 1H), 6.39 (d, *J* = 8.8 Hz, 1H), 5.99 (d, *J* = 4.9 Hz, 1H), 2.63 (s, 6H); ¹³C NMR (75 MHz, CDCl₃+DMSO-d₆): δ 160.4, 143.1, 141.6, 138.0, 135.1, 134.3, 131.8, 130.6, 129.2, 128.0, 127.8, 125.3, 123.2, 118.4, 111.1, 67.1, 20.8; IR (KBr): v_{max} 3397, 3166, 3055, 2914, 1668, 1600, 1477, 1353, 1184, 839, 751, 534 cm⁻¹; HRMS calcd for C₂₄H₁₉N₂ONaBr (M⁺+Na) 453.0578, found 453.0583; 98:02 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 10.89, t_{major} = 18.80; [α]_D^{28.4} = -101.3 (c = 0.5, CHCl₃).

(*S*)-12-cyclohexenyl-4b,5-dihydroisoquinolino[2,1-a]quinazolin-6-one (3w): 84% (67 mg) yield; light yellow solid; mp 213–216 °C; $R_f = 0.36$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 7.85 (d, J = 8.3 Hz, 1H), 7.58 (s, 1H), 7.40 (t, J = 4.5 HZ, 1H), 7.26-7.12 (m, 4H), 6.81 (t, J = 7.6 HZ, 1H), 6.56 (s, 1H), 6.48-6.45 (m, 2H), 5.66 (d, J = 4.5 HZ, 1H), 2.46-2.17 (m, 3H), 1.82-1.64 (m, 5H); ¹³C NMR (75 MHz, DMSO-d₆): δ 161.9, 144.8, 143.8, 134.4, 132.8, 132.1, 130.9, 128.8, 127.9, 127.6, 126.8, 125.7, 123.3, 119.3, 117.9, 116.1, 114.6, 66.9, 25.3, 24.1, 22.1, 21.6; IR (KBr): v_{max} 3188, 3071, 2931, 2862, 1665, 1602, 1477, 1358, 1036, 752, 529; HRMS calcd for C₂₄H₂₁N₂O (M⁺+H) 329.1653, found 329.1654; 94:06 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; $\lambda = 298$ nm; $t_{minor} = 11.46$, $t_{major} = 18.44$; [α]_D^{20.2} = -349.1 (c = 0.33, CHCl₃).

(*S*)-8-bromo-12-cyclohexenyl-4b,5-dihydroisoquinolino[2,1-a]quinazolin-6-one (3x): 90% (91 mg) yield; white solid; mp 219–222 °C; $R_f = 0.38$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 7.93 (d, *J* = 2.3 Hz, 1H), 7.70 (s, 1H), 7.37 (t, *J* = 4.5 Hz, 1H), 7.26-7.21 (m, 3H), 7.15-7.12 (m, 1H), 6.58 (s, 1H), 6.43 (s, 1H), 6.32 (d, *J* = 8.3 Hz, 1H), 5.63 (d, *J* = 4.5 Hz, 1H), 2.47-2.16 (m, 3H), 1.85-1.65 (m, 5H); ¹³C NMR (75 MHz, DMSO-d₆): δ 161.2, 144.7, 143.7, 136.0, 134.8, 132.5, 131.1, 129.6, 129.5,

128.7, 128.4, 126.5, 123.9, 120.1, 119.1, 115.6, 111.5, 67.4, 25.9, 24.6, 22.6, 22.1; IR (KBr): v_{max} 3480, 3170, 3041, 2924, 1667, 1602, 1475, 1355, 1240, 1006, 806, 752, 528; HRMS calcd for C₂₉H₂₀BrN₂O (M⁺+H) 407.0758, found 407.0750; 97:03 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 298 nm; t_{minor} = 10.24, t_{major} = 21.46; [α]_D^{28.4} = -272.6 (c = 0.33, CHCl₃).

