β-Rhamnosides from 6-thio mannosides

Alphert E. Christina, Daan van der Es, Jasper Dinkelaar, Hermen S. Overkleeft, Gijsbert A. van der Marel,* and Jeroen D. C. Codée*

Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands

E-mail: marel_g@chem.leidenuniv.nl; jcodee@chem.leidenuniv.nl

Supporting Information

Contents General experimental procedures **S**3 Compounds 6, S3, 7 S4 Compounds **S4**, **8**, **S5**, **9** S5 Compounds **S6**, **10**, **S7** S6 Compounds 11, 58, 12 S7 Compounds **S9**, **13**, **S10** S8 Compounds 14, 15a, 15b S9 Compounds 16a, 16b, 16c, 17a S10 Compounds 17b, 17c, 18a S11 Compounds 18b S12 Compounds 18c, 19a, 19b S13 Compounds 19c, 20a, 20b S14 Compounds 20c, 21a S15 Compounds **21b**, **21c**, **22a** S16 Compounds 22b, 22c S17 Compounds **23a**, **23b**, **23c** S18 Compounds **24a**, **24b**, **24c** S19 Compound **26**, **18a** (by pre-activation of **8**) S20 Control experiments to exclude acid catalyzed anomerisation S21 Compounds S11, S12 S22 Compounds S13, 29 S23 S24 Compounds S14, 32 S25 Compounds S16, S17 Compounds S18, 28 S26 Compounds **30**, **31**, **33** S27 Compounds 34, 35 S28 Compounds 36 S29 Compound 37 S30 ¹H and ¹³C NMR spectra of compound **6** S31 ¹H and ¹³C NMR spectra of compound **7** S32 ¹H and ¹³C NMR spectra of compound **S4** S33 ¹H and ¹³C NMR spectra of compound **8** S34 ¹H and ¹³C NMR spectra of compound **S5** S35 ¹H and ¹³C NMR spectra of compound **9** S36 ¹H and ¹³C NMR spectra of compound **S6** S37 ¹H and ¹³C NMR spectra of compound **10** S38 ¹H and ¹³C NMR spectra of compound **S7** S39 ¹H and ¹³C NMR spectra of compound **11** S40

¹ H and ¹³ C NMR spectra of compound S8	S41
¹ H and ¹³ C NMR spectra of compound 12	S42
¹ H and ¹³ C NMR spectra of compound S9	S43
¹ H and ¹³ C NMR spectra of compound 13	S44
¹ H and ¹³ C NMR spectra of compound S10	S45
¹ H and ¹³ C NMR spectra of compound 14	S46
¹ H and ¹³ C NMR spectra of compound 15b	S47
¹ H and ¹³ C NMR spectra of compound 17c	S48
¹ H and ¹³ C NMR spectra of compound 18a	S49
¹ H and ¹³ C NMR spectra of compound 18b	S50
¹ H and ¹³ C NMR spectra of compound 18c	S51
¹ H and ¹³ C NMR spectra of compound 19a	S52
¹ H and ¹³ C NMR spectra of compound 19b	\$52
1 H and 13 C NMR spectra of compound 196	555
¹ H and ¹³ C NMP spectra of compound 20a	554
1 H and 13 C NMP spectra of compound 20b	222
1 L and 13 C NMP spectra of compound 205	330
H and C NMR spectra of compound 20c	357
H and C NIXIR spectra of compound 21a	558
⁻ H and C NMR spectra of compound 21b	\$59
² H and ²² C NMR spectra of compound 21c	S60
¹ H and ¹³ C NMR spectra of compound 22a	S61
¹ H and ¹³ C NMR spectra of compound 22b	S62
¹ H and ¹³ C NMR spectra of compound 22c	S63
¹ H and ¹³ C NMR spectra of compound 23a	S64
¹ H and ¹³ C NMR spectra of compound 23b	S65
¹ H and ¹³ C NMR spectra of compound 23c	S66
¹ H and ¹³ C NMR spectra of compound 24a	S67
¹ H and ¹³ C NMR spectra of compound 24b	S68
¹ H and ¹³ C NMR spectra of compound 24c	S69
¹ H and ¹³ C NMR spectra of compound 25 (from donor 8)	S70
¹ H and ¹³ C NMR spectra of compound 26	S71
¹ H and ¹³ C NMR spectra of compound 27 (from mannoside 27)	S72
¹ H and ¹³ C NMR spectra of compound S11	S73
¹ H and ¹³ C NMR spectra of compound S12	S74
¹ H and ¹³ C NMR spectra of compound S13	S75
¹ H and ¹³ C NMR spectra of compound S15	S76
1 H and 13 C NMR spectra of compound 29	S77
1 H and 13 C NMR spectra of compound S14	S78
¹ H and ¹³ C NMR spectra of compound 32	579
¹ H and ¹³ C NMR spectra of compound S16	580
¹ H and ¹³ C NMR spectra of compound S17	S00
¹ H and ¹³ C NMR spectra of compound S18	582
¹ H and ¹³ C NMP spectra of compound 38	502
¹ H and ¹³ C NMP spectra of compound 20	202
1 H and 13 C NMP spectra of compound 21	304 Cor
Π and Π C INIVIR spectra of compound 31	202
n anu – U NIVIK spectra of compound 33	280
H and C NIVIK spectra of compound 34	587
TH and TC NIVIR spectra of compound 35	588
^T H and ^{TC} NMR spectra of compound 36	589
⁺ H and ⁺⁻ C NMR spectra of compound 37	S90

Reagents and conditions: (*i*) 1) TrCl, pyridine, 50 °C 2) BnBr, NaH, DMF 3) *p*-TsOH, MeOH (75% over 3 steps) (*ii*) DiPEA, RH, DMF (*iii*) 1) cat. H_2SO_4 , Ac₂O 2) piperidine, THF (*iv*) CF₃C(=NPh)Cl, Cs₂CO₃, acetone, H_2O .

General experimental procedure for the preparation of 6-deoxy-6-thio/selenomannosides (S4-S7, S9): To a 0.1 M solution of the starting 6-deoxy-6-iodo-mannoside in DMF were added DiPEA (1.2 equiv) and thiol/selenol (1.2 equiv). After stirring overnight the reaction mixture was diluted with Et_2O , washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine. The organic layer was dried over MgSO₄, filtered and concentrated. Flash column chromatography afforded the pure products.

General experimental procedure for the preparation of (*N*-phenyl)trifluoroacetimidates (8-13): To the subject methyl glycoside was added 3 mL of a H₂SO₄/Ac₂O (1/999, v/v) solution and the reaction was stirred for 90 minutes. The solution was neutralized with triethylamine, concentrated and coevaporated with toluene. To the crude acetate was added 3 mL of a piperidine/THF (1/19, v/v) solution and the mixture was stirred overnight at room temperature. The reaction mixture was diluted with EtOAc, washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine. The organic layer was dried over MgSO₄, filtered and concentrated. The crude hemiacetal was dissolved in 2.85 mL acetone and 0.15 mL H₂O, 224 mg Cs₂CO₃ and 114 μ L ClC(C=NPh)CF₃ were added. After stirring for 3 days, the mixture was filtered over celite and the filtrate was evaporated. Purification of the crude product by flash column chromatography (silica was pretreated with triethylamine/PE (1/19 \rightarrow 0/1)) using toluene/PE (1/1 \rightarrow 1/0) as eluent yielded the desired imidates.

