Supporting Information

Dehydrogenative Heck coupling of biologically relevant N-heteroarenes with alkenes: discovery of fluorescent core frameworks

Yumin Huang, Feijie Song, Zhen Wang, Peihua Xi, Ningjie Wu, Zhigang Wang, Jingbo Lan and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China Fax: 86-28-85412203; E-mail: jsyou@scu.edu.cn

Table of contents

I. General remarks
II. Optimization of the coupling reaction of caffeine 1a with <i>n</i> -butyl acrylate 2a S2
III. General procedure for the Pd/Cu co-catalyzed dehydrogenative Heck coupling
reaction
IV. Characterization of compounds 3a-3i , 4a-4m , CSC and KW6002 S3
V. Absorption and fluorescence emission data of compounds 3a-3i and 4a-4m S18
VI. Cell culture experiments, imaging of living-cells and cytotoxicity assays
VII. References
VIII. ¹ H and ¹³ C NMR spectra of compounds 3a-3i , 4a-4m , CSC and KW6002 S22

I. General Remarks

NMR spectra were obtained on a Bruker AMX-400 or a Bruker AMX-600. The ¹H NMR (400 MHz or 600 MHz) chemical shifts were measured using CDCl₃ or DMSO-*d*₆ as the internal reference (CDCl₃: δ = 7.26 ppm; DMSO-*d*₆: δ = 2.50 ppm). The ¹³C NMR (100 MHz) chemical shifts are given using CDCl₃ or DMSO-*d*₆ as the internal standard (CDCl₃: δ = 77.16 ppm; DMSO-*d*₆: δ = 39.52 ppm). Low-resolution mass spectra (MS) were obtained by ESI-MS. High-resolution mass spectra (HR-MS) were obtained with a Waters-Q-TOF-Premier (ESI). Melting points were determined with XRC-1 and are uncorrected. Absorption spectra were obtained on a HITACHI U-2910 spectrometer. Fluorescence spectra were collected on a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer. The photomultiplier voltage was 700 V. To reduce the fluctuation in the excitation intensity, the lamp was kept on for 1 hour prior to the experiment.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. 1-Benzyl-3,7-dimethylxanthine, 7-butyl-1,3-dimethylxanthine, 1-allyl-3,7-dimethylxanthine,¹ 1,3-diethyl-7-methyl-1*H*-purine-2,6 (3H,7H)-dione,² other purine derivatives,³ and indolizine⁴ were prepared according to the literature procedures. Pyridine was dried over CaH₂ and freshly distilled prior to use. All solvents were purified and dried according to standard methods prior to use. Unless otherwise indicated, all reactions were carried out under N₂ atmosphere.

II. Optimization of the coupling reaction of caffeine 1a with *n*-butyl acrylate 2a

N O	$ \begin{array}{c} 0 \\ N \\ N \\ N \\ 1a \end{array} + \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	2.5 mol% Pd(OA Cu(I) salt, oxidant, solvent, 120 °C,	$\begin{array}{c} c)_2 \\ additive \\ c)_2 \\ c)_2 \\ c)_1 \\ c)_2 \\ c)_1 \\ c)_2 $	N J J J J N	O″Bu √
Entry	Oxidant	Cu(I) salts	Additive	Solvent	Yield $(\%)^b$
1	Cu(OAc) ₂ ·H ₂ O		pyridine	DMA	29

Table S1 Optimization results of the coupling reaction of caffeine 1a with *n*-butyl acrylate $2a^{a}$

2	Cu(OAc) ₂ ·H ₂ O	CuBr (10 mol%)	pyridine	DMA	57
3	$Cu(OAc)_2 \cdot H_2O$	CuI (10 mol%)	pyridine	DMA	36
4	$Cu(OAc)_2 \cdot H_2O$	CuCl (10 mol%)	pyridine	DMA	67
5	$Cu(OAc)_2 \cdot H_2O$	CuCl (13 mol%)	pyridine	DMA	75
6	Cu(OAc) ₂ ·H ₂ O	CuCl (15 mol%)	pyridine	DMA	81
7	Cu(OAc) ₂ ·H ₂ O	CuCl (20 mol%)	pyridine	DMA	71
8	$Cu(OAc)_2 \cdot H_2O$	CuCl (10 mol%)	pyridine	DMF	62
9	$Cu(OAc)_2 \cdot H_2O$	CuCl (10 mol%)	pyridine	NMP	61
10	$Cu(OAc)_2 \cdot H_2O$	CuCl (10 mol%)	pyridine	DMSO	32
11	Cu(OAc) ₂ ·H ₂ O	CuCl (10 mol%)	pyridine	dioxane	13
12	$Cu(OAc)_2 \cdot H_2O$	CuCl (10 mol%)		DMA	30
13	Cu(OAc) ₂ ·H ₂ O	CuCl (10 mol%)	Et ₃ N	DMA	18
14	$Cu(OAc)_2 \cdot H_2O$	CuCl (10 mol%)	DABCO	DMA	23
15	$Cu(OAc)_2 \cdot H_2O$	CuCl (10 mol%)	2,6-lutidine	DMA	19
16	Cu(OAc) ₂ ·H ₂ O	CuCl (10 mol%)	KOAc	DMA	57
17	$Cu(OAc)_2 \cdot H_2O$	CuCl (13 mol%)	pyridine	DMA	67 ^c
18	$Cu(OAc)_2 \cdot H_2O$	CuCl (15 mol%)	pyridine	DMA	74^d
19	Cu(acac) ₂	CuCl (13 mol%)	pyridine	DMA	trace
20	Ag ₂ CO ₃	CuCl (13 mol%)	pyridine	DMA	26

