A General Enamine Mediated Alkylation of α-Substituted Aldehydes.

Andrea Gualandi, Diego Petruzziello, Enrico Emer and Pier Giorgio Cozzi*

Dipartimento di Chimica "G. Ciamician" ALMA MATER STUDIORUM Università di Bologna, Via Selmi 2, 40126 Bologna, Italy Fax: (+)39-051-2099456; Tel 0039-051-2099511,

E-mail: piergiorgio.cozzi@unibo.it; Homepage: www.unibo.it

Table of contents:

General Methods	S2
Preparation and description of Cinchona catalysts	S2
Preparation of aldehyde 11	S 3
Screenig test	S3-S7
Enantioselective α -alkylation of aldehydes	S 7
Description of products 3a-l	S7-S11
Protection of hydroxyl group	S11
Alkylation of benzodithiol	S12
Reductive removal of benzothiol group	S12
Oxidative removal of benzothiol group	S13
References	S13
Copy of NMR spectra of products IV-V	S15-S16
Copy of NMR spectra of 11	S17
Copy of NMR spectra of products 3a-l	S18-S29
Copy of NMR spectra of products 4a, 5a, 6a, 7a	S30-S33
Copy of HPLC traces of products 3a-l and 6a	S34-S46

General Methods. ¹H NMR spectra were recorded on Varian Gemini 200 and Varian Mercury 400 spectrometers. Chemical shifts are reported in ppm from TMS with the solvent resonance as the internal standard (deuterochloroform: δ = 7.27 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = duplet, t = triplet, q = quartet, bs = broad singlet, m = multiplet), coupling constants (Hz). ¹³C NMR spectra were recorded on Varian Gemini 200 and Varian Mercury 400 spectrometers. Chemical shifts are reported in ppm from TMS with the solvent as the internal standard (deuterochloroform: δ = 77.0 ppm). Chromatographic purification was done with 240-400 mesh silica gel. Determination of enantiomeric ratio was performed on Agilent Technologies 1200 instrument equipped with a variable wave-length UV detector, using a Daicel Chiralpak columns (0.46 cm I.D. x 25 cm) and HPLC grade isopropanol and *n*-hexane were used as the eluting solvents. Optical rotations were determined in a 1 mL cell with a path length of 10 mm (Na_D line), specific rotation was expressed as deg cm³g⁻¹dm⁻¹ and concentration as gcm⁻³. Melting points were determined with Bibby Stuart Scientific Melting Point Apparatus SMP 3 and are not corrected. Materials: All reactions were carried out under inert gas and under anhydrous conditions. Anhydrous solvents were supplied by Aldrich in Sureseal® bottles and used avoiding purification.

Aldehydes **1a** and **1j** are commercially available. Aldehydes **1b-f** and **1i** were prepared according to reported methodologies. The analytical data for **1b**, **1c**, **1f**, **1h**, **1d**, **21e**, **31i**, were consistent with the literature. **1g** was prepared according to literature.

Preparation of *Cinchona* **catalysts:** catalyst **I-III** and **VI-VII**, were prepared according to the literature procedure. Followed by Connon method. The analytical data for **I**, **II**, **II**, **VII**, and were consistent with the literature.

IV (45%); The desired product was isolated by flash column chromatography (CH₂Cl₂/CH₃OH/NH₄OH = 95/5/1) as sticky solid; $[\alpha]_D^{20}$ +79.6 (*c* 1.3 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 0.96 (t, J = 7.3 Hz, 3H), 1.40-1.49 (m, 3H), 1.53-1.60 (m, 3H), 1.76-1.84 (m, 3H), 2.12 (bs, 3H), 2.27 (q, J = 7.9 Hz, 1H), 2.90-3.08 (m, 7H), 4.74 (m, 1H), 5.05 (dt, J = 1.4 Hz, J = 8.3

Hz, 1H), 5.09 (m, 1H), 5.86 (ddd, J = 7.0 Hz, J = 10.9 Hz, J = 17.4 Hz, 1H), 7.47 (bs, 1H), 7.51 (ddd, J = 1.4 Hz, J = 7.0 Hz, J = 8.2 Hz, 1H), 7.67 (ddd, J = 1.3 Hz, J = 6.9 Hz, J = 8.2 Hz, 1H), 8.07 (dd, J = 1.1 Hz, J = 8.3 Hz, 1H), 8.27 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃, 25°C): $\delta = 13.9$, 22.7, 25.0, 26.6, 27.6, 32.2, 39.1, 39.6, 47.4, 49.5, 114.5, 119.7, 123.0, 125.4, 125.2, 128.1, 129.7, 140.5, 148.3, 148.7, 162.9; HMRS found M⁺, 349.25151; C₂₃H₃₁N₃ requires: 349.25180.

V (51%); The desired product was isolated by flash column chromatography (CH₂Cl₂/CH₃OH/NH₄OH = 95/5/1) as white solid; mp 54 °C (from MeOH); $[\alpha]_D^{20}$ +129.6 (c 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 0.94-1.02 (m, 1H), 1.16-1.21 (m, 2H), 1.53-1.60 (m, 2H), 2.23-2.30 (m, 3H), 2.94-

3.11 (m, 5H), 4.83 (d, J = 8.1 Hz, 1H), 5.08 (dt, J = 1.6 Hz, J = 10.6 Hz, 1H), 5.10-5.12 (m, 1H), 5.88 (ddd, J = 6.8 HZ, J = 10.6 Hz, J = 17.2 Hz, 1H), 7.44-7.49 (m, 1H), 7.52-7.59 (m, 3H), 7.73 (ddd, J = 1.2 HZ, J = 6.9 Hz, J = 8.4 Hz, 1H), 8.11 (bs, 1H), 8.19-8.23 (m, 3H), 8.32 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃, 25°C): $\delta = 24.9$, 25.3, 26.6, 27.6, 39.6, 47.4, 49.4, 50.4, 114.5, 117.5, 123.0, 126.0, 126.7, 127.5, 128.7, 129.1, 129.2, 130.6, 139.6, 140.5, 148.6, 149.5, 157.1; HMRS found M⁺, 369.22019; C₂₅H₂₇N₃ requires: 369.22050.

Preparation of aldehyde 11: Following the procedure of Vedejes et al. 12 A mixture of 2-naphthalenethiol (3.6 mmol, 581 mg) and methacrolein (3.6 mmol, 300 μ L) was refluxed with triethylamine (0.5 mL) for 3h. Solvent was

removed under reduce pressure. Flash chromatography (cyclohexane/ethyl acetate, 95/5) of the residue give **11** (571 mg, 69%) as sticky solid; ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 1.29 (d, J = 7.3 Hz, 3H), 2.7 (m, 1H), 3.00 (dd, J = 6.8 Hz, J = 13.2 Hz, 1H), 3.00 (dd, J = 6.4 Hz, J = 13.2 Hz, 1H), 7.42-7.50 (m, 3H), 7.73-7.79 (m, 4H), 9.71 (d, J = 1.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25°C): δ = 13.5, 34.5, 45.8, 125.9, 126.6, 127.1, 127.7, 128.0, 128.7, 132.0, 132.9, 133.7, 202.8; HMRS found M⁺, 230.07610; C₁₄H₁₄OS requires: 230.07654.

Screening test

Table S1. Catalyst effect^a

Entry	Catalyst	Acid (mol%)	Solvent	er
1	I	(-)-CSA (40)	CH ₃ CN/H ₂ O 1/1	92:8
2	II	(-)-CSA (40)	CH ₃ CN/H ₂ O 1/1	89.5:10.5
3	III	(-)-CSA (40)	CH ₃ CN/H ₂ O 1/1	90.5:9.5
4	IV	(-)-CSA (40)	CH ₃ CN/H ₂ O 1/1	90:10
5	V	(-)-CSA (40)	CH ₃ CN/H ₂ O 1/1	84.5:15.5
6	VI	(-)-CSA (40)	CH ₃ CN/H ₂ O 1/1	11:89
7	VII	(+)-CSA (40)	CH ₃ CN/H ₂ O 1/1	21.5:78.5
8	VIII	(+)-CSA (20)	CH ₃ CN/H ₂ O 1/1	50:50
9	IX	(+)-CSA (20)	CH ₃ CN/H ₂ O 1/1	57:43
10	X	PNBA ^b (20)	CH₃CN	57:43
11	X	PNBA ^b (20)	CH ₃ CN/H ₂ O 1/1	47:53
12	X	-	CH ₃ CN/H ₂ O 1/1	44:56
13	XI	-	CH ₃ CN/H ₂ O 1/1	47:53
14	XI	-	CH ₃ CN	50:50
15	XII	(-)-CSA (20)	CH ₃ CN/H ₂ O 1/1	48.5:51.5
16	-	(-)-CSA (20)	CH ₃ CN/H ₂ O 1/1	50:50
17	XIII	(-)-CSA (20)	CH ₃ CN/H ₂ O 1/1	60:40

^a The reactions were performed at 0°C with 1 equiv. of **2**, 3 equiv. of aldehyde **1a** in the presence of 20 mol% of catalysts **I-XIII**, with 2 equiv. of NaH₂PO₄ and 20 mol% o 40% mol of acid as a co-catalyst in 500 μL of solvent at 0°C. The reactions were run until completion, as determined by TLC (16–24 h). ^b p-nitrobenzoic acid.