General glycosylation procedure: The donor (0.22 mmol, 1 equiv) and acceptor (0.33 mmol, 1.5 equiv) were dissolved in 4.4 mL DCM and stirred over 3Å molecular sieves for 30 minutes. The mixture was then cooled to -80 °C after which TfOH (0.044 mmol) in DCM (0.1 mL) was added and the reaction was stirred overnight at -80 °C. The reaction was quenched by the addition of 1mL Et₃N at -80 °C. After filtration over celite, the mixture was washed with sat. aq. NaHCO₃ and brine. The organic layer was dried over MgSO₄, filtered and concentrated. Purification by size exclusion chromatography (DCM/MeOH, 1/1, v/v) yielded the coupled products.

^{1.} Mukherjee, C.; Ghosh, S.; Nandi, P.; Sen, P. C.; Misra, A. K. *Eur. J. Med. Chem.* **2010**, *45*, 6012-6019.

2,3,4,6-Tetra-O-benzyl-\alpha-D-mannopyranosyl (N-phenyl)trifluoroacetimidates (6): Acetyl 2,3,4,6-tetra-O-benzyl-D-mannopyranose² (956 mg, 1.64 mmol) was stirred in a 5% piperidine in THF solution (8 mL) for 3 days. The reaction mixture was diluted with EtOAc, washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine. The organic layer was dried over MgSO₄, filtered and concentrated. The

crude hemiacetal was dissolved in 8 mL acetone and 0.4 mL H₂O, 339 mg K₂CO₃ (2.45 mmol, 1.5 equiv.) and 0.37 mL ClC(C=NPh)CF₃ (2.44 mmol, 1.5 equiv.) were added. After stirring overnight the mixture was partitioned between EtOAc and sat. aq. NaHCO₃. The organic layer was dried over MgSO₄, filtered and concentrated. Purification of the crude product by flash column chromatography (silica was pretreated with triethylamine/PE ($1/19 \rightarrow 0/1$)) using toluene/PE ($1/1 \rightarrow 1/0$) as eluent yielded 617 mg of the title imidate (0.87 mmol, 53%). R*f* 0.39 (toluene); [α]_D²² +9 (c 1.0, CH₂Cl₂); IR (neat, cm⁻¹) 3032, 2870, 1714, 1598, 1497, 1490, 1454, 1118, 732, 694; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.37 – 7.14 (m, 22H, H_{arom}), 7.06 (t, *J* = 7.5 Hz, 1H, H_{arom}), 6.73 (d, *J* = 7.7 Hz, 2H, H_{arom}), 6.21 (br s, 1H, H-1), 4.87 (d, *J* = 11.0 Hz, 1H, CH₂ benzyl), 4.71 – 4.48 (m, 7H, CH₂ benzyl), 4.08 (t, *J* = 9.5 Hz, 1H, H-4), 3.97 – 3.85 (m, 2H, H-5, H-3), 3.84 – 3.75 (m, 2H, H-2, H-6), 3.72 (dd, *J* = 11.2, 1.8 Hz, 1H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 143.6, 138.5, 138.3, 137.9 (C_q), 128.7, 128.4, 128.3, 127.9, 127.7, 127.6, 127.4, 124.3, 119.5 (CH_{arom}), 96.0 (C-1), 79.1 (C-3), 75.1 (CH₂ benzyl), 75.0 (C-5), 74.5 (C-4), 73.9 (C-2), 73.5, 72.8 (CH₂ benzyl), 69.2 (C-6); ¹³C-HMBC NMR (100 MHz, CDCl₃, T = 333 K) δ 96.0 (J_{C1-H1} = 178.1 Hz, C-1); HRMS [M+Na]⁺ calcd for C₄₂H₄₀F₃NO₆Na 734.26999, found 734.26983.

2,3,4-tri-O-benzyl-6-deoxy-D-mannopyranose (S3): To a solution of 4.04 g iodine **S2** (7.04 mmol, 1 equiv) in 35 mL DMSO was added 1.60 g NaBH₄ (42.23 mmol, 6 equiv) and the reaction was stirred overnight at 100 °C. The mixture was then

allowed to cool to room temperature followed by the addition of 35 mL acetone. After refluxing for 1 hour, the mixture was concentrated and partitioned between EtOAc and water and the organic layer was washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered, evaporated and coevaporated with toluene. The crude product was dissolved in 35 mL Ac₂O and the pH was adjusted to approximately 1 by the addition of H₂SO₄. After stirring at 80°C for 2 nights, the mixture was neutralized by the addition of triethylamine and concentrated *in vacuo*. The residue was taken up in EtOAc, washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. The crude acetate was dissolved in 35 mL THF and 2.09 mL piperidine (21.12 mmol, 3 equiv) was added. After stirring for 3 nights, the mixture was partitioned between EtOAc and water and the organic layer was washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. Flash column chromatography using EtOAc/PE (3/17 \rightarrow 7/13) gave the title compound **S3** (2.49 g, 5.74 mmol, 81% over 3 steps). Spectroscopic data were in accordance with known literature data.³

2,3,4-tri-*O***-benzyl-**6-deoxy-α-D-mannopyranosyl

(N-

phenyl)trifluoroacetimidate (7): To a solution of 872 mg hemiacetal **S3** (2.01 mmol, 1 equiv.) in 9.5 mL acetone and 0.5 mL H₂O were added 981 mg Cs₂CO₃ (3.01 mmol, 1.5 equiv.) and 912 μ L ClC(C=NPh)CF₃ (6.02 mmol, 3 equiv.). When TLC analysis showed complete consumption of the starting material, the

mixture was filtered over celite and the filtrate was evaporated. Purification of the crude product by flash column chromatography using EtOAc/PE ($1/44 \rightarrow 1/19$) yielded 886 mg of the title imidate (1.46 mmol, 73%). Rf 0.80 (EtOAc/PE, 1/4, v/v); $[\alpha]_D^{22}$ -2 (c 1.0, CH₂Cl₂); IR (neat, cm⁻¹) 3036, 1710, 1599, 1498, 1490, 1454, 1116, 730, 693; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.36 – 7.10 (m, 17H,

^{2.} Tamura, J.-i.; Horito, S.; Yoshimura, J.; Hashimoto, H. Carbohydr. Res. 1990, 207, 153-165.

