Diastereoselective indium-mediated allylation of *N-tert*butanesulfinyl ketimines: Easy access to asymmetric quaternary stereocenters bearing nitrogen atoms

Juan Alberto Sirvent, Francisco Foubelo,* and Miguel Yus*

Departamento de Química Orgánica, Facultad de Ciencias and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain. E-mail: foubelo@ua.es; yus@ua.es

Contents

General Methods	page 2
Procedure and characterization data for <i>N-tert</i> -butanesulfinyl ketimines 1	pages 3-8
Procedure and characterization data for homoallylic amine derivatives 3	pages 8-15
Procedure and characterization data for amines 4	page 15-16
X-Ray structures of compounds 3i and 3j	page 17
¹ H-NMR and ¹³ C-NMR spectra of compounds 1, 3 and 4	pages 18-47

General Methods: *N-tert*-butanesulfinamides (S_S and R_S) were a gift of Medalchemy (>99% ee by chiral HPLC on a Chiracel AS column, 90:10 *n*-hexane/*i*-PrOH, 1.2 mL/min, λ =222 nm). All other commercially available reagents were used as received.

TLC was performed on silica gel 60 F_{254} , using aluminum plates and visualized with phosphomolybdic acid (PMA) stain. Flash chromatography was carried out on handpacked columns of silica gel 60 (230-400 mesh). Melting points are uncorrected. IR spectra were recorded as a film deposited from CDCl₃ or CH₂Cl₂ on NaCl plates followed by solvent evaporation and all absorptions are reported in cm⁻¹.

¹H NMR spectra were recorded at 400 MHz using CDCl₃ or CD₃OD as the solvent and TMS as internal standard (0.00 ppm). The data is being reported as [s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br s = broad signal, integration, coupling constant(s) in Hz]. ¹³C NMR spectra were recorded with ¹H-decoupling at 100 MHz and referenced to CDCl₃ at 77.15 ppm. DEPT-135 experiments were performed to assign CH, CH₂ and CH₃.

General procedure for the synthesis of *N-tert*-butanesulfinyl ketimines 1:

A mixture of *N-tert*-butanesulfinamide (242 mg, 2.0 mmol), the corresponding ketone (2.0 mmol) and Ti(OEt)₄ (912 mg, 0.900 mL, 4.0 mmol) in THF (8 mL) was stirred for 12 h at 66 °C. Then, the resulting mixture was hydrolyzed with brine (8 mL), extracted with EtOAc (3×10 mL), dried over anhydrous MgSO₄ and evaporated (15 Torr). The residue was purified by column chromatography (silica gel, hexane/EtOAc) to yield products **1**. Yields, physical and spectroscopic data follow.

Characterization data of the obtained N-tert-butanesulfinyl ketimines 1

(S_S,E)-N-(*tert*-Butanesulfinyl)-1-phenylethanimine (1a):

86% Yield; white solid; mp 36-40 °C; $[α]^{20}_D$ +13 (*c* 1.03, CH₂Cl₂); R_f 0.54 (hexane/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃) δ 1.33 (s, 9H), 2.77 (s, 3H, s), 7.40-7.51 (m, 3H), 7.89 (d, 2H, *J* = 7.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 22.7 (CH₃), 43.40 (CH₂), 55.8 (C), 56.5 (CH), 119.75 (CH₂), 121.6 (C), 129.35

(CH), 131.75 (CH), 133.8 (CH), 140.9 (C); IR (KBr) 1604, 1591, 1573, 1361, 1275, 1082, 1064, 768, 692, 680, 628 cm⁻¹; MS (EI) *m/z* 167 (M⁺-56, 22%), 207 (13), 151 (34), 150 (50), 136 (11), 119 (55), 105 (13), 104 (100), 103 (41), 78 (12), 77 (51), 76.

(S_S,E)-N-(tert-Butanesulfinyl)-1-phenylpropanimine (1b):

63% Yield; yellow oil; $[α]^{20}_D$ +9 (*c* 1.06, CH₂Cl₂); R_f 0.67 (hexane/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃) δ 1.29 (t, 3H, *J* = 7.7 Hz), 1.33 (s, 9H), 3.16-3.34 (m, 2H), 7.39-7.52 (m, 3H), 7.80-7.95 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 13.3 (CH₃), 22.8 (CH₃), 26.0 (CH₂), 57.5 (C), 127.6, 128.7, 131.7 (CH), 137.6 (C),

181.3 (C=N); IR (film) 2977, 2359, 1592, 1569, 1071, 693 cm⁻¹; MS (EI) *m/z* 132 (M⁺-105, 46%), 105 (12), 104 (100), 103 (36), 77 (34), 76 (16), 64 (11), 56 (12), 51 (16), 50 (10).

(S_S,E)-N-(*tert*-Butanesulfinyl)-1-(2-naphthyl)ethanimine (1c):

76% Yield; yellow solid; mp 118-121 °C; $[α]^{20}_D$ +6 (*c* 0.98, CH₂Cl₂); R_f 0.56 (hexane/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃) δ 1.36 (s, 9H), 2.88 (s, 3H), 7.50-7.58 (m, 2H), 7.82-7.87 (m, 2H), 7.91 (dd, 1H, *J* = 8.1, 6.5 Hz), 8.07 (dd, 1H, *J* = 8.7, 1.4 Hz), 8.28-8.31 (m, 1H); ¹³C NMR (75 MHz,

CDCl₃) δ 19.9 (CH₃), 22.7 (CH₃), 57.7 (C), 124.0, 126.8, 127.8, 128.0, 128.3, 129.3 (ArCH), 132.8, 135.0, 136.2 (C), 176.2 (C=N); IR (KBr) 2360, 1587, 1571, 1289, 1075 cm⁻¹; MS (EI) *m*/*z* 169 (M⁺-104, 56%), 199 (29), 170 (11), 155 (21), 154 (100), 153 (40), 128 (15), 127 (48), 126 (21), 77 (16), 63 (10).