Table S2. Base effect^a

Entry	Catalyst	Solvent	Base	er
1	I	CH_2Cl_2	Imidazole	50:50
2	VI	CH ₃ CN/H ₂ O 1/1	Na_2HPO_4	59:41
3	VI	CH ₃ CN/H ₂ O 1/1	NaHCO ₃	55.5:44.5

 $[^]a$ The reactions were performed at 0°C with 1 equiv. of 2, 3 equiv. of aldehyde 1a in the presence of 20 mol% of catalysts I-VI, with 2 equiv. of base and 40% mol of (-)-CSA as a co-catalyst in 500 μL of solvent. The reactions were run until completion, as determined by TLC (16–24 h).

Table S3. Solvent effect^a

Entry	Catalyst	Solvent	er
1	I	CH_2Cl_2	31.5:68.5
2	VI	Toluene/CH ₃ CN 5/1	46.5:53.5
3	VI	Hexane/CH ₃ CN 5/1	50:50
4	I	CH ₃ CN	83:17
5	I	H_2O	72.5:27.5
6	I	CH ₃ CN/H ₂ O 1/1	92:8
7	I	CH ₃ CN/H ₂ O 9/1	92:8
8	I	CH ₃ CN/H ₂ O 1/9	89:11
9	I	[Bmim]OTf	28.5:71.5
10	I	$C_2H_5CN/H_2O 1/1$	86.5:13.5
11	I	CH ₃ CN/D ₂ O 1/1	90:10
12	I	Dioxane/H ₂ O 1/1	81.5:18.5
13	I	THF/H ₂ O 1/1	78.5:21.5
14	I	DME/H ₂ O 1/1	73.5:26.5
15	I	TBME/H ₂ O 1/1	84:16
16	I	Toluene/H ₂ O 1/1	71:29
17	I	DMF/H ₂ O 1/1	89:11
18	I	DMSO	54:46
19	I	DMSO/H ₂ O 1/1	82.5:17.5

^a The reactions were performed at 0°C with 1 equiv. of **2**, 3 equiv. of aldehyde **1a** in the presence of 20 mol% of catalysts **I-VI**, with 2 equiv. of NaH₂PO₄ and 40% mol of (-)-CSA as a co-catalyst in 500 μL of solvent. The reactions were run until completion, as determined by TLC (16–24 h).

Table S4. Temperature effect^a

Entry	Catalyst	T (°C)	er
1	I	0	92:8
2	I	25	90.5:9.5
3	VI	0	11:89
4	VI	-13	11.5:88.5

^a The reactions were performed with 1 equiv. of **2**, 3 equiv. of aldehyde **1a** in the presence of 20 mol% of catalysts **I-VI**, with 2 equiv. of NaH₂PO₄ and 40% mol of (-)-CSA as a co-catalyst in 500 μL of CH₃CN/H₂O 1/1. The reactions were run until completion, as determined by TLC (16–24 h).

Table S5. Acid effect^a

Entry	Catalyst (mol%)	Acid (mol%)	er
1	I (20)	Benzioc acid (40)	63:37
2	I (20)	PNBA ^b (40)	68.5:31.5
3	VI (20)	<i>N</i> -Boc- <i>L</i> -His (40)	14:86
4	VI (20)	<i>N</i> -Boc- <i>D</i> -Phe (40)	12.5:87.5
5	VI (20)	<i>N</i> -Boc- <i>L</i> -Phe (40)	13.5:86.5
6	VI (20)	L-Tartaric acid (40)	39:61
7	VI (20)	(R)-Mandelic acid (40)	35:65
8	VI (20)	PTSA (40)	14:86
9	VI (20)	(+)-Canforic acid	12.5:87.5
10	VI (20)	XIV (40)	50:50
11	VI (20)	TfOH (40)	12:88
12	I (20)	(-)-CSA (40)	91:9
13	I (20)	(+)-CSA (40)	92:8
14	VI (20)	-	13:87
15	VI (20)	(-)-CSA (20)	15.5:84.5
16	VI (20)	(-)-CSA (40)	11:89
17	VI (20)	(-)-CSA (80)	12.5:87.5
18	VI (20)	(+)-CSA (40)	17.5:82.5
19	VII (20)	(+)-CSA (40)	21.5:78.5
20	VII (20)	XIV (40)	44:56
21	III (20)	HCl (40) ^c	91:9
22	III (20)	(-)-CSA (40)	90.5:9.5

^a The reactions were performed at 0°C with 1 equiv. of **2**, 3 equiv. of aldehyde **1a** in the presence of 20 mol% of catalysts **I-IV**, with 2 equiv. of NaH₂PO₄ and different amount of acid as a co-catalyst in 500 μ L of CH₃CN/H₂O 1/1. The reactions were run until completion, as determined by TLC (16–24 h). ^b *p*-nitrobenzoic acid. ^c Aqueous solution.

Table S6. Concentration effect^a

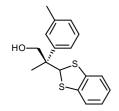
Entry	Catalyst (mol%)	Acid (mol%)	Note	er
1	I (5)	(-)-CSA (10)	-	87:13
2	I (20)	(-)-CSA (40)	10 eq. di aldehyde	86:14
3	I (20)	(-)-CSA (40)	[Carbocation] = 0.1 M	92:8
4	I (20)	(-)-CSA (40)	[Carbocation] = 0.05 M	90.5:9.5
5	I (20)	(-)-CSA (40)	[Carbocation] = 0.2 M	91:9

The reactions were performed at 0° C with 1 equiv. of **2**, 3 equiv. of aldehyde **1a** in the presence of catalysts **I**, with 2 equiv. of NaH₂PO₄ and and (-)-CSA as a co-catalyst in 500 μ L of CH₃CN/H₂O 1/1. The reactions were run until completion, as determined by TLC (16–24 h).

Enantioselective α-alkylation of aldehydes

General procedure: A vial was charged with I (0.02 mmol, 6 mg), (-)-CSA (0.04 mmol, 9 mg), acetonitrile (0.25 mL) and water (0.25 mL). The mixture was cooled at 0°C, 1,3-benzodithiolylium tetrafluoroborate 2 (0.1 mmol, 24 mg), NaH₂PO₄ (0.2 mmol, 24 mg) and 1a (0.3 mmol, 40 μ L) were added. The mixture was stirred for 24 hours at the same temperature and a saturated solution of NaHCO₃ (1 mL) was added and the mixture was diluted with AcOEt (3mL). The organic layer was separated, and the aqueous layer was extracted with AcOEt (2 x 3 mL). The collected organic layers were washed with brine (5 mL), dried over Na₂SO₄ and concentrated under reduce pressure. The residue was diluted in MeOH (1 mL) and NaBH₄ (0.4 mmol, 15 mg) was slowly added at 0 °C. After 30 minutes, silica was added and the solvent was evaporated in vacuo. The residue was purified by flash chromatography (cyclohexane/ethyl acetate = 9/1) to give 3a.

3a (26 mg, 90%); er = 92:8; The desired product was isolated by flash column chromatography (cyclohexane/ethyl acetate = 9/1) as colourless oil; The er was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/i-PrOH


90:10, flow rate 0.50 mL/min, 40°C, $\lambda = 232$, 254 nm: $\tau_{major} = 23.2$ min, $\tau_{minor} = 25.7$ min; $[\alpha]_D^{20} - 7.1$ (c 0.5 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 1.51$ (s, 3H), 3.78 (d, J = 11.1 Hz, 1H), 4.01 (d, J = 11.1 Hz, 1H), 5.64 (s, 1H), 6.93-6.95 (m, 2H), 7.06-7.08 (m, 1H), 7.14-7.16 (m, 1H), 7.29 (dt, J = 1.4 Hz, J = 7.3 Hz, 1H), 7.35-7.40 (m, 2H), 7.43-7.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, 25°C): $\delta = 16.9$, 50.1, 60.6, 68.7, 121.4, 121.6, 125.1, 125.2, 127.2 (2C), 127.3, 128.6 (2C), 138.1, 141.9 (2C); HMRS found M⁺, 288.06401; C₁₆H₁₆OS₂ requires: 288.06426.

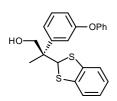
3b (28 mg, 83%); er = 93.5:6.5; The desired product was isolated by flash column chromatography (cyclohexane/ethyl acetate = 9/1) as colourless oil; The er was determined by HPLC analysis Daicel Chiralcel IA column: hexane/*i*-PrOH 90:10, flow rate 0.50 mL/min, 40°C, λ = 232, 254 nm: τ_{major} = 30.1 min, τ_{minor} = 27.9 min; $[\alpha]_D^{20}$ -104.2 (*c* 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 1.62

(s, 3H), 3.80 (d, J = 11.2 Hz, 1H), 4.11 (d, J = 11.2 Hz, 1H), 5.78 (s, 1H), 6.92-6.98 (m, 2H), 7.05-7.08 (m, 1H), 7.15-7.17 (m, 1H), 7.49-7.53 (m, 2H), 7.59 (dd, J = 2.1 Hz, J = 11.7 Hz, 1H), 7.82-7.89 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, 25°C): $\delta = 20.0$, 50.3, 60.6, 68.7, 121.5, 121.6, 124.6, 125.1, 125.3, 126.2, 126.8, 127.4, 128.2, 128.3, 132.4, 133.1, 138.0, 138.1, 139.5; HMRS found M⁺, 338.07963; C₂₀H₁₈OS₂ requires: 338.07991.