^{3.} Hirooka, M.; Yoshimura, A.; Saito, L.; Ikawa, F.; Uemoto, Y.; Koto, S.; Takabatake, A.; Taniguchi, A.; Shinoda, Y.; Morinaga, A. Bull. *Chem. Soc. Jpn.* **2003**, *76*, 1409-1421.

H_{arom}), 7.06 (t, *J* = 7.4 Hz, 1H, H_{arom}), 6.74 (d, *J* = 7.8 Hz, 2H, H_{arom}), 6.10 (br s, 1H, H-1), 4.91 (d, *J* = 11.0 Hz, 1H, CH₂ benzyl), 4.73 – 4.50 (m, 5H, CH₂ benzyl), 3.94 – 3.76 (m, 3H, H-5, H-3, H-2), 3.68 (t, *J* = 9.2 Hz, 1H, H-4), 1.33 (d, *J* = 6.2 Hz, 3H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 143.7, 138.5, 138.3, 137.9 (C_q), 129.2, 128.7, 128.4, 128.3, 128.0, 127.9, 127.7, 127.6, 126.3, 124.3, 120.7, 119.5 (CH_{arom}), 96.0 (C-1), 79.8 (C-4), 79.1 (C-3), 75.3 (CH₂ benzyl), 74.1 (C-2), 72.9, 72.7 (CH₂ benzyl), 71.1 (C-5), 18.0 (C-6); ¹³C-HMBC NMR (100 MHz, CDCl₃, T = 333 K) δ 96.0 (J_{C1-H1} = 175.1 Hz, C-1); HRMS [M+Na]⁺ calcd for C₃₅H₃₄F₃NO₅Na 628.22813, found 628.22764.

Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-6-*S*-phenyl-6-thio- α -D-mannopyranoside (S4): lodine S2 (287 mg, 500 μ mol) was treated with thiophenol according to the general procedure delivering 6-phenylmannoside S4 (248 mg, 445 μ mol, 89%). Flash column chromatography eluent: EtOAc/PE (0/1 \rightarrow 1/4). Rf 0.49 (EtOAc/PE, 1/9,

v/v); $[\alpha]_{D}^{22}$ +17 (c 2.0, CH₂Cl₂); IR (neat, cm⁻¹) 3030, 2912, 1584, 1497, 1482, 1454, 1439, 1065, 732, 695; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.50 – 6.95 (m, 20H, H_{arom}), 4.97 (d, *J* = 11.1 Hz, 1H, CH₂ benzyl), 4.76 – 4.64 (m, 3H, CH₂ benzyl, H-1), 4.64 – 4.53 (m, 3H, CH₂ benzyl), 3.91 – 3.71 (m, 4H, H-3, H-4, H-2, H-5), 3.42 (dd, *J* = 13.4, 1.7 Hz, 1H, H-6), 3.27 (s, 3H, CH₃ OMe), 3.02 (dd, *J* = 13.4, 8.6 Hz, 1H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.3, 138.2, 138.1 (C_q), 137.0, 128.7, 128.4, 128.3, 128.2, 127.8, 127.7, 127.5, 125.4 (CH_{arom}), 98.7 (C-1), 80.1 (C-3), 77.7 (C-4), 75.0 (CH₂ benzyl), 74.4 (C-2), 72.6, 71.9 (CH₂ benzyl), 70.9 (C-5), 54.6 (CH₃ OMe), 35.6 (C-6); HRMS [M+Na]⁺ calcd for C₃₄H₃₆O₅SNa 579.21757, found 579.21688.

2,3,4-Tri-O-benzyl-6-deoxy-6-S-phenyl-6-thio-D-mannopyranosyl (*N*-**phenyl)trifluoroacetimidate** (8): 6-S-phenyl-6-thio-α-D-mannopyranoside S4 (248 mg, 445 μmol) was converted according to the general procedure to the title imidate (299 mg, 419 μmol, 94% over 3 steps) with trace amounts of its β configured epimer. R_f 0.46 (toluene); IR (neat, cm⁻¹) 3033, 2872, 1718, 1598,

1490, 1454, 1116, 736, 693; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 7.39 – 6.99 (m, 23H, H_{arom}), 6.77 (d, *J* = 7.7 Hz, 2H, H_{arom}), 6.15 (br s, 1H, H-1), 4.92 (d, *J* = 11.2 Hz, 1H, CH₂ benzyl), 4.70 – 4.54 (m, 5H, CH₂ benzyl), 4.00 – 3.90 (m, 2H, H-4, H-5), 388 – 3.80 (m, 2H, H-3, H-2), 3.37 (d, *J* = 13.1 Hz, 1H, H-6), 3.11 – 2.99 (m, 1H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 143.6, 138.3, 138.1, 137.8, 136.8 (C_q), 129.8, 129.5, 128.8, 128.7, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.6, 126.1, 124.3, 119.5 (CH_{arom}), 95.4 (C-1), 79.3 (C-3), 77.1 (C-4), 75.2 (CH₂ benzyl), 74.1 (C-5), 73.9 (C-2), 72.9, 72.7 (CH₂ benzyl), 36.5 (C-6); ¹³C-HMBC NMR (100 MHz, CDCl₃, T = 333 K) δ 95.4 (J_{C1-H1} = 176.1 Hz, C-1); HRMS [M+Na]⁺ calcd for C₄₂H₃₈F₃NO₅SNa 736.23150, found 736.23161.

Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-6-*S*-*p*-tolyl-6-thio-α-D-mannopyranoside (S5): lodine S2 (287 mg, 500 µmol) was treated with thiocresol according to the general procedure delivering 6-tolylmannoside S5 (267 mg, 468 µmol, 94%). Flash column chromatography eluent: EtOAc/PE (0/1 \rightarrow 1/4). R*f* 0.52 (EtOAc/PE, 1/9, v/v); [α]_D²²

+17 (c 2.0, CH₂Cl₂); IR (neat, cm⁻¹) 2913, 1495, 1454, 1067, 735, 697; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.39 – 7.18 (m, 17H, H_{arom}), 7.01 (d, *J* = 8.0 Hz, 2H, H_{arom}), 4.96 (d, *J* = 11.2 Hz, 1H, CH₂ benzyl), 4.75 – 4.66 (m, 3H, CH₂ benzyl, H-1), 4.62 – 4.53 (m, 3H, CH₂ benzyl), 3.88 – 3.71 (m, 4H, H-3, H-4, H-2, H-5), 3.39 (dd, *J* = 13.4, 1.9 Hz, 1H, H-6), 3.29 (s, 3H, CH₃ OMe), 3.01 (dd, *J* = 13.4, 8.7 Hz, 1H, H-6), 2.26 (s, 3H, CH₃ Tol); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.6, 138.5, 138.4, 135.8, 133.5 (C_q), 129.7, 129.5, 128.6, 128.5, 128.1, 128.0, 127.9, 127.8, 127.7 (CH_{arom}), 99.0 (C-1), 80.4 (C-3), 78.0 (C-4), 75.3 (CH₂ benzyl), 74.7 (C-2), 72.9, 72.2 (CH₂ benzyl), 71.2 (C-5), 54.8 (CH₃ OMe), 36.7 (C-6), 21.1 (CH₃ Tol); HRMS [M+Na]⁺ calcd for C₃₅H₃₈O₅SNa 593.23322, found 593.23261.

