Supporting information for

The role of aristolochene synthase in diphosphate activation

Juan A. Faraldos, Verónica González and Rudolf K. Allemann*

School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom. Fax: 44 29 2087 4030; E-mail: <u>allemannrk@cf.ac.uk</u>.

Table of contents

Site directed mutagenesis of recombinant PR-AS cDNA	S2
Expression of wild type PR-AS and mutants	S3
GC/MS analysis	S3
Steady-state kinetic assays	S3
Kinetic parameters and product distributions for PR-AS and mutants	S4
Amino acid sequence alignment of fungal and bacterial sesquiterpene synthase	sS5
Representative GC/MS spectra	S6-S9
Representative Lineweaver-Burk plots	S9-S10
Representative Michaelis-Menten plots	
References	S12

Site directed mutagenesis of recombinant PR-AS cDNA

The Quickchange site-directed mutagenesis kit (Stratagene) was used to introduce the desired mutations according to the manufacturer's instructions. The primers used for mutagenesis were as follows:

5'-GGGCATTATCTCGAGTACAAAGAGAAGGATGTAGGCAAG-3' and 5'-CTTGCCTACATCCTTCTCTTTGTACTCGAGATAATGCCC-3' for R200K; 5'-GGCATTATCTCGAGTACGAAGAGAAGGATGTAGGCAAG-3' and 5'-CTTGCCTACATCCTTCTCTTCGTACTCGAGATAATGCC-3' for R200E; 5'-GCATTATCTCGAGTACCAGGAGAAGGATGTAGGCAAG-3' and 5'-CTTGCCTACATCCTTCTCCTGGTACTCGAGATAATGC-3' for R200Q; 5'-TCGAGTACCGTGAGAAGCTGGTAGGCAAGGCGTTGC-3' and 5'-GCAACGCCTTGCCTACCAGCTTCTCACGGTACTCGA-3' for D203L; 5'-CATATACAGTTATGACCAGGAAGAGGAAGCGTC-3' and 5'-GACGCTTCCTCTTCCTGGTCATAACTGTATATG-3' for K251Q; 5'-GACATATACAGTTATGACCGTGAAGAGGAAGCGTCTCG-3' and 5'-CGAGACGCTTCCTCTTCACGGTCATAACTGTATATGTC-3' for K251R 5'-GGAGCAAGACCACGCGTAAATACAACTAAGGATCCTC-3' and 5'-GAGGATCCTTAGTTGTATTTACGCGTGGTCTTGCTCC-3' for R340K; 5'-GAGCAAGACCACGCGTATGTACAACTAAGGATCCTC-3' and 5'- GAGGATCCTTAGTTGTACATACGCGTGGTCTTGCTC-3' for R340M; 5'-CAAGACCACGCGTCGCTTTAACTAAGGATCCTCTAG-3' and 5'-CTAGAGGATCCTTAGTTAAAGCGACGCGTGGTCTTG-3' for Y341F;

Plasmids were purified from overnight cultures (10 mL LB medium containing ampicillin 50 μ M/mL) using the QIAGEN miniprep kit as described by the manufacturer. Mutations were confirmed by DNA sequence analysis using Eurofins MWG.

Expression of wild type PR-AS and mutants

PR-AS and mutants were overproduced in *E. coli* BL21(DE3) cells and purified as previously described.¹

GC/MS analysis

Proteins (50 μ M) were incubated with FPP (1 mM) in incubation buffer (25 mM Tris, pH 7.5, 5 mM beta-mercaptoethanol, 15% glycerol and 5 mM MgCl₂) in a total volume of 250 μ L. The reaction was overlaid with pentane and left overnight. Products were extracted with 2 portions of 500 μ L pentane and the combined organic layers passed through a short column of aluminium oxide. GC-MS analysis of incubation products was performed using a HP 6890 GC-MS system fitted with J & W Scientific HP-5MS column (30 m length and internal diameter of 0.25 mm) and a Micromass GCT Premiere mass spectrometer for detection. The program uses an initial oven temperature of 50 °C with a gradient of 4 °C min⁻¹ over 25 min followed by a gradient of 20 °C min⁻¹ over 5 min to a final temperature of 250 °C.

Steady-state kinetic assays

Kinetic assays were carried out as previously described.²⁻⁴ Steady-state parameters were obtained by direct fitting of the data to the Michaelis-Menten equation by nonlinear least squares regression using the graphical procedures developed by Lineweaver-Burk⁵ within the SigmaPlot package (Systat Software).