^{*a*} The reactions were carried out using caffeine **1** (0.5 mmol), *n*-butyl acrylate **2a** (3.0 mmol), oxidant (0.75 mmol), additive (0.5 mmol), Cu(I) salt and Pd(OAc)₂ (0.0125 mmol, 2.5 mol%) in a 0.6 M solution. ^{*b*} Isolated yield. ^{*c*} *n*-Butyl acrylate **2a** (1.5 mmol) was used. ^{*d*} Cu(OAc)₂·H₂O (1.0 mmol) was used.

$ \begin{array}{c} & & \\ & & $	palladium (II) 1.5 equiv Cu(OAc) ₂ •H ₂ O <u>10 mol% CuCl, 1 equiv pyridine</u> OnBu DMA, 120 ºC, 20 h	$ \begin{array}{c} $
 Entry	Palladium source	Yield $(\%)^b$
 1	PdCl ₂	68^c
2	$Pd(OAc)_2$	67
3	$Pd(OAc)_2$	75^c
4	$Pd(OAc)_2$	81^d
5	$Pd(OAc)_2$	84 ^{<i>c</i>,<i>e</i>}

Table S2Optimization of palladium sources^a

6	$Pd(acac)_2$	81^d
7	Pd(dppf)Cl ₂	76^d
8	$Pd(PPh_3)_2Cl_2$	64
9	Pd(PhCN) ₂ Cl ₂	66
10	Pd(MeCN) ₂ Cl ₂	64

^{*a*} Reactions were carried out using caffeine (0.5 mmol), palladium source (2.5 mol%), *n*-butyl acrylate **2a** (3.0 mmol), Cu(OAc)₂·H₂O (0.75 mmol), CuCl (10 mol%) and pyridine (0.5 mmol) in a 0.6 M DMA solution for 20 h at 120 °C. ^{*b*} Isolated yield. ^{*c*} 13 mol% CuCl was used. ^{*d*} 15 mol% CuCl was used. ^{*e*} 10 mol% Pd(OAc)₂ was used.

III. General procedure for the Pd/Cu co-catalyzed dehydrogenative Heck coupling reaction

A flame-dried Schlenk tube with a magnetic stirring bar was charged with $Pd(OAc)_2$ (2.8 mg, 0.0125 mmol), $Cu(OAc)_2 \cdot H_2O$ (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), N-heterocycles (0.5 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) under N₂. After the mixture was stirred at room temperature for 5 min, alkene (3.0 mmol) was added. The resulting mixture was heated at 120 °C for 20 h and then cooled to ambient temperature. The solvent was evaporated and the residue was diluted with 30 mL CH₂Cl₂, filtered through a Celite pad, and washed with CH₂Cl₂(10-20 mL). The combined organic phases were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product.

IV. Characterization of compounds 3a-3i, 4a-4m, CSC and KW6002

(E)-Butyl 3-(1,3,7-trimethyl-xanthine-8-yl) acrylate (3a)

 $Pd(OAc)_2$ (2.8 mg, 0.0125 mmol), $Cu(OAc)_2 \cdot H_2O$ (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), caffeine (97.1 mg, 0.5 mmol), *n*-butyl acrylate (384.5 mg, 3.0 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (CH₂Cl₂/petroleum

ether/acetone = 4/6/1, v/v) afforded the desired product as a pale yellow solid (81% yield). M.p.: 161-163 °C; ¹H NMR (400 MHz, CDCl₃): δ = 0.97 (t, *J* = 7.6 Hz, 3H), 1.41-1.47 (m, 2H), 1.68-1.72 (m, 2H), 3.42 (s, 3H), 3.59 (s, 3H), 4.09 (s, 3H), 4.25 (t, *J* = 6.4 Hz, 2H), 7.03 (d, *J* = 15.6 Hz, 1H), 7.51 (d, *J* = 15.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.8, 19.2, 28.1, 29.8, 30.8, 32.0, 65.2, 109.3, 126.5, 126.5, 146.9, 148.5, 151.6, 155.4, 166.1 ppm. HRMS (ESI): calcd for C₁₅H₂₁N₄O₄ [M+H]⁺ 321.1563, found 321.1508.

(E)-Methyl 3-(1,3,7-trimethyl-xanthine-8-yl) acrylate (3b)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), caffeine (97.1 mg, 0.5 mmol), methyl acrylate (387.4 mg, 4.5 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether/acetone = 15/15/2, v/v) afforded the desired product as a pale yellow solid (66% yield). M.p.: 235-238 °C; ¹H NMR (400 MHz, CDCl₃): δ = 3.41 (s, 3H), 3.59 (s, 3H), 3.85 (s, 3H), 4.09 (s, 3H), 7.02 (d, *J* = 15.2 Hz, 1H), 7.51 (d, *J* = 15.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 28.1, 29.9, 32.0, 52.3, 109.4, 125.9, 126.7, 146.7, 148.5, 151.6, 155.4, 166.4 ppm; HRMS (ESI): calcd for C₁₂H₁₅N₄O₄ [M+H]⁺ 279.1093, found 279.1153.