2,3,4-Tri-O-benzyl-6-deoxy-6-S-p-tolyl-6-thio-D-mannopyranosyl(N-phenyl)trifluoroacetimidate(9):6-S-p-tolyl-6-thio-α-D-mannopyranosideS5(267 mg, 468 µmol) was converted according to the general procedure to thetitle imidate9 (333 mg, 458 µmol, 98% over 3 steps) with trace amounts of its β

configured epimer. R*f* 0.51 (toluene); IR (neat, cm⁻¹) 3031, 2920, 1714, 1598, 1490, 1454, 1118, 735, 694; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 7.36 – 7.16 (m, 19H, H_{arom}), 7.07 (t, *J* = 7.4 Hz, 1H, H_{arom}), 7.02 (d, *J* = 8.0 Hz, 2H, H_{arom}), 6.77 (d, *J* = 7.7 Hz, 2H, H_{arom}), 6.16 (br s, 1H, H-1), 4.91 (d, *J* = 11.1 Hz, 1H, CH₂ benzyl), 4.68 – 4.53 (m, 5H, CH₂ benzyl), 3.96 – 3.88 (m, 2H, H-4, H-5), 3.88 – 3.80 (m, 2H, H-3, H-2), 3.33 (d, *J* = 13.1 Hz, 1H, H-6), 3.02 (dd, *J* = 13.6, 7.0 Hz, 1H, H-6), 2.27 (s, 3H, CH₃ Tol); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 143.7, 138.3, 138.2, 137.8, 136.3, 133.0 (C_q), 130.7, 130.4, 129.6, 129.5, 129.1, 128.7, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 124.3, 119.5 (CH_{arom}), 95.4 (C-1), 79.3 (C-3), 77.1 (C-4), 75.2 (CH₂ benzyl), 74.1 (C-5), 74.0 (C-2), 72.9, 72.7 (CH₂ benzyl), 37.2 (C-6), 20.9 (CH₃ Tol); ¹³C-HMBC NMR (100 MHz, CDCl₃, T = 333 K) δ 95.4 (J_{c1+H1} = 178.1 Hz, C-1); HRMS [M+Na]⁺ calcd for C₄₂H₄₀F₃NO₅SNa 750.24715, found 750.24723.

Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-6-*S*-*p*-methoxyphenyl-6-thio-α-Dmannopyranoside (S6):

lodine **S2** (287 mg, 500 µmol) was treated with *p*-methoxythiophenol according to the general procedure delivering 6-*p*-methoxymannoside **S6** (271 mg, 462 µmol, 92%). Flash column chromatography eluent: EtOAc/PE (0/1 \rightarrow 1/4). R *f* 0.31 (EtOAc/PE, 1/9, v/v); [α]_p²² +17 (c 2.0, CH₂Cl₂); IR (neat,

cm⁻¹) 3030, 2910, 1593, 1494, 1454, 1243, 1066, 735, 697; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.39 – 7.20 (m, 17H, H_{arom}), 6.80 – 6.73 (m, 2H, H_{arom}), 4.94 (d, *J* = 11.1 Hz, 1H, CH₂ benzyl), 4.75 – 4.66 (m, 3H, CH₂ benzyl, H-1), 4.59 – 4.54 (m, 3H, CH₂ benzyl), 3.87 – 3.72 (m, 4H, H-3, H-4, H-2, H-5), 3.71 (s, 3H, CH₃ PhOMe), 3.35 – 3.25 (m, 4H, H-6, CH₃ OMe), 3.00 (dd, *J* = 13.4, 8.6 Hz, 1H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 158.7, 138.6, 138.5, 138.4 (C_q), 132.5, 128.5, 128.0, 127.8, 127.7 (CH_{arom}), 127.4 (C_q), 114.7 (CH_{arom}), 98.9 (C-1), 80.4 (C-3), 78.0 (C-4), 75.2 (CH₂ benzyl), 74.7 (C-2), 72.8, 72.2 (CH₂ benzyl), 71.3 (C-5), 55.4 (CH₃ PhOMe), 54.9 (CH₃ OMe), 38.1 (C-6); HRMS [M+Na]⁺ calcd for C₃₅H₃₈ClO₆SNa 609.22813, found 609.22768.

2,3,4-Tri-O-benzyl-6-deoxy-6-S-*p*-methoxyphenyl-6-thio-Dmannopyranosyl (*N*-phenyl)trifluoroacetimidate (10): 6-*S*-*p*methoxyphenyl-6-thio- α -D-mannopyranoside **S6** (271 mg, 462 µmol) was converted according to the general procedure to the title imidate **10** (325 mg, 437 µmol, 95% over 3 steps) with trace amounts of its β configured epimer. R*f* 0.37 (toluene); IR (neat, cm⁻¹) 3034, 2930, 1714, 1596, 1494, 1454, 1118, 736, 695; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 7.38 – 7.18 (m, 19H, H_{arom}), 7.08 (t, *J* = 7.5 Hz, 1H, H_{arom}), 6.81 – 6.73

(m, 4H, H_{arom}), 6.16 (br s, 1H, H-1), 4.90 (d, J = 11.2 Hz, 1H, CH₂ benzyl), 4.68 – 4.54 (m, 5H, CH₂ benzyl), 3.94 – 3.88 (m, 2H, H-4, H-5), 3.87 – 3.80 (m, 2H, H-3, H-4), 3.73 (s, 3H, CH₃ OMe), 3.26 (dd, J = 13.8, 1.9 Hz, 1H, H-6), 2.98 (dd, J = 13.7, 7.2 Hz, 1H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 159.2, 143.7, 138.3, 138.1, 137.8 (C_q), 133.6, 133.4, 128.7, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7 (CH_{arom}), 127.0 (C_q), 124.3, 119.5, 114.7 (CH_{arom}), 95.5 (C-1), 79.2 (C-3), 77.1 (C-4), 75.1 (CH₂ benzyl), 74.1 (C-5), 73.9 (C-2), 72.9, 72.7 (CH₂ benzyl), 55.3 (CH₃ OMe), 38.4 (C-6); ¹³C-HMBC NMR (100 MHz, CDCl₃, T = 333 K) δ 95.5 (J_{C1-H1} = 176.1 Hz, C-1); HRMS [M+Na]⁺ calcd for C₄₂H₄₀F₃NO₆SNa 766.24206, found 766.24223.

Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-6-*S*-*p*-nitrophenyl-6-thio-α-Dmannopyranoside (S7): lodine S2 (5.00 g, 8.70 mmol) was treated with *p*nitrothiophenol according to the general procedure delivering 6thiomannoside 11 (3.75 g, 6.23 mmol, 72%). Flash column chromatography eluent: EtOAc/PE (0/1 \rightarrow 3/7). R*f* 0.30 (EtOAc/PE, 1/9, v/v); [α]_D²² +12 (c 2.0, CH₂Cl₂); IR (neat, cm⁻¹) 3031, 2911, 1579, 1508, 1480, 1454, 1335, 1065, 737,

697; ¹H NMR (300 MHz, CDCl₃, HH-COSY, HSQC) δ 8.01 – 7.97 (m, 2H, H_{arom}), 7.49 – 7.12 (m, 17H, H_{arom}), 5.05 (d, J = 11.2 Hz, 1H, CH₂ benzyl), 4.78 – 4.63 (m, 5H, CH₂ benzyl, H-1), 4.61 (s, 2H, CH₂ benzyl), 3.91 – 3.81 (m, 2H, H-3, H-4), 3.81 – 3.78 (m, 1H, H-2), 3.78 – 3.70 (m, 1H, H-5), 3.42 (dd, J =

13.5, 1.7 Hz, 1H, H-6), 3.25 (s, 3H, CH₃ OMe), 3.02 (dd, J = 13.6, 8.8 Hz, 1H, H-6); ¹³C NMR (75 MHz, CDCl₃, HH-COSY, HSQC) δ 147.7, 144.7, 138.1, 138.0 (C_q), 128.5, 128.3, 128.1, 127.9, 127.8, 127.7, 127.6, 126.0, 124.3, 123.7 (CH_{arom}), 98.9 (C-1), 80.1 (C-3), 77.5 (C-4), 75.2 (CH₂ benzyl), 74.3 (C-2), 72.8, 71.9 (CH₂ benzyl), 70.9 (C-5), 54.7 (CH₃ OMe), 34.0 (C-6); HRMS [M+Na]⁺ calcd for C₃₄H₃₅NO₇SNa 624.20264, found 624.20243.

2,3,4-Tri-O-benzyl-6-deoxy-6-*S***-***p***-nitrophenyl-6-thio-D-mannopyranosyl** (*N*-**phenyl**)**trifluoroacetimidate** (**11**): 6-*S*-*p*-nitrophenyl-6-thio- α -D-mannopyranoside **S7** (188 mg, 312 µmol) was converted according to the general procedure to the title imidate **11** (192 mg, 253 µmol, 81% over 3 steps) with trace amounts of its β configured epimer. R*f* 0.43 (toluene); IR (neat, cm⁻¹) 3031, 2926, 1714, 1596, 1581, 1512, 1455, 1336, 1116, 741, 694; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 7.99 (d, *J* = 8.8 Hz, 2H, H_{arom}), 7.40 – 7.19 (m, 19H, H_{arom}), 7.09 (t, *J* = 7.3 Hz, 1H, H_{arom}),

6.72 (d, *J* = 7.7 Hz, 2H, H_{arom}), 6.09 (br s, 1H, H-1), 5.00 (d, *J* = 11.3 Hz, 1H, CH₂ benzyl), 4.72 – 4.54 (m, 5H, CH₂ benzyl), 4.00 – 3.85 (m, 3H, H-4, H-5, H-3), 3.83 (br s, 1H, H-2), 3.49 – 3.34 (m, 1H, H-6), 3.06 (dd, *J* = 13.8, 7.1 Hz, 1H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 147.2, 143.4, 138.1, 137.9, 137.7 (C_q), 128.8, 128.6, 128.5, 128.4, 128.2, 128.1, 128.0, 128.0, 127.9, 127.0, 124.5, 123.8, 119.4 (CH_{arom}), 95.2 (C-1), 79.3 (C-3), 76.9 (C-4), 75.4 (CH₂ benzyl), 74.0 (C-5), 73.9 (C-2), 73.1, 72.7 (CH₂ benzyl), 34.6. (C-6); ¹³C-HMBC NMR (100 MHz, CDCl₃, T = 333 K) δ 95.2 (J_{C1-H1} = 177.3 Hz, C-1); HRMS [M+Na]⁺ calcd for C₄₂H₄₀F₃NO₆SNa 766.24206, found 766.24209.

Methyl 2,3,4-tri-*O***-benzyl-6-deoxy-6-***S***-ethyl-6-thio**- α **-D-mannopyranoside (S8):** To a solution of 3.22 g iodine S2 (5.61 mmol, 1 equiv) in 63 mL DMF was added 0.49 mL ethanethiol (6.55 mmol, 1.2 equiv) and 270 mg NaH (60% in mineral oil, 6.75 mmol, 1.2 equiv). The reaction was stirred for 1 hour at room temperature and quenched

by the addition of acetic acid. The mixture was partitioned between Et₂O and water and the organic layer was washed with water, dried over MgSO₄, filtered and concentrated. Flash column chromatography using EtOAc/PE ($1/44 \rightarrow 1/4$) gave the title compound **S8** (2.66 g, 4.42 mmol, 79%). Rf 0.56 (EtOAc/PE, 1/9, v/v); $[\alpha]_D^{22}$ +27 (c 2.0, CH₂Cl₂); IR (neat, cm⁻¹) 2916, 1497, 1454, 1055, 732, 696; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.39 – 7.22 (m, 15H, H_{arom}), 4.96 (d, *J* = 11.1 Hz, 1H, CH₂ benzyl), 4.76 – 4.66 (m, 3H, H-1, CH₂ benzyl), 4.64 (d, *J* = 11.1 Hz, 1H, CH₂ benzyl), 4.59 (s, 2H, CH₂ benzyl), 3.87 (dd, *J* = 9.1, 2.9 Hz, 1H, H-3), 3.82 (t, *J* = 9.1 Hz, 1H, H-4), 3.77 (dd, *J* = 2.8, 1.9 Hz, 1H, H-2), 3.72 (td, *J* = 8.8, 2.0 Hz, 1H, H-5), 3.33 (s, 3H, CH₃ OMe), 2.95 (dd, *J* = 13.5, 2.1 Hz, 1H, H-6), 2.70 (dd, *J* = 13.5, 8.6 Hz, 1H, H-6), 2.60 (q, *J* = 7.4 Hz, 2H, CH₂ ethyl), 1.23 (t, *J* = 7.4 Hz, 3H, CH₂ ethyl); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.4, 138.3, 138.1 (C_q), 128.2, 127.8, 127.7, 127.5, 127.4 (CH_{arom}), 98.6 (C-1), 80.1 (C-3), 77.7 (C-4), 75.1 (C-2), 74.5 (C-2), 72.5 (CH₂ benzyl), 72.2 (C-5), 71.9 (CH₂ benzyl), 54.5 (CH₃ OMe), 33.4 (C-6), 26.7 (CH₂ ethyl), 14.7 (CH₃ ethyl); HRMS [M+Na]⁺ calcd for C₃₀H₃₆O₅SNa 531.21757, found 531.21699.