(*S*)-8-bromo-12-cyclohexyl-4b,5-dihydroisoquinolino[2,1-a]quinazolin-6-one (3y): 84% (83 mg) yield; white solid; mp 250–252 °C; $R_f = 0.37$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 8.44 (d, *J* = 2.08 Hz, 1H), 8.09 (d, *J* = 7.7 Hz, 1H), 7.75 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.63-7.58 (m, 1H), 7.52-7.48 (m, 3H), 7.18-7.21 (m, 2H), 5.44 (d, *J* = 6.4 Hz, 1H), 2.17-2.09 (m, 1H), 1.77-1.50 (m, 5H), 1.35-0.91 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ 160.4, 144.9, 137.0, 136.6, 133.0, 132.2, 131.7, 129.3, 124.8, 122.5, 120.9, 118.9, 116.4, 62.0, 40.5, 34.1, 33.5, 33.1; IR (KBr): v_{max} 3371, 3183, 3065, 2929, 2849, 1681, 1606, 1468, 1357, 1197, 1016, 841, 752, 606, 554 cm⁻¹; HRMS calcd for C₂₂H₂₁N₂ONaBr (M⁺+Na) 431.0734, found 431.0752; 90:10 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 10.3, t_{major} = 14.39; [α]_D^{32.6} = -87.24 (c = 0.5, CHCl₃).

2-(2-(phenylethynyl)phenyl)-2,3-dihydroquinazolin-4(1H)-one (6): 94% (74 mg) yield; yellow solid; mp 86–89 °C; R_f = 0.37 (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 7.90 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.75-7.72 (m, 1H), 7.58-7.55 (m, 1H), 7.51-7.47 (m, 2H), 7.39-7.26 (m, 6H), 6.84 (t, *J* = 8.1 Hz, 1H), 6.64 (d, *J* = 8.1 Hz, 1H), 6.49-6.47 (m, 2H), 4.82 (bs, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 166.3, 146.9, 140.8, 134.1, 131.6, 129.2, 129.1, 129.0, 128.6, 126.6, 122.3, 121.6, 119.4, 115.3, 114.7, 95.4, 85.7, 65.9; IR (KBr): v_{max} 3451, 3121, 2942, 1658, 1612, 1489, 1377, 1155, 754, 691, 539; HRMS calcd for C₂₂H₁₆N₂ONa (M⁺+Na) 347.1160, found 347.1177.

12-phenyl-6H-isoquinolino[**2**,**1-a**]**quinazolin-6-one** (**8**): 20% (16 mg) yield; yellow solid; mp 122-126 °C; $R_f = 0.37$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 8.96 (d, J = 7.9, Hz, 1H), 8.30 (d, J = 7.6, Hz, 1H), 7.75-7.58 (m, 3H), 7.40-7.37 (m, 6H), 7.18 (t, J = 7.4 Hz, 1H), 7.03 (s, 1H), 6.92 (d, J = 8.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 168.1, 138.5, 137.0, 133.5, 130.6, 129.4, 129.1, 128.8, 128.2, 127.7, 127.2, 126.8, 126.4, 126.0, 122.1, 117.8; IR (KBr): v_{max} 3057, 2923, 2853, 1652, 1628, 1597, 1516, 1448, 1339, 1132, 1025, 760, 702; HRMS calcd for C₂₂H₁₅N₂O (M⁺+H) 323.1184, found 323.1176.

(S)-8-phenyl-12-p-tolyl-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (9a): To a 25 mL round bottom flask a solution of **31** (0.050 g, 0.1179 mmol) in DMF and water 2 mL (5:1) was added K₂CO₃ (0.041 g, 0.2947 mmol) and purged with nitrogen for 30 minutes. To the above flask benzene boronic acid (0.028 g, 0.2358 mmol) and PdCl₂(PPh₃)₂ (0.008 g, 0.01179 mmol) were introduced under nitrogen atmosphere at room temperature. The reaction mixture was warmed to 80 °C and stirred for 2 h. The reaction mixture was cooled to room temperature and filtered through a short SiO_2 pad and the filterate was extracted with DCM followed by water workup to remove DMF. The residue was purified by column chromatography by using hexane/ethyl acetate (70/30) as eluent to afford 9a (0.047 g, 95%) as a pure product. yellow solid; mp 254-256°C; $R_f = 0.34$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, DMSO-d₆): δ 9.17 (s, 1H), 7.93 (s, 1H), 7.72 (d, J = 6.9 Hz, 2H), 7.46 (d, J = 7.9 Hz, 3H), 7.27-7.37 (m, 10H), 6.19 (d, J = 7.9 Hz, 1H), 5.70 (m, 1H), 2.34 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆): δ 161.7, 143.3, 141.8, 138.9, 132.2, 132.1, 131.9, 131.5, 131.4, 131.2, 129.8, 128.8, 128.7, 128.3, 127.9, 126.9, 125.9, 125.7, 125.6, 124.9, 123.3, 117.1, 67.2, 20.9.; IR (KBr): v_{max} 3417, 3189, 3053, 2920, 1673, 1606, 1478, 1356, 1262, 1184, 1114, 816, 751, 695, 604, 515, 455, 405 cm⁻¹; HRMS calcd for $C_{29}H_{23}N_2O$ (M⁺ + H) 415.1810, found 415.1816; 97:03 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 286 nm; $t_{minor} = 15.90$, $t_{major} = 25.68$; $[\alpha]_D^{29.1} = -34.0$ (c = 0.5, CHCl₃).