3c (27 mg, 89%); er = 90.5:9.5; The desired product was isolated by flash column chromatography (cyclohexane/ethyl acetate = 9/1) as colourless oil; The er was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/*i*-PrOH 90:10, flow rate 0.50 mL/min, 40°C, λ = 232, 254 nm: τ_{major} = 15.7 min, τ_{minor} =

17.8 min; $[\alpha]_D^{20}$ -108.7 (*c* 1.4 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 1.49 (s, 3H), 2.35 (s, 3H), 3.75 (d, J = 11.3 Hz, 1H), 3.99 (d, J = 11.3 Hz, 1H), 5.65 (s, 1H), 6.94-6.98 (m, 2H), 7.07-7.09 (m, 1H), 7.15-7.18 (m, 1H), 7.19-7.21 (m, 2H), 7.32-7.35 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, 25°C): δ = 16.8, 20.9, 49.8, 60.8, 68.7, 121.4, 121.6, 125.1, 12.0, 129.4, 137.0, 138.1, 138.8; HMRS found M⁺, 302.07969; C₁₇H₁₈OS₂ requires: 302.07991.

3d (26 mg, 85%); er = 92.5:7.5; The desired product was isolated by flash column chromatography (cyclohexane/ethyl acetate = 9/1) as colourless oil; The er was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/i-PrOH 90:10, flow rate 0.50 mL/min, 40° C, $\lambda = 232$, 254 nm: $\tau_{major} = 18.3$ min, $\tau_{minor} = 18.3$


15.7 min; $[\alpha]_D^{20}$ -78.7 (*c* 0.4 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 1.56 (s, 3H), 2.38 (s, 3H), 3.76 (dd, J = 6.8 Hz, J = 11.1 Hz, 1H), 3.99 (dd, J = 5.9 Hz, J = 11.1 Hz, 1H), 5.65 (s, 1H), 6.93-6.99 (m, 2H), 7.06-7.11 (m, 2H), 7.14-7.16 (m, 1H), 7.22-7.29 (m, 3H); ¹³C NMR (25 MHz, CDCl₃, 25°C): δ = 16.9, 21.7, 50.0, 60.7, 68.8, 121.5, 121.6, 124.2, 125.1, 125.2, 127.9, 128.1, 128.5, 138.2, 141.8, 151.0; HMRS found M⁺, 302.07968; C₁₇H₁₈OS₂ requires: 302.07991.

3e (28 mg, 88%); er = 85.5:14.5; The desired product was isolated by flash column chromatography (cyclohexane/ethyl acetate = 9/1) as colourless oil; The er was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/*i*-PrOH 90:10, flow rate 0.50 mL/min, 40°C, λ = 232, 254 nm: τ_{major} = 27.2 min,

τminor = 29.5 min; [α]_D²⁰ -44.8 (c 2.5 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 1.48 (s, 3H), 3.75 (d, J = 11.0 Hz, 1H), 3.81 (s, 3H), 3.97 (d, J = 11.0 Hz, 1H), 5.59 (s, 1H), 6.87-6.92 (m, 2H), 6.94-6.98 (m, 2H), 7.05-7.09 (m, 1H), 7.13-7.19 (m, 1H), 7.34-7.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, 25°C): δ = 17.0, 49.4, 55.2, 61.0, 68.7, 113.9 (2C), 121.4, 121.6, 125.1, 125.2, 128.3 (2C), 133.6, 138.0, 138.1, 158.6; HMRS found M⁺, 318.07459; C₁₇H₁₈O₂S₂ requires: 318.07482.

3f (28 mg, 88%); er = 91.5:8.5; The desired product was isolated by flash column chromatography (cyclohexane/ethyl acetate = 9/1) sticky solid; The er was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/*i*-PrOH 80:20, flow rate 0.50 mL/min, 40°C, λ = 232, 254 nm: τ_{major} = 23.1 min, τ_{minor} =

18.4 min; $[\alpha]_D^{20}$ -47.9 (c 3.7 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 1.46 (s, 3H), 3.72 (d, J = 10.6 Hz, 1H), 3.80 (s, 3H), 3.95 (d, J = 10.6 Hz, 1H), 5.60 (s, 1H), 6.80 (ddd, J = 0.8 Hz, J = 2.5 Hz, J = 8.4 Hz, 1H), 6.90-6.97 (m, 2H), 6.98-7.01 (m, 2H), 7.04-7.07 (m, 1H), 7.12-7.14 (m, 1H), 7.29 (t, J = 8.0 Hz, 1H)6.87-6.92 (m, 2H), 6.94-6.98 (m, 2H), 7.05-7.09 (m, 1H), 7.13-7.19 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 25°C): δ = 16.8, 50.2, 55.2, 60.5, 68.7, 111.8, 114.1, 119.4, 121.4, 121.6, 125.1, 125.2, 129.5, 138.1, 138.2, 143.6, 159.7; HMRS found M⁺, 318.07455; C₁₇H₁₈O₂S₂ requires: 318.07482.

3g (20 mg, 52%); er = 90:10; desired product was isolated by flash column chromatography (cyclohexane/ethyl acetate = 9/1) as colourless oil; The er was determined by HPLC analysis Daicel Chiralcel OF column: hexane/*i*-PrOH 90:10, flow rate 0.50 mL/min, 40°C, λ = 232, 254 nm: τ_{major} = 17.7 min, τ_{minor} =

10.3 min; $[\alpha]_D^{20}$ -49.3 (c 0.6 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 1.46 (s, 3H), 1.59 (bs, 1H), 3.78 (d, J = 11.4 Hz, 1H), 3.99 (d, J = 11.4 Hz, 1H), 5.54 (s, 1H), 6.88 (ddd, J = 1.0 Hz, J = 2.4 Hz, J = 8.9 Hz, 1H), 6.95-6.97 (m, 2H), 6.99-7.02 (m, 2H), 7.07-7.10 (m, 1H), 7.12-7.17 (m, 3H), 7.20 (ddd, J = 1.0 Hz, J = 1.8 Hz, J = 7.9 Hz, 1H), 7.28-7.38 (m, 3H); ¹³C NMR (100 MHz, CDCl₃, 25°C): δ = 17.1, 50.1, 50.0, 60.4, 68.4, 117.4, 118.4, 118.7 (2C), 121.4 (2C), 121.6, 122.1, 123.3, 125.2, 125.3, 129.6, 129.8 (2C), 138.0, 144.0, 157.1, 157.2; HMRS found M⁺, 380.09020; C₂₂H₂₀O₂S₂ requires: 380.09047.

3h (31 mg, 84%); er = 86.5:13.5; The desired product was isolated by flash column chromatography (cyclohexane/ethyl acetate = 9/1) as colourless oil; The er was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/i-PrOH 90:10, flow rate 0.50 mL/min, 40°C, λ = 232, 254 nm: τ_{major} = 21.1 min,

 $τ_{minor}$ = 19.7 min; [α]_D²⁰ -60.2 (c 0.3 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): δ= 1.46 (s, 3H), 3.78 (d, J = 10.8 Hz, 1H), 4.00 (d, J = 10.8 Hz, 1H), 5.53 (s, 1H), 6.94-6.99 (m, 2H), 7.06-7.08 (m, 1H), 7.11-7.14 (m, 1H), 7.32-7.35 (m, 2H), 7.44-7.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, 25°C): δ= 17.1, 49.8, 60.3, 68.2, 125.5, 121.6, 125.2, 125.3, 129.1 (2C), 131.4 (2C), 137.8, 137.9 (2C), 140.8; HMRS: no ionization was observed.

3i (25 mg, 75%); er = 84:16; The desired product was isolated by flash column chromatography (cyclohexane/ethyl acetate = 7/3) as sticky solid; The er was determined by HPLC analysis Daicel Chiralcel IA column: hexane/*i*-PrOH 90:10, flow rate 0.50 mL/min, 40°C, λ = 232, 254 nm: τ_{major} = 27.3 min, τ_{minor} = 29.1

min; $[\alpha]_D^{20}$ -46.4 (c 0.6 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 1.55 (s, 3H), 3.96 (d, J = 10.6 Hz, 1H), 4.09 (d, J = 10.6 Hz, 1H), 5.40 (s, 1H), 6.87-6.91 (m, 2H), 7.00-7.06 (m, 2H), 7.42 (t, J = 8.2 Hz, 1H), 7.83 (ddd, J = 1.0 Hz, J = 1.9 Hz, J = 8.0 Hz, 1H), 8.03 (ddd, J = 1.0 Hz, J = 1.9 Hz, J = 8.0 Hz, 1H), 8.4 (t, J = 2.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25°C): δ = 18.0, 49.7, 59.9, 67.3, 121.4, 121.5, 122.1, 122.8, 125.3, 128.5, 133.8, 137.5 (2C), 143.4, 147.8; HMRS found M⁺, 333.04908; C₁₆H₁₅NO₃S₂ requires: 333.04933.

