# **Supporting Information**

# Phosphaalkenyl germylenes and their gold, tungsten and molybdenum complexes

Dimitri Matioszek, Tibor-Gabor Kocsor, Annie Castel\*, Gabriela Nemes\*, Jean Escudié, Nathalie Saffon

#### **General procedure**

All manipulations with air-sensitive materials were performed in a dry and oxygen-free atmosphere of argon by using standard Schlenk-line and glove-box techniques. Solvents were purified with the MBRAUN SBS-800 purification system except THF which was distilled upon Na/benzophenone. NMR spectra were recorded with a Bruker Avance II 300: <sup>1</sup>H (300.13MHz), <sup>13</sup>C (74.48 MHz), <sup>31</sup>P (121.50 MHz) at 298 K in C<sub>6</sub>D<sub>6</sub> or in CD<sub>2</sub>Cl<sub>2</sub>. Chemical shifts are expressed in parts per million with residual solvent signals as internal reference (<sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H}) or with an external reference (H<sub>3</sub>PO<sub>4</sub> for <sup>31</sup>P). NMR assignments were confirmed by COSY (<sup>1</sup>H), HSQC (<sup>1</sup>H-<sup>13</sup>C), and HMBC (<sup>1</sup>H-<sup>13</sup>C) experiments. Melting points were measured with a sealed capillary using the Stuart automatic melting point SMP40 apparatus. The compounds (NHC)GeCl<sub>2</sub><sup>1</sup> and Mes\*P=CCl<sub>2</sub><sup>2</sup> were prepared according to literature procedures.

#### Synthesis of bis(phosphaalkenyl) germylene 1:

To a solution of Mes\*P=C(Li)Cl (1.64 mmol) in THF (6 mL) freshly prepared and cooled at -90 °C was added a suspension of (NHC)GeCl<sub>2</sub> (0.27 g, 0.82 mmol) in THF (3 mL). After 1h the solution was warmed to room temperature and stirred for a further 1h. The volatiles were removed under reduced pressure and the solid residue was extracted with toluene (12 mL). After filtration through a glass-fritted celite layer, the filtrate was evaporated under vacuum to yield **1** as a brown powder (0.62 g, 84%). Crystallization from a saturated toluene solution at -24 °C gave crystals (M.p.: 118 °C, dec) suitable for an X-ray study. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 1.25 (d, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, 12H, CHMe<sub>2</sub>); 1.35 (s, 18H, C<sub>p</sub>CMe<sub>3</sub>); 1.53 (s, 6H, =CMe); 1.75 (s, 18H, C<sub>o</sub>CMe<sub>3</sub>); 1.78 (s, 18H, C<sub>o</sub>CMe<sub>3</sub>); 5.20-6.60 (m, 2H, CHMe<sub>2</sub>); 7.64 (s, 4H, CH of Mes\*). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 10.11 (=CMe); 22.19 (CHMe<sub>2</sub>); 31.53 (C<sub>p</sub>CMe<sub>3</sub>); 33.16 and 33.21 (C<sub>o</sub>CMe<sub>3</sub>); 35.03 (C<sub>p</sub>C);

38.18 and 38.52 (C<sub>o</sub>*C*); 52.17 (*C*HMe<sub>2</sub>); 121.26 and 122.03 (C<sub>m</sub>); 126.18 (C=); 140.53 (dd,  ${}^{1}J_{CP}$  = 82.0 Hz,  ${}^{5}J_{CP}$  = 11.6 Hz, C<sub>i</sub>); 149.33 (C<sub>p</sub>); 153.34 and 153.57 (C<sub>o</sub>); 168.33 (t,  ${}^{3}J_{CP}$  = 16.9 Hz, C:); 197.08 (d,  ${}^{1}J_{CP}$  = 86.3 Hz, C=P).  ${}^{31}$ P NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 265.7.