(S_S,E)-N-(*tert*-Butanesulfinyl)-3,4-dihydronaphthalen-1(2H)-imine (1d):

39% Yield; yellow solid; mp 40 °C (CH₂Cl₂); $[\alpha]^{20}_{D}$ +27 (*c* 0.84, CH₂Cl₂); R_f 0.52 (hexane/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃) δ 1.33 (s, 9H), 1.88-2.13 (m, 2H), 2.88 (t, 2H,, *J* = 6.2 Hz), 3.06 (ddd, 1H, *J* = 17.5, 7.2, 4.8 Hz), 3.29 (ddd, 1H, *J* = 17.5, 8.9, 5.1 Hz), 7.20 (t, 1H, *J* = 8.1 Hz), 7.24-7.29 (m,

1H), 7.39 (td, 1H, J = 7.4, 1.4 Hz), 8.17 (d, 1H, J = 7.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 22.5 (CH₃), 22.7, 29.5, 32.4 (CH₂), 57.2 (C), 126.5, 127.0 128.9, 132.0 (CH), 133.0, 142.2 (C), 177.0 (C=N); IR (KBr) 2945, 2161, 1609, 1578, 1563, 1451, 1359, 1293, 1192, 1077, 1061, 1027, 903, 774, 731, 672 cm⁻¹; MS (EI) *m/z* 177 (M⁺-72, 22%), 191 (13), 145 (63), 144 (34), 143 (89), 142 (19), 130 (18), 129 (19), 128 (28), 118 (13), 117 (100), 116 (47), 115 (57), 90 (21), 89 (27), 64 (15), 63 (12), 56 (12), 51 (11).

(S_S,E)-N-(*tert*-Butanesulfinyl)chroman-4-imine (1e):

90% Yield; yellow oil; $[\alpha]^{20}_{D}$ +98 (*c* 1.03, CH₂Cl₂); R_f 0.52 (hexane/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃) δ 1.33 (s, 9H), 3.27 (ddd, 1H, *J* = 17.4, 7.3, 4.3 Hz), 3.51 (ddd, 1H, *J* = 17.4, 8.6, 4.8 Hz), 4.24-4.44 (m, 2H), 6.92 (dd, 1H, *J* = 8.3, 0.9 Hz), 6.97 (ddd, 1H, *J* = 8.1, 7.2, 1.1 Hz), 7.38 (ddd, 1H, *J* = 8.4,

7.2, 1.7 Hz), 8.00 (dd, 1H, J = 8.0, 1.7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 22.6 (CH₃), 30.7 (CH₂), 58.0 (C), 65.5 (CH₂), 118.0 (CH), 121.1 (ArC), 121.3, 126.9, 134.2 (ArCH), 159.2, 169.6 (C); IR (film) 2958, 1588, 1478, 1454, 1307, 1258, 1215, 1078, 1056,

1041, 877, 827, 761 cm⁻¹; MS (EI) *m/z* 147 (M⁺-104, 63%), 146 (15), 145 (28), 120 (11), 119 (100), 118 (12), 91 (48), 80 (13), 64 (26), 63 (14), 56 (17).

(S_S)-N-(tert-Butanesulfinyl)but-3-en-2-imine (1f, 3:1 diastereomeric mixture):

43% Yield; yellow oil; R_f 0.51 (hexane/EtOAc 1:1); major diastereoisomer ¹H NMR (300 MHz, CDCl₃) δ 1.26 (s, 9H), 2.45 (s, 3H), 5.72 (d, 1H, *J* = 10.8 Hz), 5.96 (d, 1H, *J* = 17.7 Hz), 6.46 (dd, 1H, *J* = 17.7, 10.8 Hz); minor diastereoisomer ¹H NMR (300

MHz, CDCl₃) δ 1.26 (s, 9H), 2.32 (s, 3H), 5.78 (d, 1H, *J* = 10.9 Hz), 5.90 (d, 1H, *J* = 17.3 Hz), 7.43 (dd, 1H, *J* = 17.3, 10.9 Hz); major diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 22.1, 22.3 (CH₃), 57.1 (C), 124.5 (CH₂), 139.5 (CH), 176.5 (C=N); minor diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 22.1, 22.3 (CH₃), 57.1 (C), 124.5 (CH₂), 139.5 (CH), 176.5 (C=N); IR (film) 2958, 1588, 1478, 1454, 1307, 1258, 1215, 1078, 1056, 1041, 877, 827, 761 cm⁻¹; MS (EI) *m*/*z* 117 (M⁺-56, 100%), 102 (11), 101 (18), 100 (29), 99 (36), 73 (10), 69 (43), 64 (19), 58 (15), 57 (76), 56 (33), 55 (17), 54 (27), 53 (16); HRMS: Calculated for C₄H₇NOS (M⁺-C₄H₈): 117.0248; found: 117.0249.

(S_S)-N-(*tert*-Butanesulfinyl)pent-1-en-3-imine (1g, 63:37 diastereomeric mixture):

44% Yield; yellow oil; R_f 0.64 (hexane/EtOAc 1:1); major diastereoisomer ¹H NMR (300 MHz, CDCl₃) δ 1.15 (t, 3H, *J* = 6.9 Hz,), 1.26 (s, 9H), 2.57-2.77 (m, 2H), 5.73 (d, 1H, *J* = 11.2 Hz), 5.88 (d, 1H, *J* = 17.6 Hz), 7.40 (dd, 1H, *J* = 17.4, 11.3 Hz); minor

diastereoisomer ¹H NMR (300 MHz, CDCl₃) δ 1.15 (t, 3H, *J* = 6.9 Hz), 1.26 (s, 9H), 2.80-2.98 (m, 2H), 5.68 (d, 1H, *J* = 11.6 Hz), 5.99 (d, 1H, *J* = 17.9 Hz), 6.36 (dd, 1H, *J* = 16.9, 11.0 Hz); major diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 10.5, 22.5 (CH₃), 29.4 (CH₂), 57.7 (C), 125.2 (CH₂), 131.4 (CH), 181.0 (C=N); minor diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 13.0, 22.5 (CH₃), 25.2 (CH₂), 57.1 (C), 124.1 (CH₂), 137.7 (CH), 178.0 (C=N); IR (film) 2976, 1575, 1361, 1072, 942 cm⁻¹; MS (EI) *m*/*z* 131 (M⁺-56, 100%), 115 (14), 114 (31), 113 (29), 112 (47), 86 (17), 83 (75), 82 (60), 67 (10), 64 (12), 59 (10), 58 (12), 57 (88), 56 (37), 55 (26), 54 (51), 53 (12); HRMS: Calculated for C₅H₉NOS (M⁺-C₄H₈): 131.0405; found: 131.0409.