3j (19 mg, 76%); er = 72:28; The desired product was isolated by flash column chromatography (cyclohexane/ethyl acetate = 95/5) as colourless oil; The er was determined by HPLC analysis Daicel Chiralcel IC column: hexane/*i*-PrOH 98:2,

flow rate 0.50 mL/min, 40°C, $\lambda = 232$, 254 nm: $\tau_{major} = 27.2$ min., $\tau_{minor} = 25.5$ min; $[\alpha]_D^{20}$ -28.0 (c 0.3 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 0.93$ (t, J = 7.3 Hz, 3H), 0.94 (s, 3H), 1.27-1.39 (2H), 1.44-1.49 (m, 2H), 1.61 (bs, 1H), 3.58 (d, J = 11.3 Hz, 1H), 3.66 (d, J = 11.3 Hz, 1H), 5.26 (s, 1H), 6.97-7.01 (m, 2H), 7.16-7.21 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 25°C): $\delta = 14.9$, 17.0, 17.8, 36.8, 41.1, 62.9, 66.4, 121.6 (2C), 125.2, 125.3, 138.1, 138.2; HMRS found M⁺, 254.07971; C₁₃H₁₈OS₂ requires: 254.07991.

3k (24 mg, 78%); er = 73:27; The desired product was isolated by flash column chromatography (cyclohexane/ethyl acetate = 95/5) as colourless oil; The er was determined by HPLC analysis Daicel Chiralcel OJ column: hexane/*i*-PrOH 80:20,

flow rate 1.00 mL/min, 40°C, $\lambda = 232$, 254 nm: $\tau_{major} = 10.6$ min, $\tau_{minor} = 11.9$ min; $[\alpha]_D^{20}$ -24.3 (c 0.5 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 0.91$ (s, 3H), 2.80 (d, J = 13.3 Hz, 1H), 2.85 (d, J = 13.3 Hz, 1H), 3.51 (d, J = 11.1 Hz, 1H), 3.59 (d, J = 11.1 Hz, 1H), 5.20 (s, 1H), 7.00-7.02 (m, 2H), 7.20-7.25 (m, 4H), 7.27-7.32 (m, 3H); ¹³C NMR (100 MHz, CDCl₃, 25°C): $\delta = 17.4$, 39.7, 45.8, 60.9, 65.4, 121.7, 125.2, 125.3 (2C), 126.5, 128.2 (2C), 130.6 (2C), 137.3, 138.2, 138.2; HMRS found M⁺, 302.07913; C₁₇H₁₈OS₂ requires: 302.07991.

3l (30 mg, 79%); er = 66:34; The desired product was isolated by flash column chromatography (cyclohexane/ethyl acetate = 9/1) as sticky solid; The er was determined by HPLC analysis Daicel Chiralcel OJ column: hexane/*i*-PrOH 50:50, flow rate 0.5 mL/min, 40°C, λ = 232, 254 nm: τ_{major} = 29.5 min, τ_{minor} = 37.8 min; $[\alpha]_D^{20}$ -31.3 (*c* 0.5 in CHCl₃); ¹H NMR (400 MHz, CDCl₃,

25°C): δ = 1.06 (s, 3H), 3.28 (d, J = 12.6 Hz, 1H), 3.34 (d, J = 12.6 Hz, 1H), 3.75 (s, 2H), 5.36 (s, 1H), 7.00-7.04 (m, 2H), 7.19-7.21 (m, 2H), 7.43-7.51 (m, 3H), 7.74-7.81 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, 25°C): δ = 17.2, 39.9, 46.8, 59.5, 65.8, 121.6, 121.7, 125.4 (2C), 125.9, 126.7, 127.1, 127.4, 127.5, 127.7, 128.6, 131.9, 133.7, 134.1, 138.1 (2C); HMRS found M⁺, 384.06796; C₂₁H₂₀OS₃ requires: 384.06763.

Protection of hydroxyl group: To a suspension of NaH (1.3 mmol, 52 mg of a 60% suspension in mineral oil) in anhydrous THF (3 mL) a solution of **3a** (0.65 mmol, 187 mg) in THF (1 mL) was slowly added at 0°C. After 30

minutes benzylbromide (1.0 mmol, 116 μ L) was added and the mixture was stirred at room temperature for 18 hours. Water (5 mL) was slowly added and the mixture was diluted with Et₂O (3mL). The organic layer was separated, and the aqueous layer was extracted with Et₂O (2 x 5 mL). The collected organic layers were washed with brine (5 mL), dried over Na₂SO₄ and concentrated under reduce pressure.

Flash chromatography (cyclohexane/ethyl acetate, 9/1) of the residue give **4a** (231 mg, 94%) as colourless oil. [α]_D²⁰ -42.6 (c 0.5 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 1.45 (s, 3H), 3.61 (d, J = 9.2 Hz, 1H), 3.78 (d, J = 9.2 Hz, 1H), 4.48 (s, 2H), 5.70 (s, 1H), 6.88-6.94 (m, 2H), 7.02-7.05 (m, 1H), 7.07-7.10 (m, 1H), 7.22-7.35 (m, 8H), 7.47-7.51 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, 25°C): δ = 17.5, 48.9, 60.8, 73.5, 75.8, 121.4, 121.5, 125.0, 125.1, 127.1 (2C), 127.5 (2C),

127.7 (2C), 128.1 (2C), 128.5 (2C), 138.2, 138.5, 138.6, 142.9; HMRS found M^+ , 378.11092; $C_{23}H_{22}OS_2$ requires: 378.11121.

Alkylation of benzodithiol: A solution of *n*BuLi (0.033 mmol, 206 μ L, 1.6 M in hexanes) was added dropwise to a solution of **4a** (0.3 mmol, 112 mg) in anhydrous in THF (2 mL) at 0°C. The mixture turns to orange colour. After 5

minutes methyl iodide (1.5 mmol, 76 µL) was added and the solution became colourless. The solution was stirred for 5 minutes and then water (1 mL) was added. The organic layer was separated, and the aqueous layer was extracted with Et₂O (2 x 5 mL). The collected organic layers were washed with brine (5 mL), dried over Na₂SO₄ and concentrated under reduce pressure. Flash chromatography (cyclohexane/ethyl acetate = 9/1) of the residue give **5a** (107 mg, 91%) as colourless oil. [α]_D²⁰ -15.7 (c 0.5 in CHCl₃); ¹H NMR (400 MHz, CDCl₃, 25°C): δ = 1.78 (s, 3H), 1.82 (s, 3H), 4.06 (d, J = 9.4 Hz, 1H), 4.26 (d, J = 9.4 Hz, 1H), 4.55 (d, J = 12.4 Hz, 1H), 4.61 (d, J = 12.4 Hz, 1H), 6.95-6.99 (m, 2H), 7.10-7.13 (m, 2H), 7.28-7.35 (m, 8H), 7.49-7.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, 25°C): δ = 22.6, 29.4, 49.4, 73.4, 76.9, 122.1, 122.2, 125.0, 125.1, 127.1, 127.4, 127.5, 127.6 (3C), 128.1 (2C), 128.2 (2C), 136.8, 137.9, 138.1, 141.1; HMRS found M⁺, 392.12656; C₂₄H₂₄OS₂ requires: 392.12686.

Reductive removal of benzodithiol group: To a solution of **5a** (0.08 mmol, 31 mg) in methanol (1 mL), Ni-Raney (0.450 g, slurry in water) was added and the reaction was kept under H₂ atmosphere (1 atm). After 18h the reaction mixture was filtered through a Celite pad and the organic solvent was removed under reduce pressure. The residue was diluted with AcOEt, the organic layer was separated, and the aqueous layer was extracted with AcOEt (2 x 5 mL).

The residual was dissolved in MeOH (5 mL), 10% Pd/C (10 mg) was added and the reaction was kerp under hydrogen atmosphere for 18h. The reaction mixture was filtered through a Celite pad and the organic solvent was removed under reduce pressure.