## Synthesis of tungsten[bis(phosphaalkenyl) germylene] 3:

To a solution of 1 (0.30 g, 0.33 mmol in THF (3 mL) was added at -78 °C a solution of (cod)W(CO)<sub>4</sub> (0.13 g, 0.33 mmol) in THF (3 mL). The solution was heated at 60 °C for 3h. The volatiles were removed under reduced pressure and the residue was washed with pentane. The precipitate was dried under reduced pressure to yield 3 as a brown powder (0.29 g, 73%). Crystallization from dichloromethane at -24 °C gave crystals (M.p.: 232 °C, dec) suitable for an X-ray study. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 1.04$  (d, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 3H, CHMeMe'); 1.18 (d, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 3H, CHMeMe'); 1.27 (d,  ${}^{3}J_{HH} = 6.9$  Hz, 3H, CHMeMe'); 1.29 and 1.30 (2s, 2 x 9H,  $C_pCMe_3$ ; 1.37 and 1.44 (2s, 2 x 3H, =CMe); 1.59 and 1.65 (2s, 2 x 9H,  $C_0CMe_3$ ); 1.65 (d,  ${}^{3}J_{HH}$  = 6.8 Hz, 3H, CH*MeMe'*); 1.81 and 1.87 (2s, 2 x 9H, C<sub>o</sub>CMe<sub>3</sub>); 5.25 (sept,  ${}^{3}J_{HH} = 6.9$  Hz, 1H, CHMeMe'); 6.52 (sept,  ${}^{3}J_{HH} = 6.8$  Hz, 1H, CHMeMe'); 7.58 (s, 2H, CH of Mes\*); 7.59-7.62 (m, 2H, CH of Mes\*). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 9.83 and 10.14 (=CMe); 21.43, 22.06, 22.39 and 22.48 (CHMeMe'); 31.20 and 31.37 (C<sub>p</sub>CMe<sub>3</sub>); 32.68, 32.72, 32.76, 32.81 and 33.85 (C<sub>0</sub>CMe<sub>3</sub>); 35.04 and 35.15 (C<sub>p</sub>C); 37.97, 38.01, 38.55 and 38.80 (C<sub>p</sub>C); 53.31 and 53.36 (CHMeMe'); 121.94, 122.12, 122.19, 122.30 and 122.37 ( $C_m$ ); 126.47 and 128.57 (C=); 131.99 (d,  ${}^1J_{CP} = 31.8$  Hz,  $C_i$ ); 137.65 (d,  ${}^{1}J_{CP} = 65.8$  Hz, C<sub>i</sub>); 150.50 and 151.96 (C<sub>p</sub>); 153.28, 153.66, 154.73 and 156.31 (C<sub>o</sub>); 157.11 (dd,  ${}^{3}J_{CP} = 11.9$  and 19.7 Hz C:); 182.09 (dd,  ${}^{1}J_{CP} = 90.9$  Hz,  ${}^{3}J_{CP} = 19.6$  Hz, C=P); 187.87 (d,  ${}^{3}J_{CP}$  = 12.5 Hz, C=PW); 206.26 (d,  ${}^{2}J_{CP}$  = 11.5 Hz, CO); 208.84 (d,  ${}^{2}J_{CP}$  = 10.1 Hz, CO); 211.38 (d,  ${}^{2}J_{CP}$  = 7.9 Hz, CO); 214.16 (d,  ${}^{2}J_{CP}$  = 36.8 Hz, CO).  ${}^{31}$ P NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 267.2  $({}^{1}J_{PW} = 214.7 \text{ Hz}, \text{PW}); 281.9 \text{ (P)}.$ 

<sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = 1.34 and 1.36 (2s, 2 x 9H, C<sub>p</sub>CMe<sub>3</sub>); 1.38 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 3H, CH*MeMe'*); 1.44 and 1.46 (2s, 2 x 9H, C<sub>o</sub>CMe<sub>3</sub>); 1.57 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 3H, CH*MeMe'*); 1.62 (s, 9H, C<sub>o</sub>CMe<sub>3</sub>); 1.64 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 3H, CH*MeMe'*); 1.68 (s, 9H, C<sub>o</sub>CMe<sub>3</sub>); 1.74 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.8 Hz, 3H, CH*MeMe'*); 2.35 and 2.37 (2s, 2 x 3H, =CMe); 5.22 (sept, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 1H, C*H*MeMe'); 6.21 (sept, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 1H, C*H*MeMe'); 7.40 (s, 2H, CH of Mes\*); 7.44-7.47 (m, 2H, CH of Mes\*). <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = 11.39 and 11.61 (=C*Me*); 22.56, 22.67, 23.35 and 23.45 (CH*MeMe'*); 31.72, and 31.87 (C<sub>p</sub>C*Me<sub>3</sub>*); 33.01, 33.05, 33.10, 33.14, 34.17, 34.19, 34.24