(S_S)-N-(*tert*-Butanesulfinyl)cyclopent-2-enimine (1h, 65:35 diastereomeric mixture):

38% Yield; orange oil; R_f 0.30 (hexane/EtOAc 1:1); diastereomeric mixture ¹H NMR (300 MHz, CDCl₃) δ 1.24 and 1.26 (2s, 9H), 2.55-2.60 (m, 0.65H), 2.69-2.75 (m, 2H), 2.75-2.80 (m, 0.35H), 3.11-3.22 (m, 1H), 6.32-6.38 (m, 1H), 7.11-7.18 (m, 0.65H), 7.18-7.24 (m, 0.35); major diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 22.4

(CH₃), 30.3, 32.5 (CH₂), 56.7 (C), 135.5, 156.1 (CH), 189.4 (C=N); minor diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 22.5 (CH₃), 29.1, 34.5 (CH₂), 57.1 (C), 128.9 (CH), 158.3 (CH), 186.8 (C=N); IR (film) 2957, 1600, 1360, 1201, 1068, 754, 722 cm⁻¹; MS (EI) *m*/*z* 129 (M⁺-56, 100%), 113 (18), 81 (24), 80 (30), 66 (33), 57 (32), 53 (16); HRMS: Calculated for C₅H₇NOS (M⁺-C₄H₈): 129.0248; found: 129.0247.

(S_S)-N-(*tert*-Butanesulfinyl)cyclohex-2-enimine (1i, 3:2 diastereomeric mixture):

76% Yield; yellow oil; R_f 0.41 (hexane/EtOAc 1:1); diastereomeric mixture ¹H NMR (300 MHz, CDCl₃) δ 1.24 (s, 9H), 1.79-2.01 (m, 2H, m), 2.25-2.34 (m, 2H), 2.57 (dd, 08H, *J* = 7.8, 5.3 Hz), 2.83 (ddd, 0.6H, *J* = 17.0, 7.5, 5.0 Hz), 3.05 (ddd, 0.6H, *J* = 17.0, 9.0, 5.0 Hz), 6.21 (dt, 0.6H, *J* = 10.3, 1.8 Hz), 6.61-6.72 (m, 1H), 7.10 (dt, 0.4H, *J*

= 10.2, 2.3 Hz); major diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 21.9 (CH₂), 22.2 (CH₃), 25.2, 30.9 (CH₂), 56.5 (C), 130.4, 144.8 (CH), 177.9 (C=N); minor diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 22.3 (CH₃), 22.5, 26.0, 36.1 (CH₂), 56.9 (C), 123.1, 146.0 (CH), 175.7 (C=N); IR (film) 2924, 2359, 1620, 1568, 1361, 1071, 869, 736 cm⁻¹; MS (EI) *m*/*z* 143 (M⁺-56, 100%), 127 (26), 95 (48), 94 (28), 93 (27), 80 (13), 79 (11), 67 (47), 66 (25), 65 (15), 64 (25), 57 (35), 56 (25), 55 (13).

(S_S)-N-(*tert*-Butanesulfinyl)cyclohept-2-enimine (1j, 53:47 diastereomeric mixture):

48% Yield; yellow oil; R_f 0.51 (hexane/EtOAc 1:1); major diastereoisomer ¹H NMR (300 MHz, CDCl₃) δ 1.23 (s, 9H), 1.67-1.97 (m, 4H), 2.29-2.49 (m, 2H), 2.65-2.75 (m, 1H), 2.83-2.96 (m, 1H), 6.42 (ddd, 1H, J = 17.7, 11.4, 5.6 Hz), 6.89 (d, 1H, J = 11.7 Hz); minor diastereoisomer ¹H NMR (300 MHz, CDCl₃) δ 1.24 (s, 9H), 1.67-1.97 (m, 4H), 2.29-2.49 (m, 2H), 2.65-2.75 (m, 1H), 3.10-

3.22 (m, 1H), 6.22 (d, 1H, J = 11.7 Hz), 6.42 (ddd, 1H, J = 17.7, 11.4, 5.6 Hz); major diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 22.3 (CH₃), 24.8, 26.0, 28.9, 40.8 (CH₂),

57 (C), 127.1, 144.4 (CH), 180.2 (C=N); minor diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 22.3 (CH₃), 24.3, 26.5, 29.1, 35.4 (CH₂), 56.4 (C), 133.6, 143.8 (CH), 182.7 (C=N); IR (film) 2928, 1622, 1570, 1454, 1360, 1173, 1071, 744 cm⁻¹; MS (EI) *m/z* 157 (M⁺-56, 58%), 197 (37), 157 (58), 142 (11), 141 (100), 140 (26), 139 (13), 126 (11), 113 (11), 112 (16), 109 (36), 108 (36), 107 (15), 106 (30), 99 (12), 95 (11), 94 (39), 93 (20), 92 (13), 91 (17), 81 (34), 80 (51), 79 (39), 78 (14), 77 (21), 67 (38), 66 (17), 65 (13), 64 (27), 57 (82), 55 (27), 54 (22), 53 (28), 52 (14), 51 (17), 50 (11); HRMS: Calculated for C₇H₁₁NOS (M⁺-C₄H₈): 157.0561; found: 157.0557.

(S_S,E)-N-(*tert*-Butanesulfinyl)butan-2-imine (1k):

60% Yield; yellow oil; $[\alpha]^{20}{}_{D}$ +98 (*c* 1.2, CH₂Cl₂); R_f 0.45 (hexane/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃) δ 1.11 (t, 3H, *J* = 7.3 Hz), 1.24 (s, 9H), 2.32 (s, 3H), 2.39-2.49 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 9.9, 22.1 (CH₃), 22.8, 36.6 (CH₂), 56.3

(C), 186.1 (C=N); IR (film) 3237, 2977, 2959, 2359, 1621, 1458, 1362, 1192, 1053 cm⁻¹; MS (EI) *m*/*z* 119 (M⁺-56, 100%), 74 (10), 71 (81), 70 (20), 57 (67), 56 (20), 55 (13).