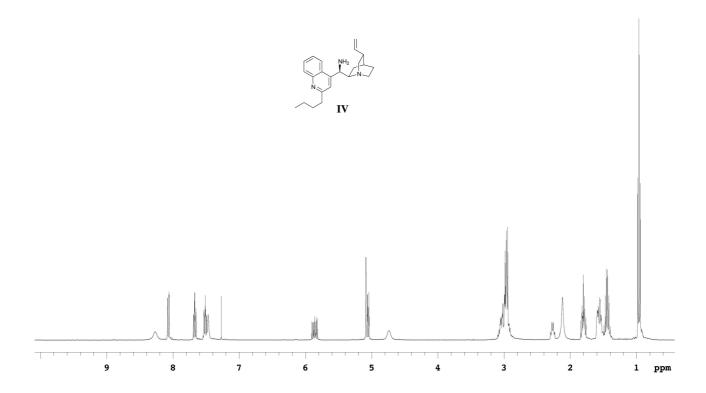
Flash chromatography (cyclohexane/ethylacetate, 8/2) of the residue give **6a** (11.3 mg, 86%) as colourless oil. All spectra data were consistent with the literature. 13 [α]_D 20 -2.9 (c 0.5 in CHCl₃); lit.: [α]_D 20 -3.6 (c 0.8 in CHCl₃, ee = 83%). 14

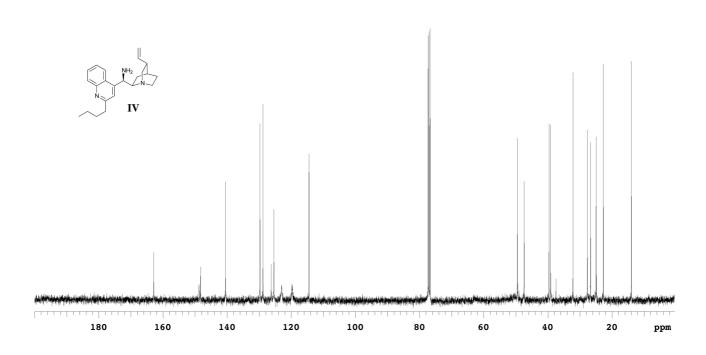
Absolute configuration was confirmed by comparison of the chiral HPLC retention time (Daicel Chiralcel OF column: hexane/*i*-PrOH 90:10, flow rate 0.50 mL/min, 40° C, $\lambda = 214$ nm: $\tau_{major(R)} = 21.0$ min, $\tau_{minor(S)} = 26.4$ min;) in the literature.¹³

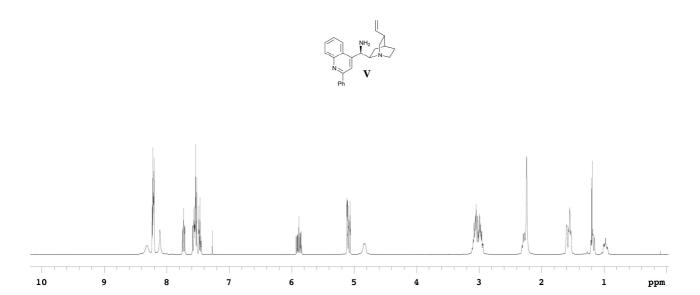
Oxidative removal of benzodithiol group, synthesis of (2R)-(+)-\alpha-methyltropic acid: To a solution of 4a (0.08 mmol, 30 mg) in acetonitrile (1 mL) at 0°C, 30%

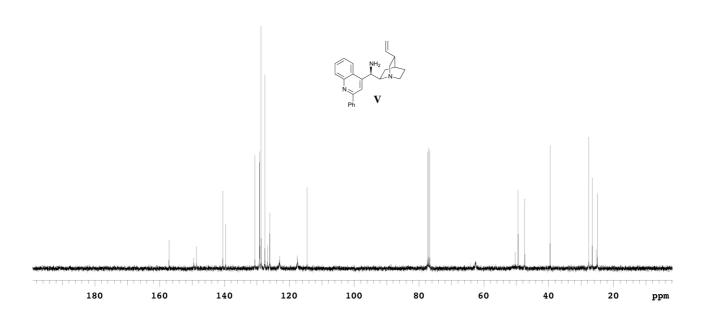
 H_2O_2 (320 µL) was added. 40% HBr (0.16 mmol, 21 µL) was slowly added and the reaction mixture was raised at room temperature. After 4h $Na_2S_2O_5$ (1.0 g), was slowly added at 0°C and the mixture was diluited with AcOEt (5 mL). Water (0.25 mL) and $NaHCO_3$ aq. were added until pH 8.0. The organic layer was separated, and the aqueous layer was extracted with AcOEt (2 x 5 mL). HCl (0.1M) was added to the aqueous phase until pH=2 and AcOEt was added. The organic layer was separated, and the aqueous layer was extracted with AcOEt (2 x 5 mL). The collected organic layers were washed with brine (5 mL), dried over Na_2SO_4 and concentrated under reduce pressure to give a colourless oil.

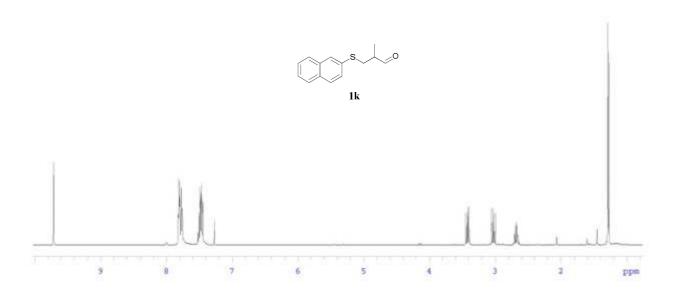
The residual was dissolved in MeOH (5 mL), 10% Pd/C (10 mg) was added and the reaction was kept under hydrogen atmosphere for 18h. The reaction mixture was filtered through a Celite pad and the organic solvent was removed under reduce pressure.

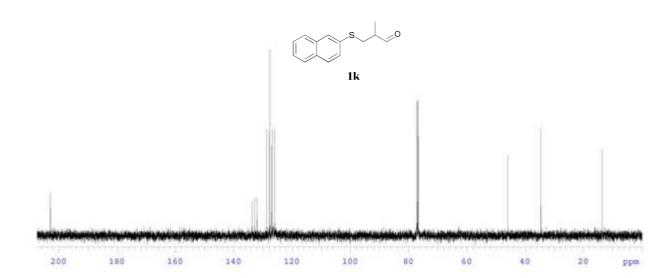

Flash chromatography (cyclohexane/ethylacetate/acetic acid, 1/1/0.05) of the residue give **7a** (10.9 mg, 76%) as colourless oil. Spectroscopy data are in according with literature. 15 [α]_D 20 +20.5 (c 0.2 in CHCl₃); lit.: [α]_D 20 +21.3 (c 0.7 in CHCl₃).

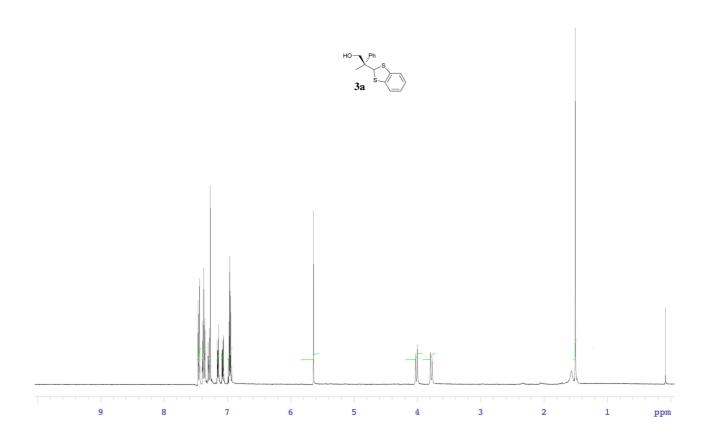

References

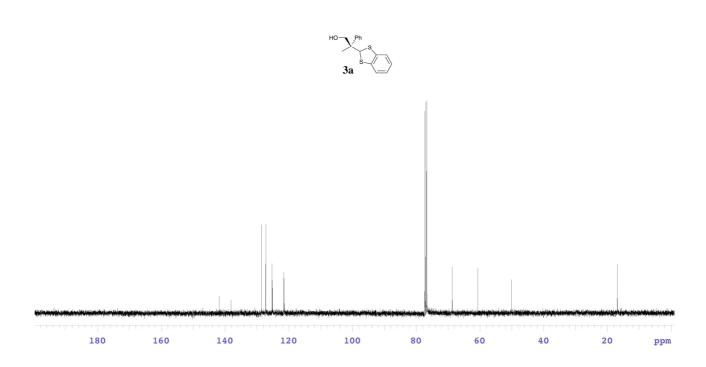

- 1 S. Hoffmann, M. Nicoletti and B. List, *J. Am. Chem. Soc.*, 2006, **128**, 13074.
- 2 S. Mukherjee and B. List, *J. Am. Chem. Soc.*, 2007, **129**, 11336.
- 3 T. Baumann, H. Vogt, S. Bräse *Eur. J. Org. Chem.*, 2007, 266.
- 4 H. Ahlbrecht, W. Funk and M.Th. Reiner, *Tetrahedron*, 1976, **32**, 479.
- 5 P. Galletti, E. Emer, G. Gucciardo, A. Quintavalla, M. Pori and D. Giacomini, *Org. Biomol. Chem.*, 2010, **8**, 4117.
- 6 S. H. McCooey and S. J. Connon, *Angew. Chem. Int. Ed.*, 2005, **44**, 6367.
- 7 L. Hintermann, M. Schmitz and U. Englert, Angew. Chem. Int. Ed., 2007, 46, 5164.
- 8 H. Brunner and P. Schmidt Eur. J. Org. Chem., 2011, 3449.
- 9 W. Chen, W. Du, Y.-Z. Duan, Y. Wu, S.-Y. Yang, and Y.-C. Chen, *Angew. Chem. Int. Ed.*, 2007, **46**, 7667.
- 10 C. G. Oliva, A. M. S. Silva, D. I. S. P. Resende, F. A. A. Paa and J. A. S. Cavaleiro, *Eur. J. Org. Chem.*, 2000, 2119.