and 34.27 ( $C_oCMe_3$ ); 35.74 and 35.89 ( $C_pC$ ); 38.44, 38.54, 39.05 and 39.17 ( $C_oC$ ); 54.01 and 54.38 (CH); 122.53, 122.80, 122.87 and 122.94 ( $C_m$ ); 128.05 and 129.81 (C=); 131.51 (d,  ${}^1J_{CP} =$  31.7 Hz, C<sub>i</sub>); 131.93 (d,  ${}^1J_{CP} =$  66.9 Hz, C<sub>i</sub>); 151.10 and 152.76 ( $C_p$ ); 153.66, 154.08, 155.24 and 156.24 ( $C_o$ ); 156.96 (dd,  ${}^3J_{CP} =$  10.7 and 20.2 Hz, C:); 182.38 (dd,  ${}^1J_{CP} =$  90.5 Hz,  ${}^3J_{CP} =$  21.2 Hz, C=P); 189.40 (dd,  ${}^1J_{CP} =$  12.6 Hz,  ${}^3J_{CP} =$  12.2 Hz, C=PW); 206.76 (d,  ${}^2J_{CP} =$  11.7 Hz, CO); 208.57 (d,  ${}^2J_{CP} =$  10.1 Hz, CO); 212.44 (d,  ${}^2J_{CP} =$  7.9 Hz, CO); 214.68 (d,  ${}^2J_{CP} =$  36.6 Hz, CO). <sup>31</sup>P NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta =$  264.7 ( ${}^1J_{PW} =$  210.8 Hz, PW); 280.37 (P). IR (nujol):  $v_{CO}$  (1853, 1883, 1900 and 2000 cm<sup>-1</sup>). HR-MS (CI CH<sub>4</sub>): (C<sub>53</sub>H<sub>78</sub>Cl<sub>2</sub>GeN<sub>2</sub>O<sub>4</sub>P<sub>2</sub>W): [M]<sup>+</sup> Calcd: 1196.3550, found: 1196.3545

## Synthesis of molybdenum[bis(phosphaalkenyl) germylene] 4:

To a solution of (nbd)Mo(CO)<sub>4</sub> (0.03 g, 0.11 mmol) in THF (2 mL) was added a solution of **1** (0.10 g, 0.11 mmol) in THF (3 mL) at -78 °C. The solution was heated at 60 °C for 3h. The volatiles were removed under reduced pressure and the crude precipitate was washed with pentane. After drying under reduced pressure, a yellow powder of **4** was obtained (0.08 g, 67%). (M.p.: 198 °C, dec). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 1.04 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 3H, CH*MeMe'*); 1.20 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 3H, CH*MeMe'*); 1.29 and 1.30 (2s, 2 x 9H, C<sub>p</sub>CMe<sub>3</sub>); 1.41 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 3H, CH*MeMe'*); 1.41 and 1.45 (2s, 2 x 3H, =CMe); 1.59 and 1.65 (2s, 2 x 9H, C<sub>o</sub>CMe<sub>3</sub>); 1.65 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 3H, CH*MeMe'*); 6.66 (sept, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 1H, C*H*MeMe'); 7.58 (s, 2H, CH of Mes\*); 7.59-7.61 (m, 2H, CH of Mes\*). <sup>31</sup>P NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 280.2 (PMo); 296.2 (P).

<sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 1.33$  and 1.35 (2s, 2 x 9H, C<sub>p</sub>CMe<sub>3</sub>); 1.36 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.7 Hz, 3H, CH*MeMe*'); 1.44 and 1.45(2s, 2 x 9H, C<sub>o</sub>CMe<sub>3</sub>); 1.56 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 3H, CH*MeMe*'); 1.61 (s, 9H, C<sub>o</sub>CMe<sub>3</sub>); 1.63 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.2 Hz, 3H, CH*MeMe*'); 1.66 (s, 9H, C<sub>o</sub>CMe<sub>3</sub>); 1.74 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 3H, CH*MeMe*'); 2.33 and 2.36 (2s, 2 x 3H, =CMe); 5.23 (sept, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 1H, C*H*MeMe'); 6.36 (sept, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 1H, C*H*MeMe'); 7.39 (s, 2H, CH of Mes\*); 7.42-7.45 (m, 2H, CH of Mes\*). <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 11.40$  and 11.62 (=C*Me*); 22.59, 22.64, 23.36 and 23.47 (CH*Me*<sub>2</sub>); 31.73, and 31.86 (C<sub>p</sub>C*Me*<sub>3</sub>); 32.98, 33.01, 33.07, 33.09, 34.07, 34.10, 34.13 and 34.17 (C<sub>o</sub>C*Me*<sub>3</sub>); 35.72, and 35.84 (C<sub>p</sub>C); 38.42, 38.52, 38.96 and 39.09 (C<sub>o</sub>C); 51.84 and 53.17 (CHMeMe'); 122.47, 122.69, 122.76 and 122.84 (C<sub>m</sub>); 128.00 and 129.61 (C=); 133.27 (d, <sup>1</sup>*J*<sub>CP</sub> = 38.5 Hz, C<sub>1</sub>); 138.16 (d, <sup>1</sup>*J*<sub>CP</sub> = 66.6 Hz, C<sub>1</sub>); 150.98 and 152.52 (C<sub>p</sub>); 153.59, 154.04, 155.08

and 155.98 (C<sub>o</sub>); 158.79 (dd,  ${}^{3}J_{CP} = 10.7$  and 18.4 Hz, C:); 182.57 (dd,  ${}^{1}J_{CP} = 12.6$  Hz,  ${}^{3}J_{CP} = 10.3$  Hz, C=PW); 185.87 (dd,  ${}^{1}J_{CP} = 91.7$  Hz,  ${}^{3}J_{CP} = 18.8$  Hz, C=P); 213.47 (d,  ${}^{2}J_{CP} = 12.3$  Hz, CO); 215.38 (d,  ${}^{2}J_{CP} = 11.5$  Hz, CO); 221.22 (d,  ${}^{2}J_{CP} = 9.4$  Hz, CO); 224.04 (d,  ${}^{2}J_{CP} = 9.4$  Hz, CO).  ${}^{31}P$  (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 278.7$  (PMo); 293.3 (P). IR (nujol):  $v_{CO}$  (1858, 1892, 1908 and 2005 cm<sup>-1</sup>). HR-MS (CI, CH<sub>4</sub>): (C<sub>53</sub>H<sub>78</sub>MoCl<sub>2</sub>GeN<sub>2</sub>O<sub>4</sub>P<sub>2</sub>): [M]<sup>+</sup> Calcd: 1108.3094, found: 1108.3123.