(E)-tert-Butyl 3-(1,3,7-trimethyl-xanthine-8-yl) acrylate (3c)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4

mg, 0.075 mmol), caffeine (97.1 mg, 0.5 mmol), *tert*-butyl acrylate (384.5 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/CH₂Cl₂/acetone = 8/1/0.4-6/1/0.4, v/v) afforded the desired product as a pale yellow solid (62% yield). M.p.: 214-216 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.53 (s, 9H), 3.40 (s, 3H), 3.57 (s, 3H), 4.06 (s, 3H), 6.96 (d, *J* = 15.6 Hz, 1H), 7.41 (d, *J* = 15.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.1, 28.2, 29.8, 31.9, 81.7, 109.2, 125.6, 128.6, 147.2, 148.5, 151.7, 155.4, 165.2 ppm. HRMS (ESI): calcd for C₁₅H₂₁N₄O₄ [M+H]⁺ 321.1563, found 321.1566.

(E)-N,N-Dimethyl-3-(1,3,7-trimethyl-xanthine-8-yl) acrylamide (3d)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), caffeine (97.1 mg, 0.5 mmol), *N*,*N*-dimethylacrylamide (297.4 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether/acetone = 2/2/1, v/v) afforded the desired product as a pale yellow solid (84% yield). M.p.: 270-273 °C; ¹H NMR (400 MHz, CDCl₃): δ = 3.09 (s, 3H), 3.23 (s, 3H), 3.40 (s, 3H), 3.59 (s, 3H), 4.07 (s, 3H), 7.54 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 28.1, 29.9, 31.9, 36.2, 37.6, 109.0, 124.7, 125.5, 147.8, 148.4, 151.7, 155.3, 165.2 ppm; HRMS (ESI): calcd for C₁₃H₁₈N₅O₃ [M+H]⁺ 292.1410, found 292.1400.

(E)-1,3,7-Trimethyl-8-styryl-xanthine (3e)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), caffeine (97.1 mg, 0.5 mmol), styrene (312.4 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether/acetone = 10/15/2, v/v) afforded the desired product as a white solid (68% yield). M.p.: 214-217 °C; ¹H NMR (400 MHz, CDCl₃): δ = 3.40 (s, 3H), 3.62 (s, 3H), 4.06 (s, 3H), 6.91 (d, *J* = 15.6 Hz, 1H), 7.36-7.42 (m, 3H), 7.57 (d, *J* = 7.2 Hz, 2H), 7.80 (d, *J* = 15.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 28.0, 29.8, 31.6, 107.9, 111.2, 127.4, 129.0, 129.6, 135.5, 138.3, 148.6, 150.0, 151.7, 155.2 ppm; HRMS (ESI): calcd for C₁₆H₁₇N₄O₂ [M+H]⁺297.1352, found 297.1361.

(E)-1,3,7-Trimethyl-8-(4-fluorostyryl)-xanthine (3f)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), caffeine (97.1 mg, 0.5 mmol), 4-fluorostyrene (366.4 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/CH₂Cl₂/acetone = 8/1/0.4-6/1/0.4, v/v) afforded the desired product as a pale yellow solid (82% yield). M.p.: 238-240 °C; ¹H NMR (400 MHz, CDCl₃): δ = 3.41 (s, 3H), 3.62 (s, 3H), 4.06 (s, 3H), 6.83 (d, *J* = 15.6 Hz, 1H), 7.10 (t, *J* = 8.8 Hz, 2H), 7.56 (dd, *J* = 5.6, 8.4 Hz, 2H), 7.76 (d, *J* = 15.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.1, 29.9,

31.6, 111.1, 116.1, 116.3, 129.2, 129.3, 131.9, 137.2, 148.7, 149.9, 151.8, 155.4 ppm. HRMS (ESI): calcd for C₁₆H₁₆N₄O₂F [M+H]⁺ 315.1257, found 315.1255.

(E)-1,3,7-Trimethyl-8-(4-chlorostyryl)-xanthine (3g)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), caffeine (97.1 mg, 0.5 mmol), 4-chlorostyrene (415.8 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/CH₂Cl₂/acetone = 8/1/0.4-6/1/0.4, v/v) afforded the desired product as a pale yellow solid (70% yield). M.p.: 224-226 °C; ¹H NMR (400 MHz, CDCl₃): δ = 3.41 (s, 3H), 3.62 (s, 3H), 4.07 (s, 3H), 6.89 (d, *J* = 15.6 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 15.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.0, 29.9, 31.6, 108.1, 111.8, 128.6., 129.3, 134.1, 135.4, 136.9, 148.6, 149.7, 151.8, 155.3 ppm. HRMS (ESI): calcd for C₁₆H₁₆N₄O₂Cl [M+H]⁺ 331.0962, found 331.0965.