(S₅,E)-N-(*tert*-Butanesulfinyl)-3-methylbutan-2-imine (11):

73% Yield; yellow oil; $[\alpha]^{20}{}_{D}$ +198 (*c* 1.2, CH₂Cl₂); R_f 0.51 (hexane/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃) δ 1.13 (d, 3H, J = 6.8 Hz), 1.14 (d,3H, J = 6.8 Hz), 1.24 (s, 9H), 2.32 (s, 3H), 2.49-2.64 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 19.6, 19.8 (CH₃), 21.1 (CH), 22.2, 41.3 (CH₃), 56.4 (C), 189.2 (C=N); IR

(film) 2967, 2928, 2871, 1623, 1459, 1362, 1094, 1072, 792, 671 cm⁻¹; MS (EI) *m/z* 133 (M⁺-56, 84%), 85 (39), 84 (12), 74 (14), 70 (100), 69 (11), 57 (65), 55 (10).

(S_S,E)-N-(*tert*-Butanesulfinyl)heptan-2-imine (1m):

75% Yield; yellow oil; $[α]^{20}_D$ +144 (*c* 1.07, CH₂Cl₂); R_f 0.59 (hexane/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃) δ 0.89 (t, 3H, *J* = 6.9 Hz), 1.24 (s, 9H), 1.26-1.38 (m, 4H), 1.53-1.69 (m, 2H), 2.31 (s, 3H), 2.35-2.44 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 13.9, 22.1 (CH₃), 22.4 (CH₂),

23.0 (CH₃), 25.2, 31.3, 43.4 (CH₂), 56.2 (C), 185.6 (C); IR (film) 2955, 2928, 2862, 1622, 1457, 1362, 1187, 1074, 669 cm⁻¹; MS (EI) *m/z* 161 (M⁺-56, 58%), 112 (15), 105

(56), 97 (26), 96 (20), 89 (43), 82 (10), 70 (17), 64 (60), 58 (11), 57 (100), 56 (71), 55 (54), 54 (12), 53 (15), 50 (11); HRMS: Calculated for $C_7H_{15}NOS$ (M⁺-C₄H₈): 161.0874; found: 161.0870.

(*R*_S,*E*)-*N*-(*tert*-Butanesulfinyl)heptan-2-imine (*ent*-1m):

73% Yield; physical and spectroscopic dada were found to be same than for **1m**. $[\alpha]_{D}^{20}$ -156 (*c* 1.07, CH₂Cl₂).

General procedure for the stereoselective allylation of *N-tert*-butanesulfinyl ketimines 1:

A mixture of *N-tert*-butanesulfinyl ketimine **1** (0.5 mmol), the corresponding allylic bromide (1.0 mmol) and indium (115 mg, 1.0 mmol) in dry THF (2 mL) was stirred for 6 h at 66 °C. Then, the resulting mixture was hydrolyzed with H₂O (5 mL), extracted with EtOAc (3×10 mL), dried over anhydrous MgSO₄ and evaporated (15 Torr). The residue was purified by column chromatography (silica gel, hexane/EtOAc) to yield products **3**. Yields are given on Table 1. Physical and spectroscopic data follow.

Characterization data of the obtained homoallylic amine derivatives 3

(2*R*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-2-phenylpent-4-en-2-amine (3a):

White solid; mp 38-41 °C (CH₂Cl₂); R_f 0.57 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 1.23 (s, 9H), 1.77 (s, 3H), 2.69 (d, 2H, *J* = 7.4 Hz), 3.77 (s, 1H), 5.01-5.24 (m, 2H), 5.42-5.65 (m, 1H), 7.21-7.51 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 22.9, 27.8 (CH₃), 49.1 (CH₂), 56.2 (C), 59.9 (C), 120.4 (CH₂), 126.3, 127.0,

128.2, 133.1 (CH), 145.4 (C); IR (KBr) 3364, 3183, 2160, 1676, 1450, 996, 933, 777, 706 cm⁻¹; MS (EI) *m*/*z* 209 (M⁺-56, 6%), 194 (18), 189 (21), 188 (13), 175 (13), 168 (10), 167 (100), 150 (22), 145 (16), 131 (29), 129 (11), 128 (10), 119 (37), 117 (11), 104 (52), 103 (19), 91 (24), 77 (32), 51 (14).

(2*S*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-2-phenylpent-4-en-2-amine (3a'):

R_f 0.57 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 1.24 (s, 9H), 1.71 (s, 3H), 2.59-2.84 (m, 2H), 3.65 (s, 1H), 5.01-5.24 (m, 2H), 5.42-5.65 (m, 1H), 7.21-7.51 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 22.8, 28.3 (CH₃), 47.8 (CH₂), 56.2, 60.4 (C), 119.1 (CH₂), 126.3, 127.1, 128.2, 133.4 (CH), 145.5 (C).

(3*R*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-3-phenylhex-5-en-3-amine (3b):

Yellow oil; R_f 0.63 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 0.76 (t, 3H, *J* = 7.3 Hz), 1.26 (s, 9H), 1.95-2.11 (m, 2H), 2.74-2.90 (m, 2H), 3.75 (s, 1H), 5.04-5.15 (m, 2H), 5.61 (ddt, 1H, *J* = 17.1, 10.2, 7.2 Hz), 7.21-7.44 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 8.0, 22.9 (CH₃), 33.3, 43.8 (CH₂), 56.4, 63.6 (C),

119.2 (CH₂), 126.8, 127.0, 128.2, 133.2 (CH), 143.4 (C); IR (film) 2926, 1738, 1446, 1063, 912, 761, 731, 700 cm⁻¹; MS (EI) *m/z* 235 (M+-44, 18%), 194 (12), 193 (100), 171 (12), 157 (14), 145 (34), 144 (43), 143 (15), 141 (12), 130 (20), 129 (41), 128 (25), 117 (33), 116 (16), 115 (23), 91 (13); HRMS: Calculated for $C_{13}H_{17}NOS$ [M⁺-(Et,Me)] 235.1031; found: 235.1030.