#### Synthesis of chlorogold[bis(phosphaalkenyl) germylene] 5:

To a solution of **1** (0.10 g, 0.11 mmol) in toluene (1 mL) was added a solution of ClAuS(Me)<sub>2</sub> (0.03 g, 0.11 mmol) in toluene (1 mL). After 5 minutes under magnetic stirring in the absence of light, the solution was filtrated and the volatiles removed under reduced pressure to yield **5** as a brown powder (0.13 g, 100%). Crystallization from dichloromethane at room temperature gave crystals (M.p.: 127 °C) suitable for an X-ray study. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 1.18$  (d, <sup>3</sup>*J*<sub>*HH*</sub> = 6.9 Hz, 12H, CH*Me*<sub>2</sub>); 1.30 (s, 18H, C<sub>p</sub>CMe<sub>3</sub>); 1.50 (s, 6H, =CMe); 1.66 (s, 18H, C<sub>o</sub>CMe<sub>3</sub>); 1.67 (s, 18H, C<sub>o</sub>CMe<sub>3</sub>); 5.87-6.25 (m, 2H, C*H*Me<sub>2</sub>); 7.60 (s, 4H, CH of Mes\*). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 10.69$  (=C*Me*); 22.11 (CH*Me*<sub>2</sub>); 31.38 (C<sub>p</sub>C*Me*<sub>3</sub>); 33.24 and 33.40 (C<sub>o</sub>C*Me*<sub>3</sub>); 35.03 (C<sub>p</sub>C); 38.03 and 38.51 (C<sub>o</sub>C); 52.86 (*C*HMe<sub>2</sub>); 121.77 and 122.54 (C<sub>m</sub>); 129.19 (C=); 136.70 (dd, <sup>1</sup>*J*<sub>*CP*</sub> = 75.6 Hz, <sup>5</sup>*J*<sub>*CP*</sub> = 8.4 Hz, C<sub>i</sub>); 150.56 (C<sub>p</sub>); 153.60 (t, <sup>3</sup>*J*<sub>*CP*</sub> = 14.7 Hz, C:); 153.73 and 154.25 (C<sub>o</sub>); 175.14 (dd, <sup>1</sup>*J*<sub>*CP*</sub> = 95.9 Hz, <sup>3</sup>*J*<sub>*CP*</sub> = 15.4 Hz, C=P). <sup>31</sup>P NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 293.0$ . HR-MS (CI, CH4): (C<sub>49</sub>H<sub>78</sub>AuCl<sub>3</sub>GeN<sub>2</sub>P<sub>2</sub>): [M]<sup>+</sup> Calcd: 1132.3584, found: 1132.3538.

## Synthesis of iodogold[bis(phosphaalkenyl) germylene] 6:

A solution of AuI (0.04 g, 0.11 mmol) in toluene (1 mL) was added to a solution of **1** (0.10 g, 0.11 mmol) in toluene (2 mL). After 5 minutes under magnetic stirring in the absence of light, the solution was filtrated and the volatiles removed under reduced pressure to yield **6** as an orange powder (0.13 g, 97%). Crystallization from benzene at room temperature gave crystals (M.p.: 121 °C) suitable for an X-ray study. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 1.22$  (d, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 12H, CH*Me*<sub>2</sub>); 1.30 (s, 18H, C<sub>p</sub>CMe<sub>3</sub>); 1.58 (s, 6H, =CMe); 1.65 (s, 18H, C<sub>o</sub>CMe<sub>3</sub>); 1.67 (s, 18H, C<sub>o</sub>CMe<sub>3</sub>); 5.85-6.32 (m, 2H, CHMe<sub>2</sub>); 7.59 (s, 4H, CH of Mes\*). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 10.68$  (=C*Me*); 22.23 (CH*Me*<sub>2</sub>); 31.37 (C<sub>p</sub>C*Me*<sub>3</sub>); 33.22 and 33.58 (C<sub>o</sub>C*Me*<sub>3</sub>); 35.01 (C<sub>p</sub>C); 38.00 and 38.46 (C<sub>o</sub>C); 52.62 (*C*HMe<sub>2</sub>); 121.72 and 122.57 (C<sub>m</sub>); 128.54 (C=); 136.71 (dd, <sup>1</sup>*J*<sub>CP</sub> = 77.8 Hz, <sup>5</sup>*J*<sub>CP</sub> = 11.1 Hz, C<sub>i</sub>); 150.54 (C<sub>p</sub>); 153.67 and 154.39 (C<sub>o</sub>); 155.29 (t, <sup>3</sup>*J*<sub>CP</sub> = 15.7 Hz, C:); 175.45

(dd,  ${}^{1}J_{CP} = 97.0$  Hz,  ${}^{3}J_{CP} = 16.7$  Hz, C=P).  ${}^{31}$ P NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 292.6$ . HR-MS (CI, CH<sub>4</sub>): (C<sub>49</sub>H<sub>78</sub>AuCl<sub>2</sub>GeIN<sub>2</sub>P<sub>2</sub>): [M]<sup>+</sup> Calcd: 1224.2944, found: 1224.2842.