(E)-1,3,7-Trimethyl-8-(4-methylstyryl)-xanthine (3h)

 $Pd(OAc)_2$ (2.8 mg, 0.0125 mmol), $Cu(OAc)_2 \cdot H_2O$ (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), caffeine (97.1 mg, 0.5 mmol), 4-methylstyrene (354.5 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum

ether/CH₂Cl₂/acetone = 8/1/0.4-6/1/0.4, v/v) afforded the desired product as a pale yellow solid (62% yield). M.p.: 199-201 °C; ¹H NMR (400 MHz, CDCl₃): δ = 2.38 (s, 3H), 3.39 (s, 3H), 3.61 (s, 3H), 4.03 (s, 3H), 6.84 (d, *J* = 15.6 Hz, 1H), 7.19 (d, *J* = 7.6 Hz, 2H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.75 (d, *J* = 16.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.5, 28.0, 29.8, 31.5, 107.8, 110.2, 127.4, 129.7, 132.8, 138.4, 140.0, 148.6, 150.3, 151.8, 155.2 ppm. HRMS (ESI): calcd for C₁₇H₁₉N₄O₂ [M+H]⁺ 311.1508, found 311.1512.

(E)-1,3,7-Trimethyl-8-(4-acetoxystyryl)-xanthine (3i)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), caffeine (97.1 mg, 0.5 mmol), 4-acetoxystyrene (486.5 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/CH₂Cl₂/ethyl acetate = 2/1/1-1/1/1, v/v) afforded the desired product as a pale yellow solid (58% yield). M.p.: 206-209 °C; ¹H NMR (400 MHz, CDCl₃): δ = 2.31 (s, 3H), 3.40 (s, 3H), 3.61 (s, 3H), 4.05 (s, 3H), 6.85 (d, *J* = 15.6 Hz, 1H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.77 (d, *J* = 15.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.3, 28.1, 29.9, 31.6, 108.1, 111.5, 122.3, 128.5, 133.3, 137.3, 148.6, 149.9, 151.6, 151.8, 155.3, 169.4 ppm. HRMS (ESI): calcd for C₁₈H₁₉N₄O₄ [M+H]⁺ 355.1406, found 355.1391.

(E)-Butyl 3-(7-butyl-1,3-dimethyl-xanthine-8-yl) acrylate (4a)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), 7-butyl-1,3-dimethyl-xanthine (118.1 mg, 0.5 mmol), *n*-butyl 3 mmol), pyridine (39.6 mg. acrylate (384.5 mg. 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether/acetone = 5/10/1, v/v) afforded the desired product as a pale yellow solid (83% yield). M.p.: 81-84 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.93-0.98$ (m, 6H), 1.34-1.48 (m, 4H), 1.67-1.80 (m, 4H), 3.41 (s, 3H), 3.60 (s, 3H), 4.24 (t, J = 6.8 Hz, 2H), 4.43 (t, J = 7.2 Hz, 2H), 7.04 (d, J = 15.2 Hz, 1H), 7.48 (d, J = 15.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.7$, 13.8, 19.3, 19.8, 28.2, 29.8, 30.7, 33.7, 45.3, 65.2, 108.8, 126.4, 126.7, 146.3, 148.6, 151.6, 155.0, 166.2 ppm; HRMS (ESI): calcd for $C_{18}H_{27}N_4O_4$ [M+H]⁺ 363.2032, found 363.2040.

(E)-Butyl 3-(1-benzyl-3,7-dimethyl-xanthine-8-yl) acrylate (4b)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), 1-benzyl-3,7-dimethyl-xanthine (135.1 mg, 0.5 mmol), *n*-butyl acrylate (384.5 mg, 3.0 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether/ethyl acetate = 15/20/4, v/v) afforded the desired product as a pale yellow solid (58% yield). M.p.: 172-174 °C; ¹H NMR (400 MHz, CDCl₃): δ = 0.96 (t, *J* = 7.2 Hz, 3H), 1.40-1.48 (m, 2H), 1.64-1.72 (m, 2H), 3.57 (s, 3H), 4.08 (s, 3H), 4.24 (t, *J* = 6.8 Hz, 2H), 5.19 (s, 2H), 7.02 (d, *J* = 15.6 Hz, 1H), 7.23-7.32 (m, 3H), 7.47-7.51 (m, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.8, 19.2, 29.9, 30.7, 32.0, 44.6, 65.2, 109.4, 126.4, 126.6, 127.7, 128.5, 128.9,

137.3, 147.0, 148.6, 151.5, 155.2, 166.1 ppm; HRMS (ESI): calcd for $C_{21}H_{25}N_4O_4$ $[M+H]^+$ 397.1876, found 397.1860.