(3*S*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-3-phenylhex-5-en-3-amine (3b'):

R_f 0.63 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 0.71 (t, 3H, J = 7.3 Hz), 1.30 (s, 9H), 2.30 (dq, 2H, J = 14.4, 7.2 Hz), 2.74-2.90 (m, 2H), 3.91 (s, 1H), 5.09-5.26 (m, 2H), 5.34-5.52 (m, 1H) , 7.21-7.44 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 8.1, 23.0 (CH₃), 32.5, 45.8 (CH₂), 56.4, 63.4 (C), 121.1 (CH₂), 126.4,

126.7, 128.2, 132.9 (CH), 143.8 (C).

(2*R*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-2-(2-naphthyl)pent-4-en-2-amine (3c):

White solid; mp 43-46 °C; $[\alpha]^{20}_{D}$ +46 (*c* 0.65, CH₂Cl₂); R_f 0.55 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 1.24 (s, 9H), 1.89 (s, 3H), 2.75 (d, 2H, *J* = 7.3 Hz), 3.83 (br s, 1H), 5.08-5.24 (m, 2H), 5.58 (ddt, 1H, *J* = 17.3, 10.1, 7.3 Hz), 7.42-7.52 (m, 2H), 7.57 (dd, 1H, *J* = 8.8, 1.7 Hz), 7.77-7.89 (m, 4H);

¹³C NMR (75 MHz, CDCl₃) δ 23.0, 27.7 (CH₃), 49.2 (CH₂), 56.4, 60.2 (C), 120.5

(CH₂), 125.0, 125.5, 126.2, 126.3, 127.5, 128.1, 128.4 (ArCH), 132.5, 133.1 (C), 133.2 (CH), 142.6 (C); IR (KBr) 3214, 2977, 2359, 1381, 1364, 1047, 961, 819, 748 cm⁻¹; MS (EI) m/z 259 (M⁺-56, 32%), 244 (46), 243 (11), 239 (14), 228 (11), 226 (28), 225 (35), 224 (12), 217 (56), 200 (13), 195 (27), 194 (11), 181 (44), 180 (12), 179 (16), 178 (17), 170 (14), 169 (100), 168 (12), 167 (13), 166 (19), 165 (34), 155 (11), 154 (64), 153 (34), 152 (24), 141 (11), 128 (22), 127 (45), 126 (16), 115 (14), 77 (11); HRMS: Calculated for C₁₅H₁₇NOS (M⁺-C₄H₈) 259.1031; found: 259.1027.

(2*S*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-2-(2-naphthyl)pent-4-en-2-amine (3c'):

Yellow oil; $[\alpha]^{20}_{D}$ +4.2 (*c* 0.73, CH₂Cl₂); R_f 0.55 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 1.26 (s, 9H), 1.79 (s, 3H), 2.76 (dd, 1H, *J* = 13.6, 7.4 Hz), 2.92 (dd, 1H, *J* = 13.6, 7.0 Hz), 3.73 (br s, 1H), 5.02-5.15 (m, 2H), 5.53 (ddt, 1H, *J* = 17.3, 10.1, 7.2 Hz), 7.44-7.51 (m, 2H), 7.59 (dd, 1H, *J*

= 8.7, 1.9 Hz), 7.78-7.89 (m, 3H), 7.92 (dd, 1H, J = 8.7, 1.3 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 22.9, 28.5 (CH₃), 47.6 (CH₂), 56.4, 60.6 (C), 119.5 (CH₂), 124.9, 125.3, 126.3, 127.5, 128.2, 128.5 (CH), 132.6, 133.1 (C), 133.5 (CH), 142.8 (C).

(1*R*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-1-allyl-1,2,3,4-tetrahydronaphthalen-1-amine (3d):

Orange oil; R_f 0.49 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 1.19 (s, 9H), 1.75-1.98 (m, 2H), 2.01-2.21 (m, 2H), 2.67-2.69 (m, 4H), 3.62 (s, 1H), 4.98-5.21 (m, 2H), 5.50-5.63 (m, 1H), 7.06-7.14, (m, 1H), 7.15-7.24 (m, 2H), 7.46-7.50 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 18.8 (CH₂), 22.7 (CH₃), 29.9, 36.4,

46.6 (CH₂), 56.0, 58.7 (C), 118.9 (CH₂), 125.9, 127.3, 128.0, 129.3, 133.8 (CH), 137.8 (C), 139.0 (C); IR (film) 2938, 2364, 2323, 1448, 1046, 912, 760, 731 cm⁻¹; MS (EI) m/z 235 (M⁺-56, 18%), 194 (12), 193 (100), 171 (12), 157 (14), 145 (34), 144 (43), 143 (15), 141 (12), 130 (20), 129 (41), 128 (25), 117 (33), 116 (16), 115 (23), 91 (13); HRMS: Calculated for C₁₃H₁₇NOS (M⁺-C₄H₈) 235.1031; found: 235.1035.

(4*S*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-4-allylchroman-4-amine (3e):

Yellow oil; $[\alpha]_{D}^{20}$ +61 (*c* 0.87, CH₂Cl₂); R_f 0.40 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 1.19 (s, 9H), 2.09-2.30 (m, 2H), 2.86 (ddd, 2H, *J* = 19.9, 13.9, 7.3 Hz), 3.70 (s, 1H), 4.26

(dd, 2H, J = 8.9, 3.4 Hz), 5.15 (d, 1H, J = 17.2 Hz), 5.18 (d, 1H, J = 24.1 Hz), 5.62 (ddd, 1H, J = 14.5, 10.0, 8.4, 6.1 Hz), 6.84 (dd, 1H, J = 8.2, 1.1 Hz), 6.90-6.99 (m, 1H), 7.16-7.23 (m, 1H), 7.47 (dd, 1H, J = 7.9, 1.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 22.7 (CH₃), 35.0, 45.6 (CH₂), 55.0, 56.1 (C), 62.2 (CH₂), 117.4 (CH), 120.1 (CH₂), 120.3 (CH), 123.9 (C), 128.5, 129.4, 132.9 (CH), 154.8 (C); IR (film) 3208, 2957, 1608, 1579, 1488, 1451, 1223, 1055, 754 cm⁻¹; MS (EI) *m*/*z* 237 (M⁺-56, 55%), 207 (19), 195 (45), 175 (14), 174 (100), 173 (31), 172 (14), 171 (17), 160 (15), 159 (83), 158 (11), 157 (21), 147 (85), 146 (39), 145 (26), 144 (18), 132 (11), 131 (52), 129 (11), 128 (18), 120 (11), 119 (64), 115 (22), 103 (11), 91 (36), 89 (10), 77 (21), 65 (12), 64 (21), 63 (21), 51 (12); HRMS: Calculated for C₁₂H₁₅NO₂S (M⁺-C₄H₈) 237.0823; found: 237.0831.