2,3,4-Tri-O-benzyl-6-deoxy-6-S-ethyl-6-thio-D-mannopyranosyl(N-phenyl)trifluoroacetimidate(12):6-S-ethyl-6-thio-α-D-mannopyranosideS8

(244 mg, 480 μ mol) was converted according to the general procedure to the title imidate **12** (288 mg, 432 μ mol, 90% over 3 steps) with trace amounts of its β configured epimer. Rf 0.47 (toluene); IR (neat, cm⁻¹) 2926, 1714, 1598, 1490,

1454, 1117, 735, 694; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 7.37 – 7.18 (m, 17H, H_{arom}), 7.08 (t, *J* = 7.5 Hz, 1H, H_{arom}), 6.77 (d, *J* = 7.6 Hz, 2H, H_{arom}), 6.14 (br s, 1H, H-1), 4.93 (d, *J* = 11.1 Hz, 1H, CH₂ benzyl), 4.73 – 4.56 (m, 5H, CH₂ benzyl), 4.00 – 3.85 (m, 3H, H-4, H-5, H-3), 3.82 (t, *J* = 2.5 Hz, 1H, H-2), 2.94 (dd, *J* = 14.1, 2.2 Hz, 1H, H-6), 2.71 (dd, *J* = 14.1, 7.1 Hz, 1H, H-6), 2.59 (q, *J* = 7.4 Hz, 2H, CH₂ ethyl), 1.21 (t, *J* = 7.4 Hz, 3H, , CH₃ ethyl); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 143.7, 138.4, 138.2, 137.9 (C_q), 128.7, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 124.3, 119.5 (CHa_{rom}), 95.5 (C-1), 79.2 (C-3), 77.1 (C-4), 75.5 (C-5), 75.2 (CH₂ benzyl), 74.1 (C-2), 72.9, 72.7

(CH₂ benzyl), 33.5 (C-6), 26.9 (CH₂ ethyl), 14.7 (CH₃ ethyl); ¹³C-HMBC NMR (100 MHz, CDCl₃, T = 333 K) δ 95.5 (J_{C1-H1} = 179.1 Hz, C-1); HRMS [M+Na]⁺ calcd for C₃₇H₃₈F₃NO₅SNa 688.23150, found 688.23146.

Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-6-*Se*-phenyl-6-seleno-α-D-mannopyranoside (S9): Iodine S2 (287mg, 500 μmol) was treated with phenylselenol according to the general procedure delivering 6-selenomannoside S9 (301 mg, 499 μmol, quant). Flash column chromatography eluent: EtOAc/PE (0/1 \rightarrow 3/17). Rf 0.56 (EtOAc/PE,

1/9, v/v); $[\alpha]_{D}^{22}$ +21 (c 2.0, CH₂Cl₂); IR (neat, cm⁻¹) 3030, 2908, 1579, 1497, 1479, 1438, 1454, 1062, 732, 696; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.50 – 7.11 (m, 20H, H_{arom}), 4.95 (d, *J* = 11.1 Hz, 1H, CH₂ benzyl), 4.76 – 4.66 (m, 3H, H-1, CH₂ benzyl), 4.61 – 4.56 (m, 3H, CH₂ benzyl), 3.88 – 3.79 (m, 3H, H-3, H-4, H-5), 3.78 (dd, *J* = 2.8, 1.9 Hz, 1H, H-2), 3.36 (dd, *J* = 12.3, 1.6 Hz, 1H, H-6), 3.31 (s, 3H, CH₃ OMe), 3.11 – 3.01 (m, 1H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.6, 138.5, 138.6 (C_q), 132.0 (CH_{arom}), 131.4 (C_q), 129.1, 128.5, 128.1, 128.0, 127.8, 127.7, 126.6 (CH_{arom}), 99.0 (C-1), 80.4 (C-3), 78.8 (C-4), 75.32 (CH₂ benzyl), 74.8 (C-2), 72.9 (CH₂ benzyl), 72.2 (CH₂ benzyl), 71.9 (C-5), 54.9 (CH₃ OMe), 30.2 (C-6); HRMS [M+Na]⁺ calcd for C₃₄H₃₆O₅SeNa 627.16202, found 627.16156.

2,3,4-Tri-O-benzyl-6-deoxy-6-Se-phenyl-6-seleno-D-mannopyranosyl (*N*-**phenyl)trifluoroacetimidate** (13): 6-Se-phenyl-6-seleno- α -D-mannopyranoside **S9** (302 mg, 500 µmol) was converted according to the general procedure to the title imidate 13 (292 mg, 384 µmol, 77% over 3 steps) with trace amounts of its β configured epimer. Rf 0.57 (toluene); IR (neat, cm⁻¹) 3030, 2870, 1714, 1598,

1490, 1454, 1117, 732, 692; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 7.56 – 7.42 (m, 2H, H_{arom}), 7.39 – 7.11 (m, 20H, H_{arom}), 7.08 (t, *J* = 7.4 Hz, 1H, H_{arom}), 6.79 (d, *J* = 7.4 Hz, 2H, H_{arom}), 6.15 (br s, 1H, H-1), 4.90 (d, *J* = 11.2 Hz, 1H, CH₂ benzyl), 4.72 – 4.53 (m, 5H, CH₂ benzyl), 4.02 – 3.95 (m, 1H, H-5), 3.92 (t, *J* = 8.8 Hz, 1H, H-4), 3.86 (dd, *J* = 8.5, 3.0 Hz, 1H, H-3), 3.84 – 3.78 (m, 1H, H-2), 3.33 (dd, *J* = 12.6, 2.6 Hz, 1H, H-6), 3.06 (dd, *J* = 12.6, 7.6 Hz, 1H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 143.7, 138.3, 138.2, 137.9 (C_q), 132.8 (CH_{arom}), 130.9 (C_q), 129.0, 128.7, 128.4, 128.0, 127.9, 127.8, 127.7, 126.8, 124.3, 119.5 (CH_{arom}), 95.4 (C-1), 79.2 (C-3), 77.9 (C-4), 75.2 (CH₂ benzyl), 74.6 (C-5), 74.1 (C-2), 72.9, 72.7 (CH₂ benzyl), 30.1 (C-6); ¹³C-HMBC NMR (100 MHz, CDCl₃, T = 333 K) δ 95.4 (J_{C1-H1} = 177.1 Hz, C-1); HRMS [M+Na]⁺ calcd for C₄₁H₃₈F₃NO₅SeNa 784.17595, found 784.17586.