(E)-Butyl 3-(1-allyl-3,7-dimethyl-xanthine-8-yl) acrylate (4c)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), 1-allyl-3,7-dimethylxanthine (110.1 mg, 0.5 mmol), *n*-butyl acrylate (384.5 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/CH₂Cl₂/acetone = 15/1/1, v/v) afforded the desired product as a green solid (51% yield). M.p.: 131-133 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.96$ (t, J = 7.2 Hz, 3H), 1.36-1.48 (m, 2H), 1.65-1.72 (m, 2H), 3.58 (s, 3H), 4.08 (s, 3H), 4.24 (t, J = 6.8 Hz, 2H), 4.62 (d, J = 5.6 Hz, 2H), 5.18-5.28 (m, 2H), 5.86-5.96 (m, 1H), 7.03 (d, J = 15.2 Hz, 1H), 7.50 (d, J = 15.6 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 13.8$, 19.2, 29.8, 30.8, 32.0, 43.5, 65.2, 109.4, 117.8, 126.5, 126.6, 132.3, 147.0, 148.7, 151.2, 155.0, 166.1 ppm; HRMS (ESI): calcd for C₁₇H₂₃N₄O₄ [M+H]⁺ 347.1719, found 347.1718.

(E)-Butyl 3-(1,3-diethyl-xanthine-8-yl) acrylate (4d)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), 1,3-diethylxanthine (104.1 mg, 0.5 mmol), *n*-butyl acrylate (384.5

mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N, N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether/acetone = 5/10/2, v/v) afforded the desired product as white solid (71% yield). M.p.: 209.5-211 °C; ¹H NMR (600 MHz, CDCl₃): δ = 0.96 (t, *J* = 7.8 Hz, 3H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.42-1.46 (m, 5H), 1.67-1.72 (m, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 4.24 (t, *J* = 6.6 Hz, 2H), 4.47 (q, *J* = 7.2 Hz, 2H), 7.06 (d, *J* = 15.6 Hz, 1H), 7.48 (d, *J* = 15.0 Hz, 1H), 8.82 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 13.4, 13.8, 17.0, 19.3, 30.8, 38.0, 40.7, 65.2, 109.0, 126.5, 126.9, 146.6, 150.1, 150.8, 154.7, 166.2 ppm. HRMS (ESI): calcd for C₁₆H₂₃N₄O₄ [M+H]⁺ 335.1719, found 345.1723.

$(E)-N^2, N^2, N^6, N^6, 9$ -Pentamethyl-8-styryl-9*H*-purine-2,6-diamine (4e)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), 9-methyl-2,6-bis(dimethylamino)-purine (110.1 mg. 0.5 mmol), styrene (312.4 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/CH₂Cl₂/ethyl acetate = 15/3/1-12/3/1, v/v) afforded the desired product as a vellow solid (92% vield). M.p.: 154-156 °C; ¹H NMR (400 MHz, CDCl₃): δ = 3.20 (s, 6H), 3.52 (s, 6H), 3.74 (s, 3H), 7.01 (d, J = 16.0 Hz, 1H), 7.27-7.31 (m, 1H), 7.37 (t, J = 7.6 Hz, 2H), 7.56 (d, J = 7.6 Hz, 2H), 7.64 (d, J = 16.0Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 28.7, 37.5, 38.3, 114.2, 127.0, 128.5,$ 128.9, 133.3, 136.7, 144.1, 154.3, 158.7 ppm; HRMS (ESI): calcd for C₁₈H₂₃N₆ [M+H]⁺ 323.1984, found 323.1983.

(E)-Butyl 3-(2,6-bis(dimethylamino)-9-methyl-9H-purin-8-yl) acrylate (4f)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (300 mg, 1.50 mmol), CuCl (7.4 mg, 0.075 mmol), 9-methyl-2,6-bis(dimethylamino)-purine (110.1 mg. 0.5 mmol), *n*-butyl acrylate (384.5 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/CH₂Cl₂/ethyl acetate = 15/3/1-12/3/1, v/v) afforded the desired product as a golden yellow solid (75% yield). M.p.: 92-94 °C; ¹H NMR (400 MHz, CDCl₃): δ = 0.94 (t, *J* = 7.2 Hz, 3H), 1.37-1.46 (m, 2H), 1.63-1.70 (m, 2H), 3.15 (s, 6H), 3.44 (s, 6H), 3.66 (s, 3H), 4.19 (t, *J* = 6.4 Hz, 2H), 6.80 (d, *J* = 15.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.8, 19.2, 28.3, 30.8, 37.2, 38.2, 64.5, 115.6, 120.0, 129.8, 140.8, 154.7, 154.7, 159.6, 167.0 ppm; HRMS (ESI): calcd for C₁₇H₂₇N₆O₂ [M+H]⁺ 347.2195, found 347.2204.

(E)-9-Butyl-N²,N²,N⁶,N⁶-tetramethyl-8-styryl-9*H*-purine-2,6-diamine (4g)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), 9-butyl-2,6-bis(dimethylamino)-purine (131.2 mg. 0.5 mmol), styrene (312.4 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/CH₂Cl₂/ethyl acetate = 15/3/1-12/3/1, v/v) afforded the desired product as a yellow solid (90% yield). M.p.: 101-103 °C; ¹H NMR (400 MHz, CDCl₃): δ = 0.96 (t, *J* = 7.2 Hz, 3H), 1.33-1.39 (m, 2H), 1.75-1.82 (m, 2H),

3.19 (s, 6H), 3.52 (s, 6H), 4.18 (t, J = 6.8 Hz, 2H), 6.98 (d, J = 15.6 Hz, 1H), 7.28-7.31 (m, 1H), 7.38 (t, J = 7.2 Hz, 2H), 7.56 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 15.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.8$, 19.9, 32.3, 37.4, 38.3, 41.4, 114.2, 114.4, 127.0, 128.3, 128.9, 132.9, 136.9, 143.5, 154.4, 159.2 ppm; HRMS (ESI): calcd for C₂₁H₂₉N₆ [M+H]⁺ 365.2454, found 345.2446.