(S_S)-*N*-(*tert*-Butanesulfinyl)-3-methylhexa-1,5-dien-3-amine (3f, 3:2 diastereomeric mixture):

Yellow oil; R_f 0.43 (hexane/EtOAc 1:2); major diastereoisomer ¹H NMR (300 MHz, CDCl₃) δ 1.20 (s, 9H), 1.36 (s, 3H), 2.27-2.48 (m, 2H), 3.32 (s, 1H), 5.08-5.32 (m, 4H), 5.72-5.89 (m, 1H), 5.96 (dd, 1H, *J* = 17.4, 10.8 Hz); minor diastereoisomer ¹H

NMR (300 MHz, CDCl₃) δ 1.21 (s, 9H), 1.44 (s, 3H), 2.27-2.48 (m, 2H), 3.35 (s, 1H), 5.08-5.32 (m, 4H), 5.72-5.89 (m, 1H), 5.85 (dd, 1H, J = 17.4, 10.7 Hz); major diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 22.6, 25.9 (CH₃), 46.3 (CH₂), 55.8 (C), 58.4 (C), 114.0, 119.3 (CH₂), 133.2, 143.8 (CH); minor diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 22.7, 25.7 (CH₃), 47.1 (CH₂), 55.9 (C), 58.4 (C), 114.1, 119.7 (CH₂), 133.1, 143.5 (CH); IR (film) 3208, 2956, 2359, 2323, 1363, 1052, 996, 915 cm⁻¹; MS (EI) *m*/z 159 (M⁺-56, 6%), 141 (13), 118 (33), 117 (16), 116 (100), 110 (16), 102 (12), 101 (14), 100 (71), 99 (34), 96 (11), 95 (91), 94 (29), 93 (16), 91 (16), 79 (44), 77 (33), 74 (14), 73 (16), 70 (12), 68 (12), 67 (38), 65 (11), 64 (21), 59 (38), 58 (15), 57 (63), 56 (79), 55 (48), 54 (25), 53 (45), 51 (17), 50 (15); HRMS: Calculated for C₇H₁₃NOS (M⁺-C₄H₈) 159.0718; found: 159.0720.

(S_S)-N-(*tert*-Butanesulfinyl)-3-ethylhexa-1,5-dien-3-amine (3g):

Orange oil; $[\alpha]^{20}{}_{D}$ +42 (*c* 1.03, CH₂Cl₂); R_f 0.55 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 0.88 (t, 3H, *J* = 7.4 Hz), 1.22 (s, 9H), 1.55-1.77 (m, 3H), 2.43-2.54 (m, 2H), 3.41 (s, 1H),

5.12-5.27 (m, 4H), 5.71-5.90 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 7.8, 22.8 (CH₃), 31.8, 42.0 (CH₃), 56.1, 61.4 (C), 115.0, 119.3 (CH₂), 133.1, 142.3 (CH); IR (film) 3230, 2962, 2360, 2326, 1637, 1457, 1363, 1052, 996, 915 cm⁻¹; MS (EI) *m/z* 173 (M⁺-56, 5%), 155 (16), 132 (29), 131 (11), 130 (41), 124 (21), 116 (13), 115 (14), 114 (74), 113 (18), 112 (22), 109 (44), 108 (11), 99 (18), 93 (14), 91 (11), 86 (86), 84 (12), 82 (16), 81 (16), 80 (10), 79 (28), 19 (77), 73 (18), 67 (100), 65 (10), 59 (18), 57 (61), 56 (51), 55 (40), 54 (39), 53 (15); HRMS: Calculated for C₈H₁₅NOS (M⁺-C₄H₈) 173.0874; found: 173.0877.

(S_S)-*N*-(*tert*-Butanesulfinyl)-1-allylcyclopent-2-enamine (3h, 4:1 diastereomeric mixture):

Yellow oil; $R_f 0.55$ (hexane/EtOAc 1:2); major diastereoisomer ¹H NMR (300 MHz, CDCl₃) δ 1.18 (s, 9H), 1.92-2.20 (m, 2H), 2.22-2.64 (m, 4H), 3.42 (s, 1H), 5.09-5.20 (m, 2H), 5.71-5.90 (m, 2H), 5.92-5.97 (m, 1H); major diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 22.6 (CH₃), 31.3, 36.7, 45.5 (CH₂), 55.5 (C), 70.1 (C), 119.0 (CH₂), 133.7

(CH), 133.8 (CH), 135.8 (CH); minor diastereoisomer ¹³C NMR (75 MHz, CDCl₃) δ 22.7 (CH₃), 31.5, 36.7, 45.8 (CH₂), 55.7, 70.5 (C), 118.9 (CH₂), 133.7, 134.3, 134.9 (CH); IR (film) 3207, 2953, 2359, 1456, 1362, 1047, 911, 756 cm⁻¹; MS (EI) *m/z* 171 (M⁺-56, 2%), 107 (52), 106 (55), 105 (34), 104 (20), 103 (26), 91 (100), 79 (54), 78 (65), 77 (40), 65 (15), 63 (24), 57 (20), 56 (23), 55 (10), 53 (11), 52 (11), 51 (21), 50 (12); HRMS: Calculated for C₈H₁₃NOS (M⁺-C₄H₈) 171.0718; found: 171.0731.

(1*S*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-1-allylcyclohex-2-enamine (3i):

White solid; mp 94-98 °C (CH₂Cl₂); $[\alpha]^{20}{}_{D}$ +162 (*c* 0.6, CH₂Cl₂); R_f 0.57 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 1.19 (s, 9H), 1.54-2.15 (m, 6H), 2.32-2.52 (m, 2H), 3.42 (br s, 1H), 5.16-5.20 (m, 2H), 5.67-5.74 (m, 1H), 5.74-5.87 (m, 1H), 5.91 (dt, 1H, *J* = 10.1, 3.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 18.4 (CH₂), 22.8 (CH₃), 25.1, 35.6,

46.9 (CH₂), 55.9, 55.9 (C), 119.5 (CH₂), 131.0 (CH), 131.3 (CH), 133.5 (CH); IR (KBr) 3195, 2936, 1362, 1176, 1038, 994, 904 cm⁻¹; MS (EI) m/z 200 (M⁺-41, 3%), 185 (10), 144 (16), 121 (100), 93 (21), 79 (30), 67 (30), 57 (23); HRMS: Calculated for C₉H₁₅NOS (M⁺-C₄H₈) 185.0874; found: 185.0885.