## **X-ray Structure Determinations**

X-ray data were collected at low temperature (193(2) K) using an oil-coated shock-cooled crystal on a Bruker Kappa APEX II Quazar diffractometer with Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å) with graphite-monochromated MoK $\alpha$  radiation (wavelength = 0.71073 Å) by using phi- and omegascans. The data were integrated with SAINT, and an empirical absorption correction with SADABS was applied.<sup>3</sup> The structures were solved by direct methods, using SHELXS-97<sup>4</sup> and refined using the least–squares method on  $F^{2.5}$  All non-H atoms were treated anisotropically. The H atoms were located by difference Fourier maps and refined with a riding model. Structural data are summarized in Table 1.

|                                               | 1                                                                                                                       | 3                                            | 5                                                                                                                             | 6                                                                                                                            |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Empirical formula                             | C <sub>49</sub> H <sub>78</sub> Cl <sub>2</sub> GeN <sub>2</sub> P <sub>2</sub> ,<br>2 (C <sub>7</sub> H <sub>8</sub> ) | $C_{53}H_{78}Cl_2GeN_2O_4P_2W, 3 (CH_2Cl_2)$ | C <sub>49</sub> H <sub>78</sub> AuCl <sub>3</sub> GeN <sub>2</sub> P <sub>2</sub> ,<br>2.5 (CH <sub>2</sub> Cl <sub>2</sub> ) | C <sub>49</sub> H <sub>78</sub> AuCl <sub>2</sub> GeIN <sub>2</sub> P <sub>2</sub> ,<br>1.5 (C <sub>6</sub> H <sub>6</sub> ) |
| Formula weight (g/mol)                        | 1084.83                                                                                                                 | 1451.23                                      | 1345.30                                                                                                                       | 1341.59                                                                                                                      |
| Temperature (K)                               | 193(2)                                                                                                                  | 193(2)                                       | 193(2)                                                                                                                        | 193(2)                                                                                                                       |
| $\lambda$ (Mo Ka) (Å)                         | 0.71073                                                                                                                 | 0.71073                                      | 0.71073                                                                                                                       | 0.71073                                                                                                                      |
| Crystal system                                | Triclinic                                                                                                               | Triclinic                                    | Triclinic                                                                                                                     | Monoclinic                                                                                                                   |
| Space group                                   | $P \overline{1}$                                                                                                        | $P \overline{1}$                             | $P \overline{1}$                                                                                                              | C 2/c                                                                                                                        |
| a (Å)                                         | 13.9844(4)                                                                                                              | 12.0774(6)                                   | 11.3212(6)                                                                                                                    | 12.1895(9)                                                                                                                   |
| b (Å)                                         | 14.0830(4)                                                                                                              | 14.8952(8)                                   | 15.4945(7)                                                                                                                    | 37.193(3)                                                                                                                    |
| c (Å)                                         | 18.5657(6)                                                                                                              | 21.9932(16)                                  | 18.5887(10)                                                                                                                   | 27.7641(18)                                                                                                                  |
| α (deg.)                                      | 79.5190(10)                                                                                                             | 100.256(3)                                   | 79.533(2)                                                                                                                     | 90                                                                                                                           |
| β (deg.)                                      | 75.8570(10)                                                                                                             | 96.379(3)                                    | 87.667(2)                                                                                                                     | 95.446(3)                                                                                                                    |
| γ (deg.)                                      | 63.2850(10)                                                                                                             | 113.219(2)                                   | 77.006(2)                                                                                                                     | 90                                                                                                                           |
| Volume (Å <sup>3</sup> )                      | 3156.09(16)                                                                                                             | 3505.3(4)                                    | 3124.4(3)                                                                                                                     | 12530.3(16)                                                                                                                  |
| Ζ                                             | 2                                                                                                                       | 2                                            | 2                                                                                                                             | 8                                                                                                                            |
| Density calculated (g/cm <sup>3</sup> )       | 1.142                                                                                                                   | 1.375                                        | 1.430                                                                                                                         | 1.422                                                                                                                        |
| Absorption coefficient (mm <sup>-1</sup> )    | 0.658                                                                                                                   | 2.459                                        | 3.252                                                                                                                         | 3.483                                                                                                                        |
| F(000)                                        | 1164                                                                                                                    | 1476                                         | 1366                                                                                                                          | 5416                                                                                                                         |
| Crystal size (mm)                             | 0.30 x 0.12 x 0.10                                                                                                      | 0.38 x 0.18 x 0.08                           | 0.34 x 0.10 x 0.08                                                                                                            | 0.10 x 0.05 x 0.02                                                                                                           |
| θ range (deg.)                                | 5.10 - 26.37                                                                                                            | 5.11 - 26.37                                 | 5.16 - 28.28                                                                                                                  | 5.15 - 26.37                                                                                                                 |
|                                               | $-17 \le h \le 14$                                                                                                      | $-15 \le h \le 15$                           | $-15 \le h \le 15$                                                                                                            | $-15 \le h \le 15$                                                                                                           |
| Index range h k l                             | $-17 \le k \le 17$                                                                                                      | $-18 \le k \le 18$                           | $-20 \le k \le 20$                                                                                                            | $-44 \le k \le 46$                                                                                                           |
|                                               | $-23 \le l \le 22$                                                                                                      | $-27 \le l \le 27$                           | $-24 \le l \le 24$                                                                                                            | $-34 \le l \le 33$                                                                                                           |
| Paflections collected / Unique                | 48874 / 12787                                                                                                           | 63975 / 14094                                | 65805 / 15160                                                                                                                 | 124173 / 12726                                                                                                               |
| Kenections conected / Unique                  | R(int) = 0.0490                                                                                                         | R(int) = 0.0361                              | R(int) = 0.0365                                                                                                               | R(int) = 0.0988                                                                                                              |
| Completeness to $\theta$ (%)                  | 98.8                                                                                                                    | 98.2                                         | 97.7                                                                                                                          | 99.2                                                                                                                         |
| Data/Restraints/Parameters                    | 12787 / 241 / 720                                                                                                       | 14094 / 103 / 748                            | 15160 / 230 / 706                                                                                                             | 12726 / 244 / 708                                                                                                            |
| Goodness-of-fit                               | 1.019                                                                                                                   | 1.055                                        | 1.022                                                                                                                         | 1.047                                                                                                                        |
| R1, wR2 $(I > 2(\sigma)I)$                    | 0.0458, 0.1114                                                                                                          | 0.0347, 0.0877                               | 0.0325, 0.0723                                                                                                                | 0.0452, 0.0805                                                                                                               |
| R1, wR2 (all data)                            | 0.0730, 0.1262                                                                                                          | 0.0445, 0.0930                               | 0.0490, 0.0790                                                                                                                | 0.0875, 0.0917                                                                                                               |
| Largest diff. peak and hole $(e\dot{A}^{-3})$ | 1.060, -0.387                                                                                                           | 1.226, -0.817                                | 0.906, -0.909                                                                                                                 | 0.598, -0.814                                                                                                                |