(E)-Butyl 3-(9-butyl-2,6-bis(dimethylamino)-9H-purin-8-yl) acrylate (4h)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (300 mg, 1.50 mmol), CuCl (7.4 mg, 0.075 mmol), 9-butyl-2,6-bis(dimethylamino)-purine (131.2 mg. 0.5 mmol), *n*-butyl acrylate (384.5 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/CH₂Cl₂/ethyl acetate = 15/3/1-12/3/1, v/v) afforded the desired product as a golden yellow solid (75% yield). M.p.: 84-86 °C; ¹H NMR (400 MHz, CDCl₃): δ = 0.95 (q, *J* = 7.6 Hz, 6H), 1.29-1.34 (m, 2H), 1.41-1.46 (m, 2H), 1.64-1.77 (m, 4H), 3.18 (s, 6H), 3.48 (s, 6H), 4.15 (t, *J* = 6.8 Hz, 2H), 4.22 (t, *J* = 6.8 Hz, 2H), 6.89 (d, *J* = 15.6 Hz, 1H), 7.55 (d, *J* = 15.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.7, 13.9, 19.3, 19.9, 30.9, 32.5, 37.3, 41.5, 64.6, 115.6, 120.3, 129.7, 140.5, 154.7, 154.8, 159.6, 167.2 ppm; HRMS (ESI): calcd for C₂₀H₃₃N₆O₂ [M+H]⁺ 389.2665, found 389.2656.

(E)-Methyl 3-(3-butoxy-3-oxoprop-1-enyl) indolizine-2-carboxylate (4i)

Pd(dppf)Cl₂ (9.2 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), methyl indolizine-2-carboxylate (87.6 mg, 0.5 mmol), *n*-butyl acrylate (384.5 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/diethyl ether = 15/1-10/1, v/v) afforded the desired product as a yellow solid (60% yield). M.p.: 58-60 °C; ¹H NMR (400 MHz, CDCl₃): δ = 0.97 (t, *J* = 7.2 Hz, 3H), 1.43-1.48 (m, 2H), 1.68-1.75 (m, 2H), 3.92 (s, 3H), 4.24 (t, *J* = 6.8 Hz, 2H), 6.61 (d, *J* = 16.4 Hz, 1H), 6.78 (t, *J* = 6.8 Hz, 1H), 6.88-6.92 (m, 1H), 7.03 (s, 1H), 7.47 (d, *J* = 9.2 Hz, 1H), 8.36 (d, *J* = 7.2 Hz, 1H), 8.49 (d, *J* = 16.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.9, 19.3, 31.0, 52.0, 64.6, 105.5, 114.3, 115.5, 120.7, 120.9, 121.7, 121.8, 124.9, 131.0, 135.2, 165.2, 168.1 ppm; HRMS (ESI): calcd for C₁₇H₂₀NO₄ [M+H]⁺ 302.1392, found 302.1399.

(E)-Methyl 3-styrylindolizine-1-carboxylate (4j)

Pd(dppf)Cl₂ (9.2 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), methyl indolizine-1-carboxylate (87.6 mg, 0.5 mmol), styrene (312.4 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-Dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/ethyl acetate/toluene = 25/2/1-20/2/1, v/v) afforded the desired product as a yellow solid (47% yield). M.p.: 109-112 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.82 (s, 3H), 6.99 (t, *J* = 6.4 Hz, 1H), 7.21-7.32 (m, 3H), 7.38 (t, *J* = 7.2 Hz, 2H), 7.64 (s, 1H), 7.69 (d, *J* = 8.4 Hz, 3H), 8.10 (d, *J* = 8.8 Hz, 1H), 8.88 (d, *J* = 6.8 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 50.8, 103.6, 112.7, 113.2, 114.8, 118.9, 123.2, 124.8, 125.0, 126.4, 127.3, 127.5, 128.6, 135.6, 137.4, 164.1 ppm; HRMS (ESI): calcd for C₁₈H₁₅NNaO₂ [M+Na]⁺ 300.1000, found 300.1000.

MeOOC Ph

(E)-Methyl 3-styryl pyrrolo[2,1-a]isoquinoline-1-carboxylate (4k)

Pd(dppf)Cl₂ (9.2 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), methyl pyrrolo[2,1-*a*]isoquinoline-1-carboxylate (112.6 mg, 0.5 mmol), styrene (312.4 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/ethyl ether/CH₂Cl₂ = 25/2/1-20/2/1, v/v) afforded the desired product as a yellow solid (64% yield). M.p.: 141-144 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.88 (s, 3H), 7.26-7.42 (m, 5H), 7.56-7.63 (m, 2H), 7.66 (s, 1H), 7.72-7.75 (m, 3H), 7.84 (d, *J* = 7.2 Hz, 1H), 8.72 (d, *J* = 7.6 Hz, 1H), 9.68 (d, *J* = 8.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 51.4, 108.7, 113.2, 113.5, 114.8, 122.6, 125.0, 126.2, 126.5, 126.6, 127.0, 127.4, 127.5, 127.7, 128.6, 128.8, 131.3, 137.2, 164.9 ppm; HRMS (ESI): calcd for C₂₂H₁₈NO₂ [M+H]⁺ 328.1338, found 328.1333.