(1*S*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-1-allylcyclohept-2-enamine (3j):

White solid; mp 90-96 °C (CH₂Cl₂); $[\alpha]^{20}{}_{D}$ +80 (*c* 1.2, CH₂Cl₂); R_f 0.61 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 1.20 (s, 9H), 1.50-1.77 (m, 4H), 1.79-1.92 (m, 2H.), 2.12-2.19 (m, 2H), 2.40-2.56 (m, 2H), 3.41 (s, 1H), 5.13-5.20 (m, 2H), 5.69-5.91 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 22.8 (CH₃), 24.1, 27.2, 28.0, 38.4, 47.0

(CH₂), 55.8, 61.6 (C), 119.5 (CH₂), 132.9, 133.5, 136.1 (CH); IR (KBr) 3191, 2928, 1639, 1065, 1034, 994, 952, 904, 679 cm⁻¹; MS (EI) *m/z* 199 (M⁺-41, 29%), 183 (12), 181 (15), 166 (15), 158 (24), 157 (52), 152 (10), 151 (14), 150 (21), 149 (11), 148 (14), 140 (15), 136 (17), 135 (74), 134 (34), 121 (11), 120 (13), 119 (18), 117 (12), 115 (11), 109 (24), 108 (24), 107 (31), 106 (24), 105 (33), 94 (41), 93 (81), 92 (26), 91 (100), 81 (48), 80 (34), 79 (73), 78 (21), 77 (56), 73 (10), 69 (10), 68 (18), 67 (49), 66 (14), 65 (25), 63 (10), 59 (11), 57 (47), 56 (20), 55 (28), 54 (17), 53 (29), 51 (17); HRMS: Calculated for $C_{10}H_{17}NOS$ (M⁺-C₄H₈) 199.1031; found: 199.1034.

(3*S*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-3-methylhex-5-en-3-amine (3k):

Colourless oil; $[\alpha]_{D}^{20}$ +52 (*c* 0.77, CH₂Cl₂); R_f 0.56 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 0.89 (t, 3H, *J* = 7.5 Hz), 1.20 (s, 9H), 1.26 (s, 3H), 1.56 (q, 2H, *J* = 7.4 Hz), 2.30-2.34 (m, 2H), 3.20 (s, 1H), 5.11-5.17 (m, 2H), 5.76-5.91

(m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 7.9, 22.7, 25.6 (CH₃), 33.4, 45.7 (CH₂), 55.7, 57.5 (C), 119.2 (CH₂), 133.5 (CH); IR (film) 3179, 2962, 2915, 1641, 1456, 1362, 1183, 1157, 1035, 1001, 938, 922, 903, 675 cm⁻¹; MS (EI) *m*/*z* 161 (M⁺-56, 31%), 161 (31), 160 (14), 143 (12), 120 (88), 119 (40), 110 (18), 104 (40), 97 (62), 96 (23), 81 (13), 74 (36), 73 (26), 72 (11), 71 (13), 70 (10), 69 (10), 57 (68), 56 (25), 55 (100); HRMS: Calculated for C₇H₁₅NOS (M⁺-C₄H₈) 161.0874; found: 161.0868.

(3*R*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-2,3-dimethylhex-5-en-3-amine (3l):

Yellow oil; $[\alpha]^{20}_{D}$ +50 (*c* 0.99, CH₂Cl₂); R_f 0.62 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 0.91 (t, 6H, *J* = 6.6 Hz), 1.21 (s, 9H), 1.24 (s, 3H), 1.71-1.82 (m, 1H), 2.34-2.47 (m, 2H), 3.29 (s, 1H), 5.16-5.21 (m, 2H), 5.78-5.92 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 16.9, 17.0, 21.7, 22.8 (CH₃), 35.6 (CH), 44.2

(CH₂), 56.0, 59.9 (C), 119.6 (CH₂), 133.4 (CH); IR (film) 3240, 2959, 2874, 2360,

1638, 1457, 1388, 1457, 1164, 1045, 910 cm⁻¹; MS (EI) m/z 175 (M⁺-56, 26%), 190 (12), 134 (93), 133 (28), 132 (41), 118 (17) , 116 (26), 111 (31), 110 (30), 95 (15), 84 (10), 74 (24), 73 (21), 70 (22), 69 (100), 57 (72), 55 (40); HRMS: Calculated for C₈H₁₇NOS (M⁺-C₄H₈) 175.1031; found: 175.1029.

(4*S*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-4-methylnon-1-en-4-amine (3m):

Yellow oil; $[\alpha]_{D}^{20}$ +53 (*c* 0.96, CH₂Cl₂); R_f 0.58 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 0.89 (3H, t, *J* = 6.7 Hz, CH₃), 1.19 (s, 9H), 1.21-1.39 (m, 6H), 1.27 (s, 3H), 1.45-1.54 (m, 2H), 2.25-2.38 (m, 2H), 3.19 (s,

1H), 5.08-5.18 (m, 2H), 5.76-5.89 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 14.0 (CH₃), 22.6 (CH₂), 22.7 (CH₃), 23.0 (CH₂), 26.2 (CH₃), 32.2, 40.9, 46.1 (CH₂), 55.7, 57.4 (C), 119.2 (CH₂), 133.6 (CH); IR (film) 3217, 2932, 2863, 1457, 1362, 1053, 912 cm⁻¹; MS (EI) *m*/*z* 203 (M⁺-56, 22%), 163 (10), 162 (100), 161 (33), 146 (19), 138 (10), 132 (18), 114 (11), 97 (45), 96 (19), 83 (70), 82 (16), 74 (23), 73 (18), 70 (11), 69 (35), 57 (63), 56 (11), 55 (39); HRMS: Calculated for C₁₀H₂₁NOS (M⁺-C₄H₈) 203.1344; found: 203.1341.