2,3,4-Tri-O-benzyl-6-deoxy-6-iodo-D-mannopyranose (S10): The pH of a solution of 3.00 g iodine S2 (5.23 mmol, 1 equiv) in 25 mL Ac₂O was adjusted to approximately 1 by the addition of H₂SO₄ at 0°C. After stirring at ambient temperature for 7 hours, the mixture was neutralized by the addition of triethylamine, concentrated in vacuo and coevaporated with toluene. The crude acetate was dissolved in 30 mL THF and 1.55 mL piperidine (15.69 mmol, 3 equiv) was added. After stirring overnight at room temperature, the mixture was partitioned between EtOAc and water and the organic layer was washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. Flash column chromatography using EtOAc/PE ($1/9 \rightarrow 1/2$) gave the title compound **S10** (2.37 g, 4.24 mmol, 81%) over 2 steps). Rf 0.29 (EtOAc/PE, 1/4, v/v); IR (neat, cm⁻¹) 3404, 3031, 2862, 1497, 1454, 1100, 736, 697; NMR data of the major anomer: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.42 – 7.22 (m, 15H, H_{arom}), 5.24 (br s, 1H, H-1), 4.98 (d, J = 10.9 Hz, 1H, CH₂ benzyl), 4.79 – 4.66 (m, 3H, CH₂ benzyl), 4.62 (s, 2H, CH₂ benzyl), 3.97 (dd, J = 9.2, 3.0 Hz, 1H, H-3), 3.85 - 3.79 (m, 2H, H-4, H-2), 3.72 - 3.67 (m, 1H, H-5), 3.52 (dd, J = 10.6, 2.5 Hz, 1H, H-6), 3.36 (dd, J = 10.6, 6.8 Hz, 1H, H-6), 2.85 (s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.2 (C_a), 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 127.8 , 127.6 (CH_{arom}), 92.7 (C-1), 79.2 (C-3), 78.5 (C-4), 75.4 (CH₂ benzyl), 74.8 (C-2), 72.7, 72.1 (CH₂ benzyl), 71.3 (C-5), 7.8 (C-6); HRMS [M+Na]⁺ calcd for C₂₇H₂₉IO₅Na 583.09519, found 583.09522.

2,3,4-Tri-O-benzyl-6-deoxy-6-iodo-D-mannopyranosyl

(N-

mmol, 1 equiv.) in 8.55 mL acetone and 0.45 mL H₂O were added 904 mg Cs₂CO₃ (2.78 mmol, 1.5 equiv) and 841 μ L ClC(C=NPh)CF₃ (5.55 mmol, 3 equiv). When TLC analysis showed complete consumption of the starting material, the mixture was filtered over celite and the filtrate was evaporated. Purification of the crude product by flash column chromatography using EtOAc/PE (1/44 \rightarrow 1/19) yielded 1.17 mg of imidate **14** (1.60 mmol, 86%) with trace amounts of its β configured epimer. Rf 0.83 (EtOAc/PE, 1/4, v/v); IR (neat, cm⁻¹) 3031, 2920, 1714, 1598, 1489, 1454, 1117, 737, 695; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 7.40 – 7.17 (m, 17H, H_{arom}), 7.08 (t, *J* = 7.5 Hz, 1H, H_{arom}), 6.79 (d, *J* = 7.6 Hz, 2H, H_{arom}), 6.18 (br s, 1H, H-1), 4.95 (d, *J* = 11.1 Hz, 1H, CH₂ benzyl), 4.74 – 4.55 (m, 5H, CH₂ benzyl), 3.94 – 3.83 (m, 2H, H-3, H-4), 3.82 (br s, 1H, H-2), 3.63 – 3.55 (m, 1H, H-5), 3.49 (dd, *J* = 10.7, 2.6 Hz, 1H, H-6), 3.33 (dd, *J* = 10.7, 6.5 Hz, 1H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 143.5, 138.2, 138.0, 137.8 (C_q), 128.8, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 124.4, 119.5 (CH_{arom}), 95.3 (C-1), 78.9 (C-3), 78.1 (C-4), 75.4 (CH₂ benzyl), 74.0 (C-2), 73.9 (C-5), 72.9, 72.7 (CH₂ benzyl), 6.0 (C-6); ¹³C-HMBC NMR (100 MHz, CDCl₃, T = 333 K) δ 95.3 (J_{C1-H1} = 175.8 Hz, C-1); HRMS [M+Na]⁺ calcd for C₃₅H₃₃F₃INO₅Na 754.12477, found 754.12482.

Methyl 2,3,4-tri-*O***-benzyl-** α **-D-mannopyranoside (15a):** A solution of methyl α -D-mannopyranoside (9.71 g, 50.0 mmol) and TrCl (15.33 g, 55.0 mmol) in pyridine (250 mL) was heated to 50 °C and stirred overnight. The mixture was quenched by the addition of MeOH (10 mL) and concentrated *in vacuo*. The product was dissolved in

EtOAc and washed with H₂O three times. The organic layer was dried over MgSO₄ and concentrated. The now obtained yellow oil was dissolved in DMF (250 mL) and BnBr (20 mL, 165 mmol) was added. The mixture was cooled to 0 °C, NaH (60 % in mineral oil, 6.6 g, 165 mmol) was added portion wise and the reaction was left to stir for 24 hours. The mixture was then quenched by addition of MeOH (20 mL). DMF was removed by diluting the mixture with Et₂O and washing it three times with H₂O. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. The remaining brown oil was dissolved in a mixture of DCM (50 mL) and MeOH (200 mL). To this solution a catalytic amount of *p*-toluenesulfonic acid monohydrate was added until the pH was approximately 1 and the reaction was left to stir at room temperature over the weekend. After neutralization with Et₃N the solvents were removed. The remaining oil was purified by column chromatography using EtOAc/PE ($1/4 \rightarrow 2/3$) as the eluent to give 17.33 g of the title compound **15a** (37.3 mmol, 75 % over 3 steps) as a yellow oil. Spectroscopic data were in accordance with known literature data.⁴

4-Methoxyphenyl 2-*O*-benzyl-4,6-*O*-benzylidene-β-D-galactopyranoside (15b):

4-Methoxyphenyl β -D-galactopyranoside⁵ (5.47g, 19.1 mmol, 1 equiv) was stirred under argon for 48 hours at room temperature in 100 mL 2,2-dimethoxypropane with a catalytic amount of (±)-10-camphorsulphonic acid. The mixture was neutralized by the addition of triethylamine and the volatile material was

evaporated. The residue was dissolved in 100 mL dry tetrahydrofuran and 9.1 mL benzyl bromide (76 mmol, 4 equiv) and 1.53 g sodium hydride (60% dispersion in oil, 38.2 mmol, 2 equiv) were added and the mixture was stirred at 45 °C under argon until TLC analysis showed complete conversion of the starting material. Methanol and then water were added at 0 °C to destroy the excess of sodium hydride. The mixture was extracted twice with ether, and the combined extracts were dried over MgSO₄ and concentrated. A solution of the residue in 100 mL methanol was treated with a catalytic amount of (±)-10-camphorsulphonic acid and the reaction was monitored by TLC. Next, triethylamine was used to neutralize the mixture and the solvent was evaporated. The crude product was filtered through a plug of silica gel using EtOAc/PE (9/1) as the eluent. Rf 0.24 (EtOAc/PE, 17/3, v/v) ¹H NMR (400 MHz, CDCl₃/MeOD) δ 7.44 – 7.25 (m, 5H, H_{arom}), 7.02 (d, *J* = 9.1 Hz, 2H, H_{arom}), 6.84 (d, *J* = 9.1 Hz, 2H, H_{arom}), 5.02 (d, *J* = 11.1 Hz, 1H, CH₂ benzyl), 4.88 (d, *J* = 7.7 Hz, 1H, H-1), 4.82 (d, *J* =

^{4.} El-Badri, M. H.; Willenbring, D.; Tantillo, D. J.; Gervay-Hague, J. *J. Org. Chem.* **2007**, *72*, 4663-4672.