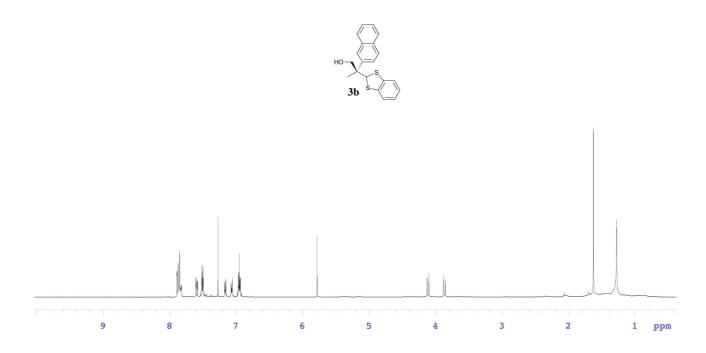

- H. Brunner, J. Bügler and B. Nuber, *Tetrahedron: Asymmetry* 1995, **6**, 1699.
- E. Vedejs, R.A. Buchanan, P.C. Conrad, G.P. Meier, M.J. Mullins, J.G. Schaffhausen, C.E. Schwartz, *J. Am. Chem. Soc.*, 1987, **111**, 8421.
- R. P. Sonawane, V. Jheengut, C. Rabalakos, R. L.-Gauthier, H. K. Scott, V. K. Aggarwal, *Angew. Chem. Int. Ed.*, 2011, **50**, 3760.
- 14 Q. Zhu and Y. Lu, Chem Comm. 2010, 46, 2235.
- D. Imao, A. Itoi, A. Yamazaki, M. Shirakura, R. Ohtoshi, K. Ogata, Y. Ohmori, T. Ohta and Y. Ito, *J. Org. Chem.*, 2007, **72**, 1652.
- 16 D. S. Im, C. S. Cheong and S. H. Lee, J. *Mol. Catal. B: Enzym.*, 2002, **26**, 131.