(*R*)-methyl 3-(8-bromo-6-oxo-12-p-tolyl-4bH-isoquinolino[2,1-a]quinazolin-5(6H)-yl)propanoate (9b): To a solution of 3l (0.050 g, 0.1179 mmol) in DMF (2 mL) were added methyl acrylate (0.012 g, 0.1415 mmol) and K₂CO₃ (0.040 g, 0.2947 mmol). After the reaction mixture was stirred for 1h at room temperature, the reaction mixture was extracted with DCM followed by water workup to remove DMF. the organic layer was washed with brine, dried and concentrated in vacuo. The residue was purified by column chromatography by using CH₂Cl₂/MeOH (98/02) as eluent to afford **9c** (0.046 g, 91%) as a pure product. white solid; mp 108-110°C; $R_f = 0.38$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 8.00-7.96 (m, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.28-7.22 (m, 5H), 7.11-7.01 (m, 3H), 6.03 (d, J = 9.0 Hz, 1H), 5.84 (s, 1H), 4.68-4.60 (m, 1H), 3.68 (s, 3H), 3.43-3.33 (m, 1H), 3.08-2.97 (m, 1H), 2.87-2.78 (m, 1H), 2.40 (s, 3H).; ¹³C NMR (75 MHz, CDCl₃): δ 172.1, 161.3, 142.9, 142.5, 139.7, 135.6, 132.7, 131.8, 131.7, 130.5, 129.9, 128.5, 128.1, 125.9, 125.8, 122.9, 119.4, 118.4, 115.9, 112.6, 73.7, 51.9, 43.0, 33.3, 21.3.; IR (KBr): v_{max} 3451, 3022, 2922, 1735, 1658, 1600, 1474, 1435, 1368, 1312, 1208, 1132, 1027, 899, 818, 753, 583, 529, 455 cm⁻¹; HRMS calcd for $C_{27}H_{24}BrN_2O_3$ (M⁺ + H) 503.0970, found 503.0982; 97:03 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 309 nm; $t_{minor} = 17.73$, $t_{major} = 14.57$; $[\alpha]_D^{29.1} = -145.8$ (c = 0.5, CHCl₃).

(*S*)-8-(phenylethynyl)-12-p-tolyl-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (9c): To a 25 mL round bottom flask a solution of 3l (0.050 g, 0.1179 mmol) in DCE (2 mL) was added Et₃N (0.047 g, 0.4716 mmol) and purged with nitrogen for 30 minutes. To the above flask a solution of Phenyl acetylene (0.018 g, 0.1697 mmol) was added. Catalysts PdCl₂(PPh₃)₂ (0.004 g, 0.00589 mmol) and CuI (0.001 g, 0.00354 mmol) were introduced into the flask under nitrogen atmosphere at room temperature. The reaction mixture was warmed to 70 °C and stirred for 12 h. The reaction mixture was cooled to room temperature and filtered through a short SiO₂ pad and the filtrate was concentrated. The residue was purified by column chromatography by using CH₂Cl₂/MeOH (98/02) as eluent to afford **9b** (0.044 g, 84%) as a pure product. yellow solid; mp 186-188°C; $R_f = 0.35$ (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300