(E)-Methyl 3-(4-fluorostyryl) pyrrolo[2,1-a]isoquinoline-1-carboxylate (41)

Pd(dppf)Cl₂ (9.2 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), methyl pyrrolo[2,1-*a*]isoquinoline-1-carboxylate (112.6 mg, 0.5 mmol), 4-fluorostyrene (366.4 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/ethyl ether/CH₂Cl₂ = 35/2/1-25/2/1, v/v) afforded the desired product as a yellow solid (62% yield). M.p.: 165-168 °C; ¹H NMR (400

MHz, CDCl₃): δ = 3.96 (s, 3H), 7.04-7.12 (m, 5H), 7.48-7.53 (m, 4H), 7.59-7.66 (m, 2H), 7.98 (d, *J* = 7.6 Hz, 1H), 9.80 (d, *J* = 8.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 51.7, 109.3, 114.1, 114.3, 114.5, 114.5, 115.8, 116.0, 121.0, 125.9, 126.0, 126.8, 127.2, 127.8, 127.9, 128.0, 128.0, 128.5, 128.8, 132.9, 133.4, 133.5, 165.8 ppm; HRMS (ESI): calcd for C₂₂H₁₆FNNaO₂ [M+Na]⁺ 348.1063, found 348.1069.

(E)-Methyl (3-butoxy-3-oxoprop-1-enyl) pyrrolo[2,1-a]isoquinoline-1-carboxy

-late (4m)

Pd(dppf)Cl₂ (9.2 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (300 mg, 1.5 mmol), CuCl (7.4 mg, 0.075 mmol), methyl pyrrolo[2,1-*a*]isoquinoline-1-carboxylate (112.6 mg, 0.5 mmol), *n*-butyl acrylate (384.5 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/ethyl ether = 50/1-20/1, v/v) afforded the desired product as a yellow solid (68% yield). M.p.: 102-105 °C; ¹H NMR (400 MHz, CDCl₃): δ = 0.98 (t, *J* = 7.2 Hz, 3H), 1.43-1.48 (m, 2H), 1.67-1.73 (m, 2H), 3.94 (s, 3H), 4.23 (t, *J* = 6.4 Hz, 2H), 6.44 (d, *J* = 15.6 Hz, 1H), 7.11 (d, *J* = 7.6 Hz, 1H), 7.53-7.71 (m, 4H), 7.91 (d, *J* = 15.6 Hz, 1H), 8.07 (d, *J* = 7.2 Hz, 1H), 9.77 (d, *J* = 8.4 Hz, 1H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 13.9, 19.4, 31.0, 51.8, 64.6, 110.6, 115.0, 115.8, 118.5, 120.9, 123.2, 125.7, 126.9, 127.6, 128.2, 129.3, 129.8, 134.7, 165.4, 167.5 ppm; HRMS (ESI): calcd for C₂₁H₂₂NO₄ [M+H]⁺ 352.1549, found 352.1547.

(*E*)-1,3,7-Trimethyl-8-(3-chlorostyryl)-xanthine (CSC)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), caffeine (97.1 mg, 0.5 mmol), 3-chlorostyrene (415.8 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/CH₂Cl₂/acetone = 8/1/1-6/1/1, v/v) afforded the desired product as a pale yellow solid (65% yield). M.p.: 195-197 °C; ¹H NMR (400 MHz, CDCl₃): δ = 3.41 (s, 3H), 3.62 (s, 3H), 4.08 (s, 3H), 6.92 (d, *J* = 15.6 Hz, 1H), 7.33 (d, *J* = 4.8 Hz, 2H), 7.43 (d, *J* = 4.0 Hz, 1H), 7.57 (s, 1H), 7.74 (d, *J* = 15.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.1, 29.9, 31.7, 108.3, 112.7, 125.9, 127.0, 129.5, 130.3, 135.1, 136.8, 137.4, 148.6, 149.5, 151.8, 155.4 ppm. MS (ESI): calcd for C₁₆H₁₆N₄O₂Cl [M+H]⁺ 331.0, found 331.0.