	4	2	5	K _M	$k_{\rm cat} \mathrm{x10^{-3}}$	k _{cat} /K _M
	(%)	(%)	(%)	(µM)	(s^{-1})	$(M^{-1}s^{-1})$
WT	91.5	7.5	1	0.53	84	158490
R200K	19.2	78.9	1.8	1.04	0.6	620
R200Q				Inactive		
R200E				Inactive		
D203L	17.3	79.7	3	0.74	0.75	1013
K251R	90.2	6	3.8	0.14	3.7	26428
K251Q	84.6	9.8	5.6	0.24	2	8500
R340K	54.4	42.8	2.8	1.59	0.8	510
R340M				Inactive		
Y341F	93.3	3.8	2.9	0.18	2.5	14000

Table 1: Kinetic parameters and product distributions for PR-AS and mutants^a

^aReported values are the average of 3 measurements; all values were within 5% of the average.

AT-AS	ASSSLEPPPSTFQPLCHPLVEEVSKE 35	
PR-AS	MATSTETISSLAQPFVHLENPINSPLVKETIRPRNDTTITPPPTQWSYLCHPRVKEVQDE 60	
SC-EIZS	PSLRLPVIEAAFPROLHPYWPKLOET 44	
SP-PS	LPGROSPDHARAEAE 25	
FS-TS	MENFPTEYFLNTTVRLLEYIRYRDSNYTREERIENLHYAYNKAAHHF 47	
AT-AS	VDGYFLQHWNFPNEKARKKFVAAGFSRVTCLYFPKALDDRIHFACRLLTVLFLIDDLLEY 95	
PR-AS	VDGYFLENWKFPSFKAVRTFLDAKFSEVTCLYFPLALDDRIHFACRLLTVLFLIDDVLEH 120	0
SC-EIZS	TRTWLLEKRLMPADKVEEYADGLCYTDLMAGYYLGAPDEVLOAIADYSAWFFVWDDRHDR 104	4
SP-PS	OLAWPRSLGLIRSDAAAERHLRGGYADLASRFYPHATGADLDLGVDLMSWFFLFDDLFDG 85	
FS-TS	AOPROOOLLKVDPKRLOASLOTIVGMVVYSWAKVSKECMADLSIHYTYTLVLDDSKD- 104	4
AT-AS	MSFEEGSAYNEKLIPISRGDVLPDRSIPVEYIIYDLWESMRAHDR 14	40
PR-AS	MSFADGEAYNNRLIPISRGDVLPDRTKPEEFILYDLWESMRAHDA 10	65
SC-EIZS	DIVHGRAGAWRRLRGLLHTALDSPGDHLHHEDTLVAGFADSVRRLYAFLPATWNA 1	59
SP-PS	PRGEN-PEDTKQLTDQVAAALDGPLPDTAPPIAHGFADIWRRTCEGMTPAWCA 1	37
FS-TS	DPYPTMVNYFDDLQAGREQAHPWWALVNEHFPNVLRHFGPFCSLNLIRSTLDFFEGCWIE 1	64
	* : : : *	
		0.5
AI-AS	EMADELLEPVFLFMRAQIDRIR-ARPMGLGGI-LEIRERDVGRELLAALMRFS-MGLK 1	20
PR-AS	ELANEVLEPTFVFMRAQIDRAR-LSTHELGHT-LETRERDVGRALLSALMRFSMGLR 2.	20
SC-EIZS	RFARHFHTVIEAYDREFHNRTR-GIVPGVEEYLELRRLTFAHWIWTDLLEPSSGCE 2.	14
SP-PS	RSARHWRNYFDGYVDEAESRFWNAPCDSAAQY - LAMRRHTIGVQPTVDLAERA - GRFE 1	93
FS-TS	QYNFGGFPGSHDYPQFLRRMNGLGHCVGASLWPKEQFNERSLFLEITSAIAQMENWMVWV 2	24
	. : : : .	
AT-AS	LSPSELORVREIDANCSKHLSVVNDIYSYEKELYTSKTAHSEGGILCTSVOILAOEA- 2	52
PR-AS	LSADELÕDMKALEANCAKOLSVVNDIYSYDKEEEASRTGHKEGAFLCSAVKVLAEES- 2	77
SC-EIZS	IPDAVRKHPAYRRAALLSOEFAAWYNDLCSLPKEIAGDEVHNLGISLITHHSLTLEEAIG 2	74
SP-PS	VPHRVEDSAVMSAMLOIAVDVNIJINDIASLEKEEARGEONNMVMILRREHGWSKSESVS 2	53
FS-TS	NDLMSEYKEEDDERDOISLVKNYVVSDEISLNEALEKLTODTLHSSKOMVAVESDKDPOV 2	84
10 10	· · · * * :	01
AT-AS	DVTAEAAKRVLFVMCREWELRHQLLVAR-LSAEGLETPGLAAYVEGLEYQMSGNELWS 3	09
PR-AS	KLGIPATKRVLWSMTREWETVHDEIVAEKIASPDGCSEAAKAYMKGLEYQMSGNEQWS 3	35
SC-EIZS	EVRRRVEECITEFLAVERDALRFADELADGTVRGKE-LSGAVRANVGNMRNWFSSVYWFH 3	33
SP-PS	HMQNEVRARLEQYLLLESCLPKVGEIYQLDTAEREALERYRTDAVRTVIRGSYDWH 3	09
FS-TS	MDTIECFMHGYVTWHLCDRRYRLSEIYEKVKEEKTEDAQKFCKFYEQAANVGAVSPSEWA 34	44
	: : :	
ΔT-ΔS	ОТТІ. <mark>РУ</mark> SVVVD 320	
DR-JC	XTTRVV	
SC-FIZS	HESCEVINDSWIDDRSTDDVVNINFAACEK 361	
	DCC(DVD) EEVI'' V WREWERE CCCVT = - 201	
1.9-19	TELAVÖNUN VENÄKLIPPIENNE 214	