MHz, CDCl₃): δ 8.56 (1H, s), 7.95 (d, J = 3.0 Hz, 1H), 7.68-7.44 (m, 7H), 7.31-7.18 (m, 6H), 7.05 (dd, J = 8.3, 2.3 Hz, 1H), 6.89 (s, 1H), 6.08 (d, J = 8.3 Hz, 1H), 5.88 (d, J = 4.5 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 162.9, 143.1, 141.8, 139.5, 135.8, 132.1, 131.9, 131.3, 130.5, 129.8, 128.6, 128.5, 128.4, 128.2, 128.0, 126.2, 125.4, 123.6, 119.5, 114.8, 112.8, 68.1, 21.3.; IR (KBr): v_{max} 3174, 3051, 2922, 2856, 1677, 1600, 1470, 1351, 1275, 1179, 1116, 1025, 893, 810, 750, 711, 531, 446 cm⁻¹; HRMS calcd for C₃₁H₂₃N₂O (M⁺ + H) 439.1810, found 439.1816; 97:03 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; $\lambda = 313$ nm; t_{minor} = 15.39, t_{major} = 24.18; $[\alpha]_D^{29.1} = -93.9$ (c = 0.5, CHCl₃).

(*S*)-8,13-dibromo-12-phenyl-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (9d): To a solution of 3a (0.050 g, 0.1219 mmol) in DCE (2 ml) were successively added ⁱPr₂NH (0.025 g, 0.2438 mmol) and NBS (0.033 g, 0.1828 mmol) at 0° C. After the reaction mixture was stirred for 1 h at room temperature, the reaction was quenched by addition of saturated solution of NaHCO₃ at 0° C. The crude reaction mixture was extracted with EtOAc and the combined organic extracts were washed with brine, dried and concentrated in vacuo. The residue was purified by column chromatography by using CH₂Cl₂/MeOH (98/02) as eluent to afford **9d** (0.045 g, 76%) as a pure product. solid; mp 178-180°C; R_f = 0.36 (CH₂Cl₂/MeOH = 98/02); ¹H NMR (300 MHz, CDCl₃): δ 8.02 (t, *J* = 2.3 Hz, 1H), 7.73-7.55 (m, 3H), 7.50-7.31 (m, 6H), 7.10 (dd, *J* = 9.1, 2.3 Hz, 1H), 6.8 (s, 1H), 6.22 (d, *J* = 9.1 Hz, 1H), 6.10 (d, *J* = 3.0 Hz, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ 162.8, 142.9, 141.8, 135.9, 134.6, 131.9, 130.6, 129.3, 129.1, 128.7, 128.2, 126.3, 125.5, 123.6, 119.6, 115.4, 113.1, 68.0; IR (KBr): 3297, 2924, 2854, 1726, 1685, 1595, 1465, 1363, 1278, 1196, 1174, 1127, 1073, 885, 813, 758, 667, 577, 543, 499, 417 ν_{max} cm⁻¹; HRMS calcd for C₂₂H₁₅Br₂N₂O (M⁺ + H) 325.1340, found 325.1344; 96:04 e.r.; HPLC conditions: OD-H, n-hexane/2-propanol = 80/20, flow rate 0.5 mL/min; λ = 307 nm; t_{minor} = 13.49, t_{major} = 20.24; [α]_D^{29.1} = + 16.3 (c = 0.5, CHCl₃).

4. Mechanistic Studies

To gain insight into the mechanism we synthesized aminal 6, by the *p*-TSA catalyzed reaction of 1a with 2b, in 94% yield (Scheme 2a). The intramolecular hydroamination was then studied using 5 mol% Ph₃PAuMe in DCE at rt. However, product **3b** was detected only in trace amount though reaction mixture was stirred for 24 h. Very interestingly, the addition of 5 mol% 4c in the same reaction mixture gave 3b in 92% yield. These results unambiguously suggests that gold phosphate 7 was the actual hydroamination catalyst (Scheme 2b).^{4f} The existence of gold phosphate 7 was further confirmed by ³¹P NMR analysis studies.¹³ It also possible that the gold phosphate 7, generated in situ, might be responsible for the enantioselective condensation. To ascertain the above possibility, the reaction was conducted between 1a and 2b in the presence of pre-generated gold phosphate. However, under the standard condition 3b was obtained only with moderate e.r. (Scheme 2c). On the other hand, 3b was obtained with excellent e.r. when the reaction was conducted in sequential manner (Scheme 2d). This led us to conclude that the condensation process is catalyzed by only 4c and not by the chiral gold phosphate 7. In short, the overall reaction presumably proceeds via the formation of chiral aminals, by the reaction between 1a and 2b under the catalysis of 4c, which after intramolecular hydroamination catalyzed by gold phosphate 7 afforded fused 1,2-dihydroisoquinolines. The compound **3b** (92:08 e.r.) was subjected to the AuCl catalysis under the standard conditions under prolonged heating at elevated temperature no significant racemisation took place and the 3b was isolated in 91:09 e.r. along with the dehydrogenation product 8 in 20% yield (Scheme 2e). These results clearly indicate high configurational stability of the fused 1,2dihydroisoquinolines synthesized in this studies. On the other hand, optically active aminal 6 (93:07 e.r.) when subjected to AuCl catalysis, a complete racemisation occurred in just 15 hours.