| Table 1. | Crystallographie | c data |
|----------|------------------|--------|
|----------|------------------|--------|



**Fig. 3**. Molecular structure of compound **6** in the solid state (50% probability level for the thermal ellipsoids). For clarity, hydrogen atoms and crystallization solvent (benzene) are omitted. Me, *i*Pr and Mes\* groups are simplified. Selected bond distances [Å] and bond angles [°]: Ge1-C1 2.030(6), Ge1-C2 1.979(5), Ge1-C3 1.981(5), Au1-Ge1 2.3641(6), Au1-I1 2.5783(5), P1-C2 1.671(5), P2-C3 1.671(6), Cl1-C2 1.740(5), Cl2-C3 1.752(5) ; I1-Au1-Ge 176.75(2), C2-Ge1-C3 107.1(2), C1-Ge1-C2 108.9(2), C1-Ge1-C3 101.2(2), C1-Ge1-Au1 114.08(17), C2-Ge1-Au1 111.01(15), C3-Ge1-Au1 113.88(9).

1 P. A. Rupar, V. N. Staroverov, P. J. Ragogna and K. M. Baines, J. Am. Chem. Soc., 2007, 129, 15138.

2 S. J. Goede and F. Bickelhaupt, Chem. Ber., 1991, 124, 2677.

- 3 (*a*) Madison, SAINT-NT; Bruker AXS Inc.; Wisconsin 2000.(*b*) SADABS; Program for data correction; Bruker-AXS M.
- 4 G. M. Sheldrick, Acta Crystallogr., 1990, A46, 467.
- 5 SHELXL-97, Program for Crystal Structure Refinement, G. M. Sheldrick; University of Göttingen, *Acta Crystallogr., Sect. A*, 2008, **64**, 112.