Figure S1. Amino acid sequence alignment of fungal/bacterial sesquiterpene synthases

ClustalW2.⁶ AT-AS and PR-AS, *A. terreus* and *P. roqueforti* aristolochene synthases; EIZS, *S. coelicolor* epi-isozizane synthase; PS, *Streptomyces sp.* pentalenene synthase; TS, *Fusarium sporotrichioides* trichodiene synthase.

Figure S2. Representative total ion chromatogram of the pentane extractable products formed from incubation of FDP and PR-AS: aristolochene (retention time, 24.60 min), valencene (24.93 min) and germacrene A (25.22 min).

Figure S3. Representative total ion chromatogram of the pentane extractable products formed from incubation of FDP and PR-AS-R200K: aristolochene (retention time, 24.60 min), valencene (24.93 min) and germacrene A (25.22 min).

Figure S4. Representative total ion chromatogram of the pentane extractable products formed from incubation of FDP and PR-AS-D203L: aristolochene (retention time, 25.18 min), valencene (25.48 min) and germacrene A (25.82 min).

Figure S5. Representative total ion chromatogram of the pentane extractable products formed from incubation of FDP and PR-AS-K251Q: aristolochene (retention time, 25.60 min), valencene (25.88 min) and germacrene A (26.23 min).

Figure S6. Representative total ion chromatogram of the pentane extractable products formed from incubation of FDP and PR-AS-K251R: aristolochene (retention time, 25.60 min), valencene (25.88 min) and germacrene A (26.23 min).

Figure S7. Representative total ion chromatogram of the pentane extractable products formed from incubation of FDP and PR-AS-R340K: aristolochene (retention time, 24.55 min), valencene (24.93 min) and germacrene A (25.22 min).

Figure S8. Representative total ion chromatogram of the pentane extractable products formed from incubation of FDP and PR-AS-Y341F: aristolochene (retention time, 25.60 min), valencene (25.88 min) and germacrene A (26.23 min).

Lineweaver-Burk plots

Figure S9. Representative Lineweaver-Burk plot for PR-AS-R200K.

Figure S10. Representative Lineweaver-Burk plot for PR-AS-D203L.

Figure S11. Representative Lineweaver-Burk plot for PR-AS-R340K.

Michaelis-Menten plots

Figure S12. Representative Michaelis-Menten plot for PR-AS-K251R.

Figure S13. Representative Michaelis-Menten plot for PR-AS-K251Q.

Figure S14. Representative Michaelis-Menten plot for PR-AS-Y341F.

References

- (a) J. M. Caruthers, I. Kang, M. J. Rynkiewicz, D. E. Cane and D. W. Christianson, J. Biol. Chem., 2000, 275, 25533-25539.
 (b) M. J. Calvert, P. R. Ashton and R. K. Allemann, J. Am. Chem. Soc. 2002, 124, 11636.
- F. Karp, Z. Yuxin, B. Santhamma, B. Assink, R. M. Coates, R. B. Croteau, Arch. Biochem. Biophys. 2007, 468, 140-146.
- 3. J. A. Faraldos, B. Kariuki and R. K. Allemann, J. Org. Chem., 2010, 75, 1119-1125.
- 4. J. A. Faraldos, A. K. Antonczak, V. Gonzalez, R. Fullerton, E. M. Tippmann and R. K. Allemann, *J. Am. Chem. Soc.*, 2011, **133**, 13906-13909.
- 5. H. Lineweaver, D. Burk, J. Am. Chem. Soc. 1934, 56, 658-666.
- 6. Z. Zhang, L. Wagner and W. Miller, J. Comput. Biol., 2000, 7, 203-214.