Scheme 2. Control experiments.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

. To definitely demonstrate the role of **7** as the actual gold catalyst the experiment between **1a** and **2b** using **7** (2 mol%) and **4c** (3 mol%) was performed under the standard reaction conditions. An exactly identical results to that described in Scheme **2d** were obtained indicating the clear role of **7**. The gold phosphate **7** is fully characterized and spectral images of ¹H NMR, ¹³C NMR and ³¹P NMR are provided in section **6** and **8** of this ESI.¹⁵

Characterization data for gold phosphate 7:

¹H NMR (500 MHz, CDCl₃): δ 8.30 (s, 2H), 7.96-7.93 (m, 8H), 7.74 (t, J = 7.9 Hz, 4H), 7.60 (t, J = 7.9 Hz, 2H), 7.54 (t, J = 7.9 Hz, 3H), 7.74 (t, J = 6.9 Hz, 5H), 7.27-7.38 (m, 10H), 7.10 (t, J = 6.9 Hz, 2H), 6.89-7.03 (m, 7H); ¹³C NMR (125 MHz, CDCl₃): δ 148.2 (d, J = 9.9 Hz), 134.1(d, J = 13.6 Hz), 133.5, 132.9, 132.8, 131.7, 131.6, 131.4, 131.2, 131.0, 130.9, 130.5, 128.9, 128.8, 128.2 (d, J = 20.1 Hz), 127.5 (d, J = 13.6 Hz), 126.9 (d, J = 11.8 Hz), 126.4, 125.7, 124.9, 124.7, 123.1; ³¹P NMR (162 MHz, CDCl₃): δ 8.9, 27.9. HRMS calcd for C₆₆H₄₄AuO₄P₂ [M⁺ + H] 1158.9592 found 1158.9574.

¹⁵ Such type of gold(I) phosphate complexes has recently been reported, see: M. Raducan, M. Moreno, C. Bour, A. M. Echavarren *Chem. Commun.* **2012**, *48*, 52-54.

5. Diversification of Products

As can be judged from following scheme that various metal-catalyzed or electrophile-induced reactions can be performed for diversification of the fused-quinolines without disturbing the enantioselectivity of the products.

 $\begin{array}{l} \mbox{Reaction Conditions: a) $PhB(OH)_2$, K_2CO_3, $PdCl_2(PPh_3)_2$, $DMF:H_2O$, $75^{\circ}C$, 2 h. b) methyl acrylate, K_2CO_3, DMF, rt, 2 h. c) phenyl acetylene, $PdCl_2(PPh_3)_2$, $Cul, Et_3N, DCE, $70^{\circ}C$, 6 h. d) NBS, $$$'Pr_2NH$, DCE, $0^{\circ}C$ to rt, 2 h. \\ \end{array}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

6. ¹H NMR and ¹³C NMR Spectra of Compounds

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

.

-

¹H NMR (CDCI₃, 300 MHZ)

3t

Me

7. HPLC Chromatograms

Peak#	Ret. Time	Area	Area %
1	13.36	76084	2.30
2	29.02	3237416	97.70
Total		3313501	100.00

3b

PDA Ch2 309nm 1nm

Peak#	Ret. Time	Area	Area %
1	16.86	602399	10.16
2	26.09	5323924	89.84
Total		5926322	100.00

1 PDA Multi 2/309nm 1nm PDA Ch2 309nm 1nm

Peak#	Ret. Time	Area	Area %
1	16.90	1531365	50.01
2	27.47	1530467	49.99
Total		3061832	100.00

Peak#	Ret. Time	Area	Area %
1	16.54	448202	18.67
2	26.37	1951825	81.33
Total		2400027	100.00