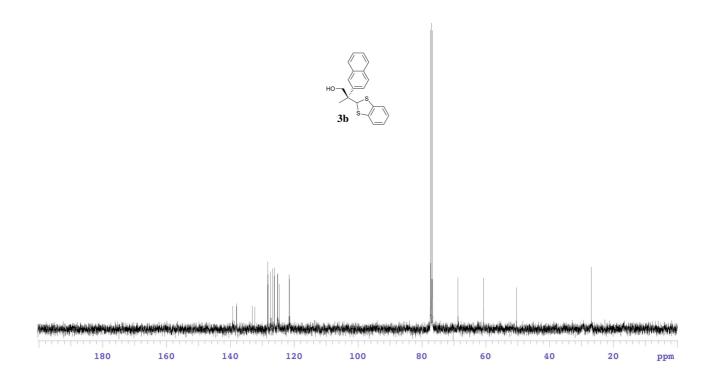

Copy of NMR spectra



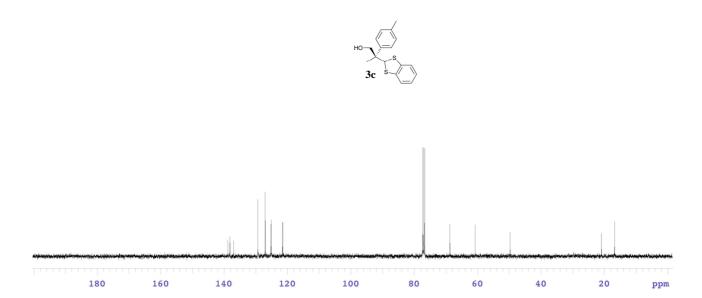


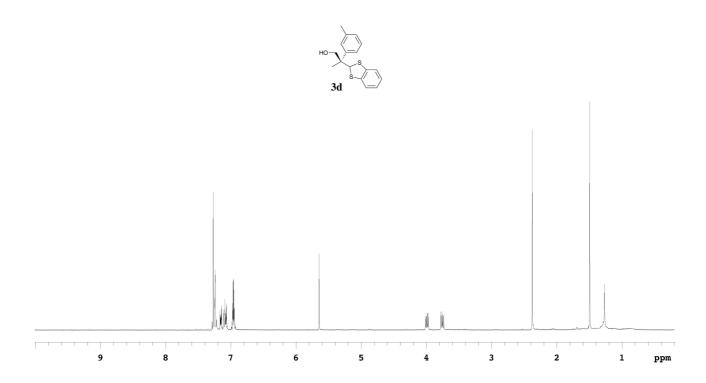


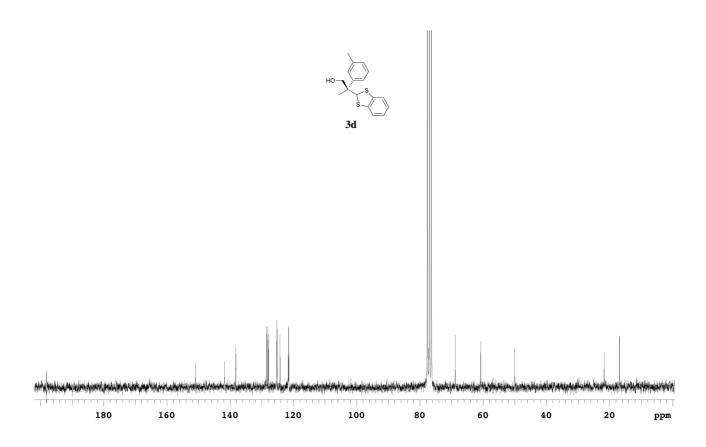


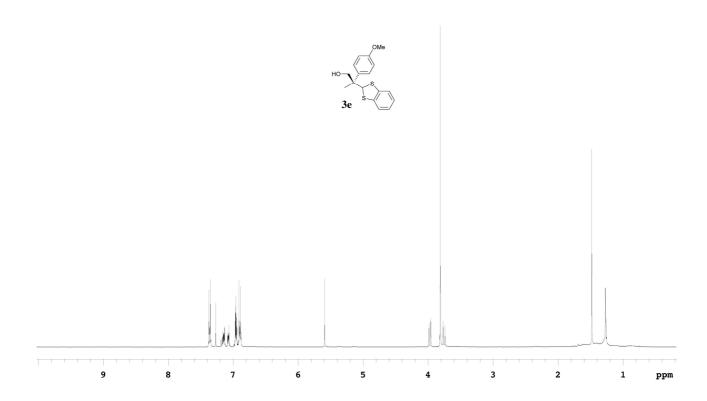


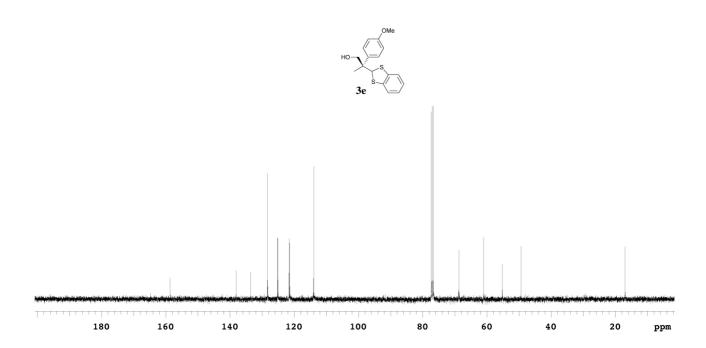


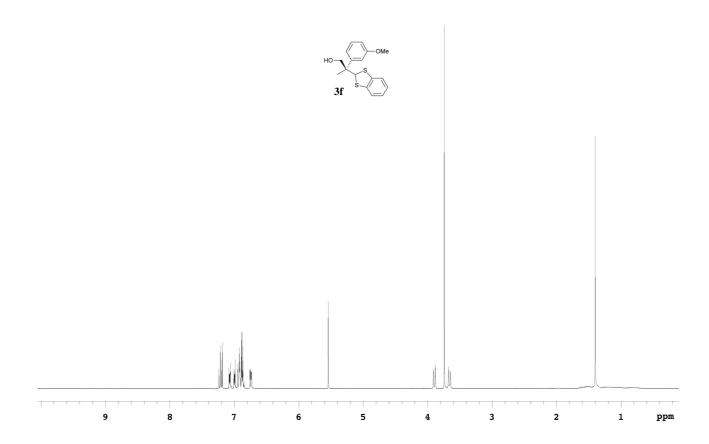


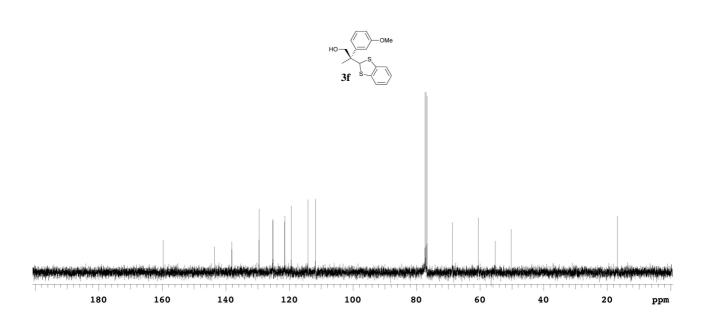


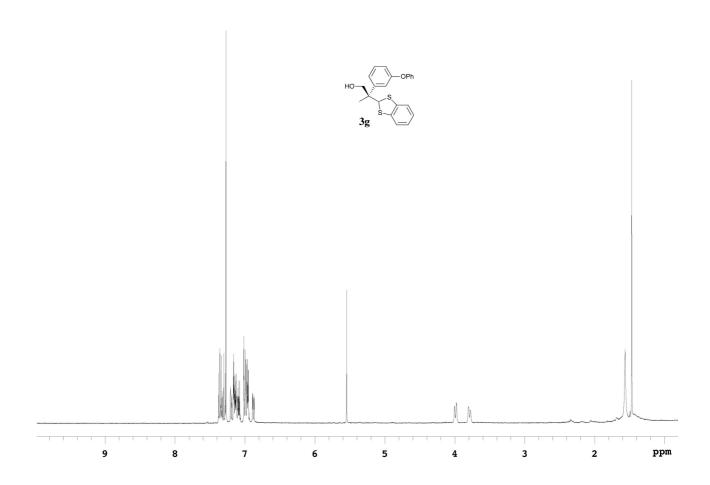


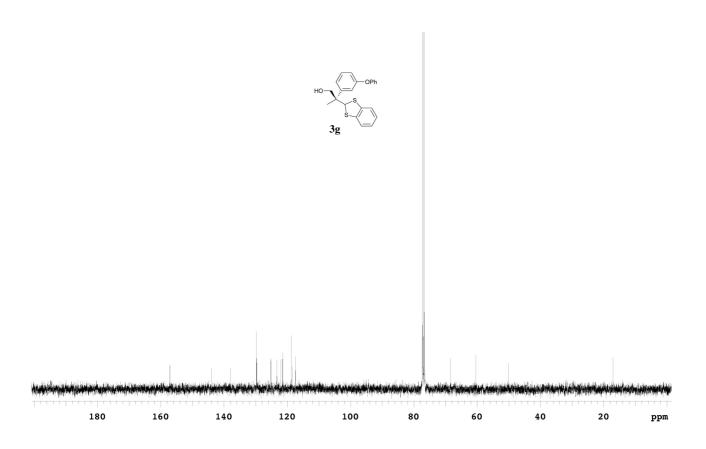


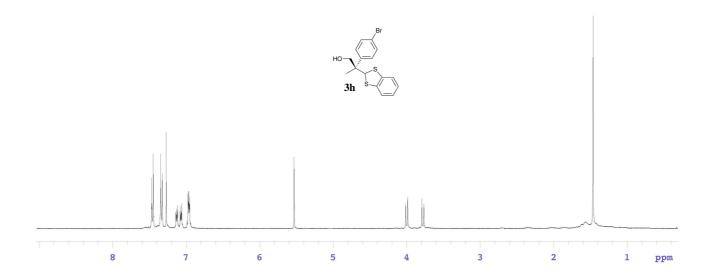


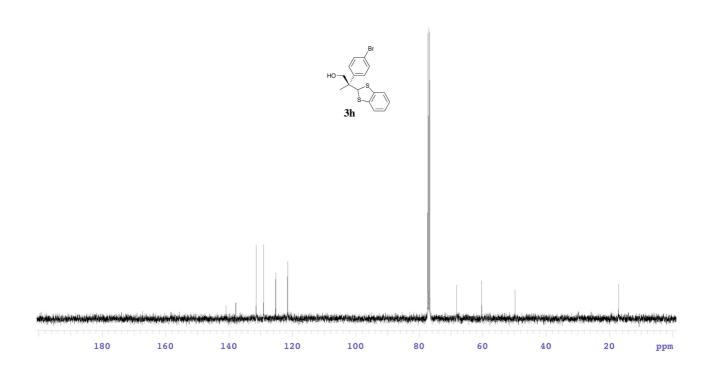


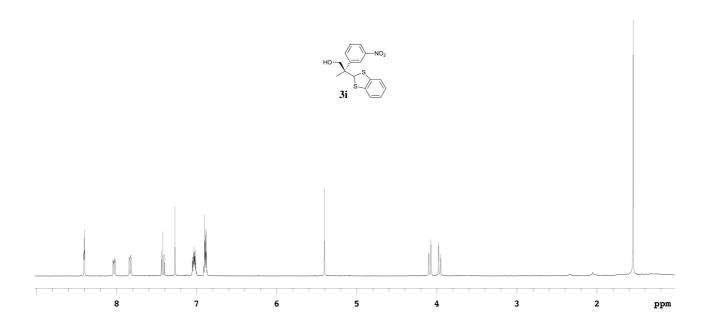


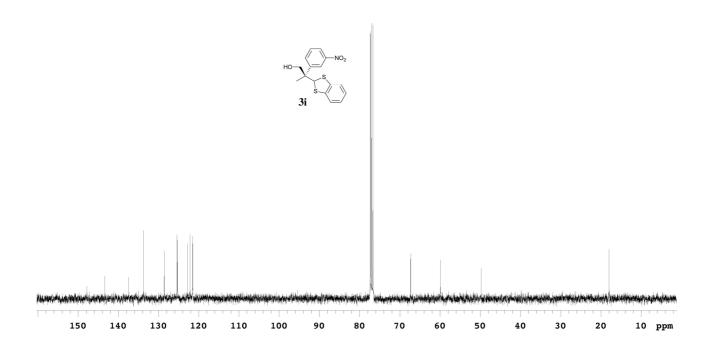


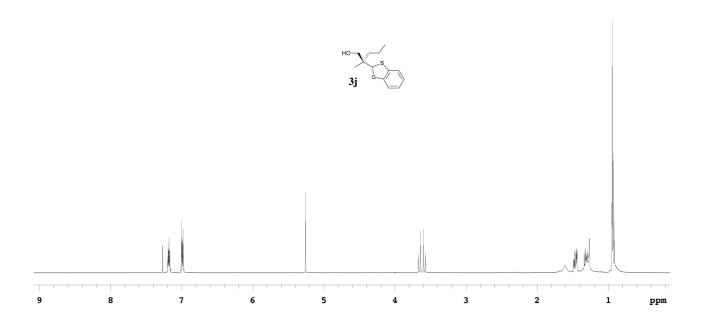


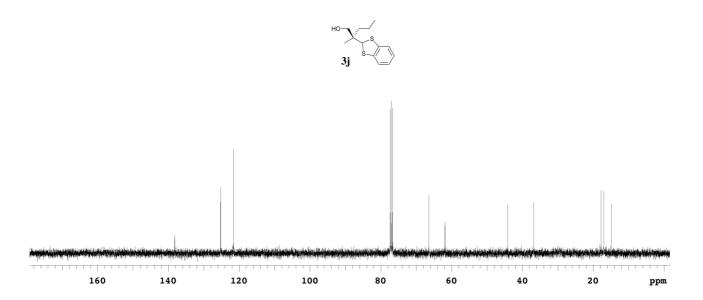