(*E*)-8-(3,4-Dimethoxystyryl)-1,3-diethyl-7-methyl-1*H*-purine-2,6(3*H*,7*H*)-dione (KW6002)

Pd(OAc)₂ (2.8 mg, 0.0125 mmol), Cu(OAc)₂·H₂O (150 mg, 0.75 mmol), CuCl (7.4 mg, 0.075 mmol), 1,3-diethyl-7-methyl-1*H*-purine-2,6(3*H*,7*H*)-dione (111.1 mg, 0.5 mmol), 3,4-dimethoxystyrene (492.6 mg, 3 mmol), pyridine (39.6 mg, 0.5 mmol) and N,N-dimethylacetamide (0.6 mL) at 120 °C for 20 h. Purification via silica gel column chromatography (petroleum ether/CH₂Cl₂/acetone = 6/1/0.4-8/1/1, v/v) afforded the desired product as a yellow solid (95% yield). M.p.: 209-211 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.39 (t, *J* = 6.8 Hz, 3H), 1.47 (t, *J* = 6.8 Hz, 3H), 3.42 (s, 3H), 3.93 (s,

3H), 3.96 (s, 3H), 4.22 (q, J = 7.2 Hz, 2H), 4.49 (q, J = 7.2 Hz, 2H), 6.75 (d, J = 15.6 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 7.08 (s, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 15.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.6$, 16.8, 27.9, 38.6, 40.0, 56.1, 56.1, 107.2, 109.3, 109.9, 111.4, 121.2, 128.8, 138.3, 148.5, 149.3, 149.6, 150.5, 151.3, 155.0 ppm. MS (ESI): calcd for C₂₀H₂₅N₄O₄ [M+H]⁺ 385.2, found 385.2.

V. Absorption and fluorescence emission data of compounds 3a-3i and 4a-4m

compd.	$\lambda_{abs}\!/\!\lambda_{em}[nm]$	Stokes shift [nm]	compd.	$\lambda_{abs}\!/\!\lambda_{em}[nm]$	Stokes shift [nm]
3 a	353/422	69	4c	351/422	71
3b	353/423	70	4d	349/417	68
3c	348/420	72	4e	395/483	88
3d	348/402	54	4f	417/510	93
3e	354/417	63	4g	395/482	87
3f	353/417	64	4h	417/508	91
3g	358/423	65	4 i	394/446	52
3h	355/418	63	4j	368/461	93
3i	356/421	65	4k	367/435	68
4a	349/421	72	41	365/434	69
4b	353/421	68	4m	381/433	52

Table S3UV absorption and fluorescence emission maxima of N-heteroarenes 3 and 4 in DCM.

VI. Cell culture experiments, imaging of living-cells and cytotoxicity assays

The human hepatocellular carcinoma cell (SMMC-7721) lines were purchased from American Type Culture Collection. The cells were seeded in a 8-well tissue culture plate for one day and then cultured following ATCC protocols (The cells were maintained at 37 °C, 5% CO₂ atmosphere in Dublecco's Minimum Essential Medium (DMEM) medium supplemented with 10% FBS, 2 mM L-glutamine, 100 units/mL of penicillin, and 100 mg/mL of streptomycin for overnight). For imaging experiments, live cells were coincubated with 5 μ M **4f** in a physiological saline solution containing 1% DMSO for 40 min at 37 °C. The cells were observed with a Fluorescence Inverted Microscope (IX71, OLYMPUS) and photographed by using Spot Flex.

Cytotoxicity assays

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were performed to evaluate the cytotoxicity effect of 4e, 4f and 3g. HepG2 cells or A549 cells were incubated in a 96-well culture plates at a volume of 100 μ L (5×10⁴ cells/mL) for a stationary culture. This media were changed into fresh media with a final volume of 200 μ L containing sample in the 2-fold down dilution series and then incubated for 24 hours. Then 20 μ L of MTT (5 mg/mL in phosphate-buffered saline (PBS)) was added to each well, incubated for an additional 4 hours. After centrifuged at 1000 rpm for 5 min, the medium was removed. MTT formazan precipitate was dissolved in 150 μ L of DMSO, shaken mechanically for 5 min and then absorbance readings at a wavelengthof 570 nm were taken on a spectrophotometer (Molecular Devices, Sunnyvale, USA). The cell viability was calculated by the following formula:

(mean optical density (OD) in treated wells/mean OD in control wells) \times 100%.

Fig. S1 Cell viability values (%) estimated by MTT assays on HepG2 cells, which were cultured in the presence of 2.5-10 μ M of sample for 24 h at 37 °C.

Fig. S2 Cell viability values (%) estimated by MTT assays on A549 cells, which were cultured in the presence of 2.5-10 μ M of sample for 24 h at 37 °C.

VII. References

(1) J. W. Daly, W. L. Padgett and M. T. Shamim, J. Med. Chem., 1986, 29, 1305.

(2) (a) P. Xi, F. Yang, S. Qin, D. Zhao, J. Lan, G. Gao, C. Hu and J. You, J. Am. Chem.

Soc. 2010, 132, 1822; (b) D. van den Berg, K. R. Zoellner, M. O. Ogunrombi, S. F.

Malan, G. Terre'Blanche, N. Castagnoli, Jr., J. J. Bergh and J. P. Petzer, Bioorg. Med.

Chem. 2007, 15, 3692.

(3) R. S. Butler, P. Cohn, P. Tenzel, K. A. Abboud and R. K. Castellano, *J. Am. Chem. Soc.*, 2009, **131**, 623.

(4) (a) L. Zhang, F. Liang, L. Sun, Y. Hu and H. Hu, Synthesis, 2000, 1733. (b) M. L.

Bode and P. T. Kaye, J. Chem. Soc., Perkin Trans. 1, 1993, 1809.

VIII. ¹H and ¹³C NMR spectra of compounds 3a-3i, 4a-4m, CSC and KW6002

S22