(4*S*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-2,4-dimethylnon-1-en-4-amine (3n):

Colourless oil; $[\alpha]^{20}_{D}$ +58 (*c* 1.0, CH₂Cl₂); R_f 0.66 (hexane/EtOAc 1:2); ¹H NMR (300 MHz, CDCl₃) δ 0.89 (t, 3H, *J* = 6.8 Hz), 1.20 (s, 9H), 1.22-1.40 (m, 8H), 1.34 (s, 3H), 1.47-1.59 (m, 2H), 1.82 (s, 3H), 2.28 (s, 2H), 3.46 (s, 1H),

4.82-4.86 (m, 1H), 4.96-5.00 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 14.2 (CH₃), 22.8 (CH₂), 22.9 (CH₃), 23.4 (CH₂), 25.5, 27.2 (CH₃), 32.4, 41.4, 49.7 (CH₂), 55.9, 57.5 (C), 116.5 (CH₂), 142.1 (C); IR (film) 3217, 2933, 2863, 1457, 1377, 1052, 930, 892 cm⁻¹; MS (EI) *m*/*z* 218 (M⁺-55, 8%), 202 (12), 162 (56), 161 (100), 146 (37), 144 (15), 130 (24), 114 (22), 110 (30), 105 (20), 97 (45), 96 (32), 95 (13), 89 (21), 87 (41), 85 (11), 83 (21), 81 (11), 74 (37), 70 (19), 69 (26), 59 (13), 58 (11), 57 (85), 56 (32), 55 (71), 53 (18); HRMS: Calculated for C₁₁H₂₃NOS (M⁺-C₄H₈) 217.1500; found: 217.1498.

(4*R*,*R*_S)-*N*-(*tert*-Butanesulfinyl)-4-methylnon-1-en-4-amine (*ent*-3m):

Physical and spectroscopic dada were found to be same than for **3m**. $[\alpha]^{20}_{D}$ -50 (*c* 1.03, CH₂Cl₂).

General procedure for the stereoselective allylation of *N-tert*-butanesulfinyl ketimines 1:

To a stirred solution of the corresponding *N-tert*-butanesulfinyl amine **3** (0.33 mmol) in THF (0.5 mL) was added a 6M HCl aqueous solution (0.39 mL) at 23 °C. After 1 h stirring at this temperature, the resulting mixture was basified with a 1M NaOH aqueous solution. The reaction mixture was extracted with EtOAc (2×10 mL), the organic layer was washed firs with 1M NaOH aqueous solution (5 mL) and then with H₂O (5 mL), dried over anhydrous MgSO₄ and evaporated (15 Torr) to yield the corresponding amines **4**. Yields are given on Figure 3. Physical and spectroscopic data follow.

Characterization data of the obtained amines 4

(S)-4-Allylchroman-4-amine (4e):

Yellow oil; $[\alpha]^{20}_{D}$ +9 (*c* 1.14, CH₂Cl₂); R_f 0.40 (CH₂Cl₂/MeOH 9:1); ¹H NMR (300 MHz, CDCl₃) δ 1.68 (br s, 2H), 1.81 (ddd, 1H, *J* = 14.0, 6.4, 4.2 Hz), 2.13 (ddd, 1H, *J* = 14.0, 7.0, 4.5 Hz), 2.56 (d, 2H, d, *J* = 7.2 Hz), 4.21-4.27 (m, 2H), 5.10-5.15 (m, 1H), 5.15-5.20

(m, 1H), 5.66-5.85 (m, 1H), 6.81 (dd, 1H, J = 8.2, 1.2 Hz), 6.89-6.95 (m, 1H), 7.13 (ddd, 1H, J = 8.2, 7.2, 1.7 Hz), 7.40 (dd, 1H, J = 7.8, 1.7 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 36.1, 47.4 (CH₂), 49.5 (C), 63.0 (CH₂), 117.1 (CH), 119.2 (CH₂), 120.6, 126.6, 128.2, 133.5 (CH), 153.9 (C); IR (film) 3208, 2956, 2359, 2323, 1363, 1052, 996, 915 cm⁻¹; MS (EI) *m*/*z* 189 (M⁺, 1%), 159 (100); HRMS: Calculated for C₁₂H₁₅NOS 189.1154; found: 189.1155.

(S)-4-Methylnon-1-en-4-amine (4m):

Yellow oil; $[\alpha]^{20}{}_{\rm D}$ -0.5 (*c* 0.84, CH₂Cl₂); R_f 0.28 (CH₂Cl₂/MeOH 9:1); ¹H NMR (300 MHz, CDCl₃) δ 0.89 (t, 3H, *J* = 6.8 Hz), 1.07 (s, 3H), 1.18-1.41 (m, 8H), 2.13 (d, 2H, *J* = 7.5 Hz), 4.89-5.18 (m, 2H), 5.69-5.97 (m, 1H); ¹³C NMR

(75 MHz, CDCl₃) δ 14.1 (CH₃), 22.6, 23.5 (CH₂), 27.4 (CH₃), 32.4, 42.4, 46.9 (CH₂), 51.9 (C), 118.2 (CH₂), 134.3 (CH); IR (film) 3354, 3279, 2927, 1639, 1458, 1377, 911 cm⁻¹; MS (EI) *m*/*z* 155 (M⁺, 1%), 114 (100); HRMS: Calculated for C₁₀H₂₁N 155.1674; found: 155.1663.

X-Ray structures of compounds 3i and 3j

Figure 1. Molecular Structure for Product 3i as Determined by X-ray Analysis

Figure 2. Molecular Structure for Product **3j** as Determined by X-ray Analysis

Electronic Supplementary Material (ESI) for Chemical Communications This international Poyal Society of Chemistry 2012

f1 (ppm) Ó

Electronic Supplementary Material (ESI) for Chemical Communications This iournal is C The Roval Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

(80:20 diastereomeric mixture)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is @ The Royal Society of Chemistry 2012

(59:41 diastereomeric mixture)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications Thi

Electronic Supplementary Material (ESI) for Chemical Communications This journel is @ The Payal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications Thi _______ ;iety of Chemistry 2012