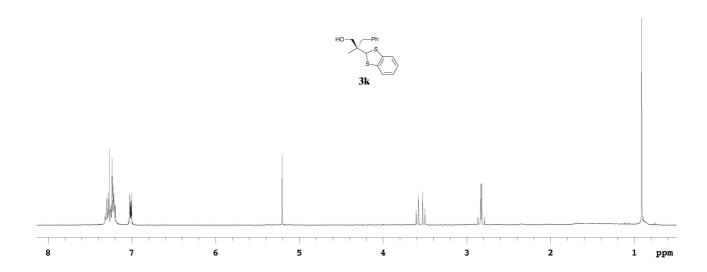


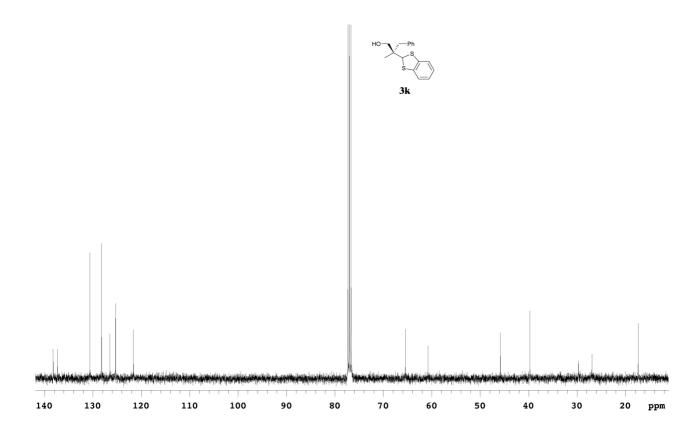


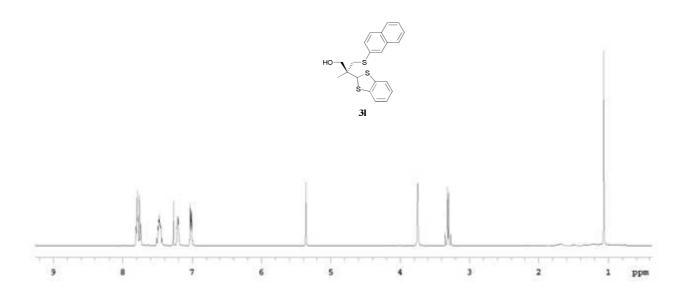


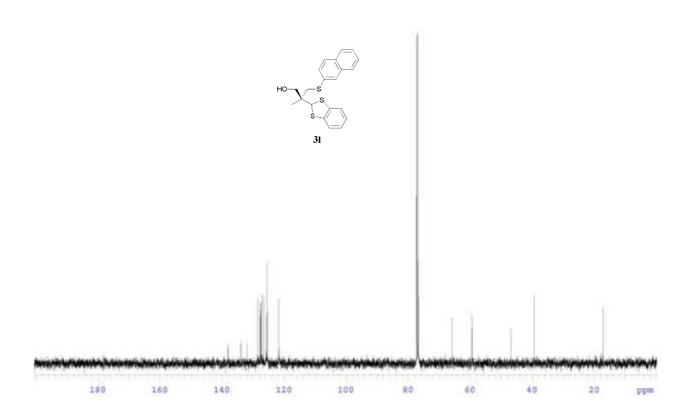


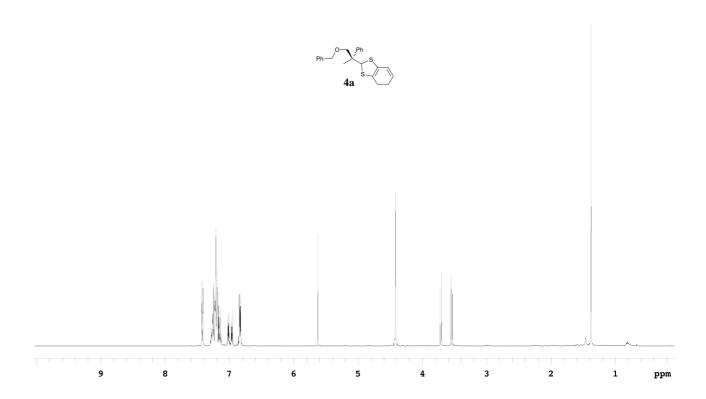


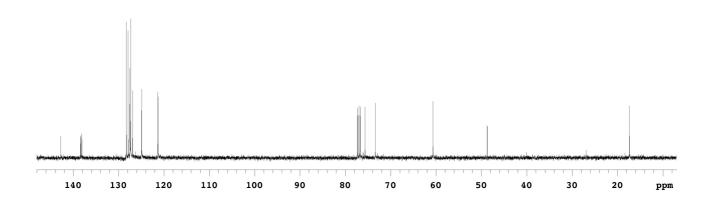


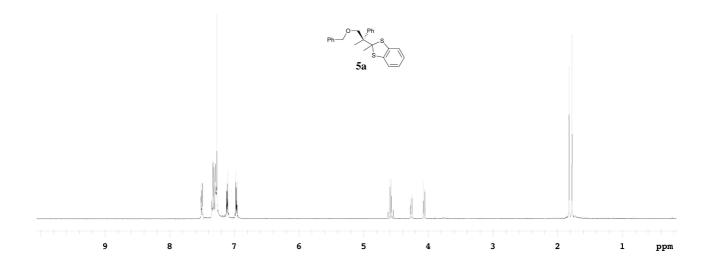


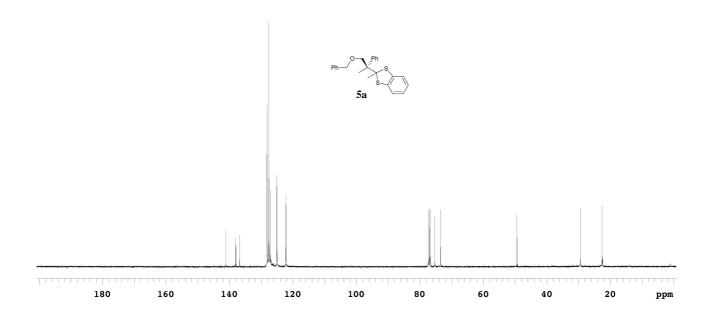


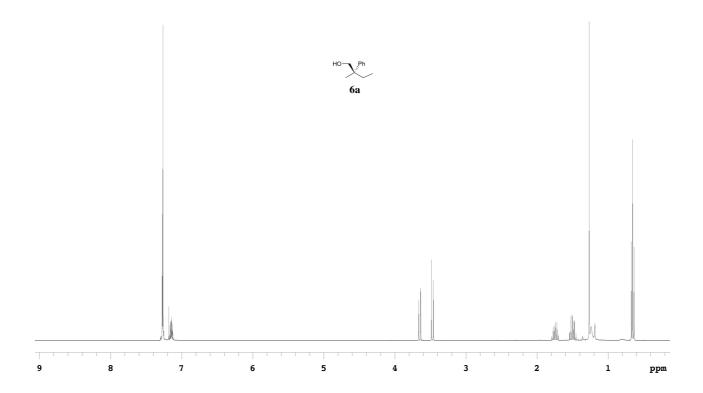


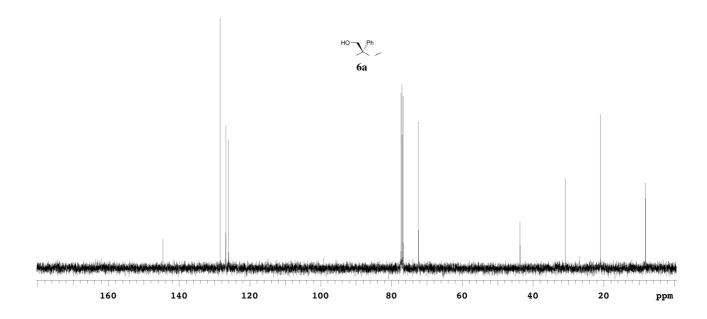


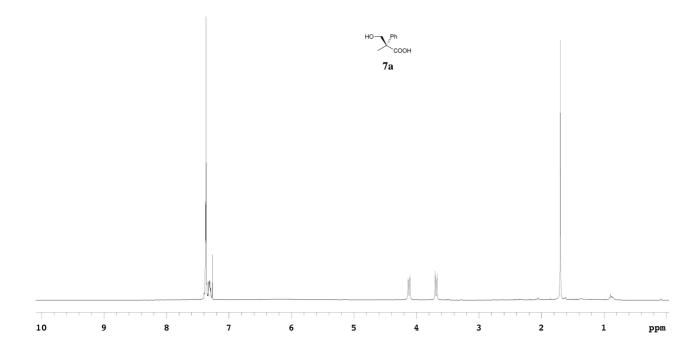


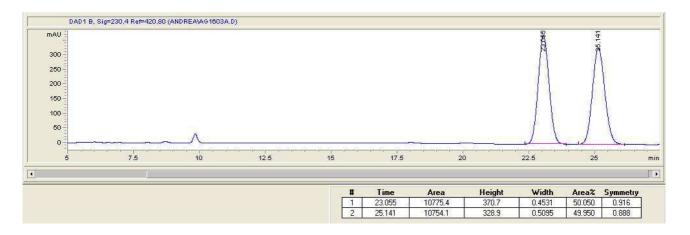


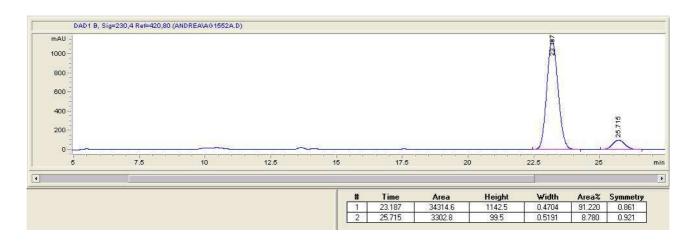


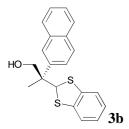


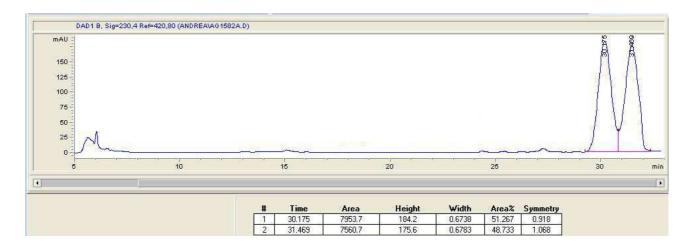


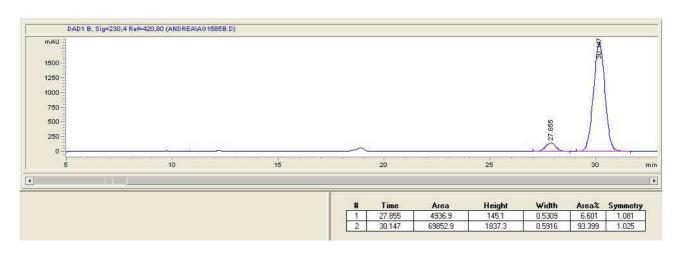









HPLC Traces


Racemic