1 PDA Multi 2/309nm 1nm PDA Ch2 309nm 1nm

Peak#	Ret. Time	Area	Area %
1	17.15	2707213	50.60
2	30.16	2642672	49.40
Total		5349884	100.00

DA Ch2 Ju			
Peak#	Ret. Time	Area	Area %
1	14.52	549553	7.00
2	18.46	7300753	93.00
Total		7850306	100.00
	Peak# 1 2 Total	Peak# Ret. Time 1 14.52 2 18.46 Total 1	Peak# Ret. Time Area 1 14.52 549553 2 18.46 7300753 Total 7850306

1 PDA Multi 2/304nm 1nm

PDA	Ch2	304nm	1nm	

Peak#	Ret. Time	Area	Area %
1	11.03	712417	50.77
2	12.82	690695	49.23
Total		1403112	100.00

1 PDA Multi 2/309nm 1nm PDA Ch2 309nm 1nm

Peak#	Ret. Time	Area	Area %
1	12.45	2420855	49.97
2	13.74	2423992	50.03
Total		4844846	100.00

Peak#	Ret. Time	Area	Area %
1	12.43	61659	2.19
2	13.59	2757290	97.81
Total		2818949	100.00

1 PDA Multi 2/309nm 1nm

PDA	Ch2	309nm	lnm
-			Contract of the Association of the Association of the

Peak#	Ret. Time	Area	Area %
. 1	12.88	2144359	50.60
2	23.25	2093158	49.40
Total		4237517	100.00

1 PDA Multi 2/309nm 1nm

PDA	Ch2	309nm	1nm	

Peak#	Ret. Time	Area	Area %
1	11.30	2295585	50.28
2	32.38	2269579	49.72
Total		4565163	100.00

PDA Ch2 309nm 1nm

Peak#	Ret. Time	Area	Area %
1	11.54	37603	3.15
2	34.25	1155517	96.85
Total		1193120	100.00

Peak#	Ret. Time	Area	Area %
1	12.50	601841	10.42
2	22.38	5172305	89.58
Total		5774146	100.00

Peak#	Ret. Time	Area	Area %
1	16.67	6229702	49.92
2	26.63	6250507	50.08
Total		12480209	100.00

1 PDA Multi 2/309nm 1nm PDA Ch2 309nm 1nm

Peak#	Ret. Time	Area	Area %
1	12.03	1906063	49.90
2	16.44	1913464	50.10
Total		3819527	100.00

Peak#	Ret. Time	Area	Area %
1	10.89	40655	2.35
2	18.60	1690200	97.65
Total		1730856	100.00

Peak#	Ret. Time	Area	Area %
1	11.45	2838736	49.75
2	18.47	2867311	50.25
Total		5706047	100.00

PDA Ch2	298nm	lnm	
Dook#	Dat	Time	

Peak#	Ret. Time	Area	Area %
1	11.46	683130	6.29
2	18.44	10177757	93.71
Total		10860887	100.00

113

1 PDA Multi 2/309nm 1nm

PDA	Ch2	309nm	lnm	
				_

Peak#	Ret. Time	Area	Area %
1	14.87	1207794	49.48
2	18.45	1232982	50.52
Total		2440776	100.00

Реак#	Ret. Time	Area	Area %
1	14.57	9007430	97.17
2	17.73	262462	2.83
Total		9269893	100.00

1 PDA Multi 2/300nm 1nm PDA Ch2 300nm 1nm

Peak#	Ret. Time	Area	Area %
1	13.49	484000	49.42
2	20.27	495439	50.58
Total		979438	100.00

Br ch2 Soonn min				
Peak#	Ret. Time	Area	Area %	
1	13.49	304397	3.92	
2	20.24	7470002	96.08	
Total		7774400	100.00	

8. ³¹P NMR Studies

To a CDCl₃ solution of phosphoric acid **4c** (7.4 mg, 0.0105 mmol) in NMR tube, PPh₃AuMe (5 mg, 0.0105 mmol) was added and kept under sonication for five minutes. Then ³¹P NMR recorded on 400 MHz spectrometer.

a) PPh₃AuMe in CDCl₃

- b) Equimolar mixture of PPh_3AuMe and 4c in $CDCl_3$
- c) Phosphoric acid 4c in CDCl₃