^{5.} McGill, N. W.; Williams, S. J. J. Org. Chem. 2009, 74, 9388-9398.

11.1 Hz, 1H, CH₂ benzyl), 3.96 (d, J = 3.3 Hz, 1H, H-4), 3.88 – 3.73 (m, 6H, H-6, CH₃ OMe, H-2), 3.67 (dd, J = 9.6, 3.4 Hz, 1H, H-3), 3.59 (t, J = 6.0 Hz, 1H, H-5); 13 C NMR (100 MHz, CDCl₃/MeOD) δ 154.9, 151.2, 138.0 (C_a), 128.1, 127.9, 127.5, 117.8, 114.3 (CH_{arom}), 102.5 (C-1), 79.0 (C-2), 74.8 (CH₂ benzyl), 74.6 (C-5), 72.8 (C-3), 68.5 (C-4), 60.9 (C-6), 55.3 (CH₃ OMe). After evaporation of the solvent, the crude product was dissolved in 45 mL acetonitrile and was treated with 1.93 mL benzaldehyde dimethylacetal (12.82 mmol, 0.67 equiv) and 325 mg p-toluenesulfonic acid monohydrate (1.71 mmol, 0.09 equiv). Upon complete conversion the mixture was neutralized by the addition of triethylamine and the solvent was removed. Crystallization from EtOAc/PE yielded 3.31 g of the title compound (7.13 mmol 37% over 4 steps). Rf 0.39 (EtOAc/PE, 1/1, v/v); mp = 161.1 °C; $[\alpha]_{D}^{22}$ -38 (c 1.0, CH₂Cl₂); IR (neat, cm⁻¹) 3454, 2878, 2361, 2342, 1507, 1455, 1216, 1004, 826, 730; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.59 – 7.23 (m, 10H), 7.06 (d, J = 9.0 Hz, 2H, H_{arom}), 6.83 (d, J = 9.0 Hz, 2H, H_{arom}), 5.58 (s, 1H, CH benzylidene), 5.05 (d, J = 11.2 Hz, 1H, CH₂ benzyl), 4.89 (d, J = 7.5 Hz, 1H, H-1), 4.82 (d, J = 11.2 Hz, 1H, CH₂ benzyl), 4.36 (d, J = 12.3 Hz, 1H, H-6), 4.26 (d, J = 3.2 Hz, 1H, H-4), 4.09 (d, J = 11.5 Hz, 1H, H-6), 3.94 – 3.81 (m, 2H, H-2, H-3), 3.78 (s, 3H, CH₃ OMe), 3.53 (s, 1H, H-5), 2.56 (s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 155.4, 151.5, 138.3, 137.5 (Cq), 129.2, 128.4, 128.2, 128.0, 127.8, 126.5, 118.9, 114.5, 103.0 (C-1), 101.5 (CH benzylidene), 79.0 (C-2), 75.3 (CH₂ benzyl), 75.1 (C-4), 72.5 (C-3), 69.1 (C-6), 66.6 (C-5), 55.6 (C-6); HRMS [M+Na]⁺ calcd for C₂₇H₂₈O₇Na 487.17272, found 487.17223.

2,3,4,6-Tetra-*O***-benzyl-***D***-mannopyranosyl-**(1- \rightarrow 6)-(methyl 2,3,4-tri-*O***-benzyl-** α -**D-glucopyranoside**) (16a): Donor 6 and acceptor 15a were coupled according to the general glycosylation procedure to yield 204 mg (207 µmol, 94%) of the title compound 16a as an epimeric mixture (α/β 1/3.5). Spectroscopic data were in accordance with previously published data.⁶

2,3,4,6-Tetra-*O***-benzyl-***D***-mannopyranosyl-**($1\rightarrow$ **3)**-(*p***-methoxyphenyl 2-***O***-benzyl-4,6-***O***-benzylidene-** β -**D-galactopyranoside**) (16b): Donor **6** and acceptor **15b** were coupled according to the general glycosylation procedure to yield 191 mg (194 µmol, 88%) of the title compound **16b** as an epimeric mixture (α/β 1/1). Spectroscopic data were in

accordance with previously published data.⁶

2,3,4,6-Tetra-O-benzyl-D-mannopyranosyl-(1→2)-(methyl 3-O-benzyl-4,6-O-benzylidene-\alpha-D-mannopyranoside) (16c): Donor **6** and acceptor **15b** were coupled according to the general glycosylation procedure to yield 195 mg (218 µmol, 99%) of the title compound **16c** as an epimeric mixture (α/β 1/4). Spectroscopic data were in accordance with known literature data.⁷

2,3,4-Tri-O-benzyl-6-deoxy-D-mannopyranosyl-(1\rightarrow6)-(methyl 2,3,4-tri-O-benzyl-\alpha-D-glucopyranoside) (17a): Donor **7** and acceptor **15a** were coupled according to the general glycosylation procedure to yield 176 mg (200 µmol, 91%) of the title compound **17a** as an epimeric mixture (α/β 1/2.5). Spectroscopic data were in accordance with previously published data.⁶

Dinkelaar, J.; de Jong, A. R.; van Meer, R.; Somers, M.; Lodder, G.; Overkleeft, H. S.; Codée, J. D. C.; van der Marel, G. A. *J. Org. Chem.* 2009, *74*, 4982-4991.

^{7.} Baek, J. Y.; Lee, B.-Y.; Jo, M. G.; Kim, K. S. J. Am. Chem. Soc. 2009, 131, 17705-17713.

2,3,4-Tri-O-benzyl-6-deoxy-D-mannopyranosyl- $(1\rightarrow 3)-(p$ henyl 2-O-benzyl-4,6-O-benzylidene- β -D-

methoxyphenyl2-O-benzyl-4,6-O-benzylidene-β-D-galactopyranoside) (17b):Donor 7 and acceptor 15b were coupledaccording to the general glycosylation procedure to yield 169 mg (191μmol, 87%) of the title compound as an epimeric mixture (α/β 1/1.5).

Spectroscopic data were in accordance with previously published data.⁶

2,3,4-Tri-O-benzyl-6-deoxy-D-mannopyranosyl-(1->2)-(methyl 3-O-benzyl-4,6-O-benzylidene-\alpha-D-mannopyranoside) (17c): Donor **7** and acceptor **15c** were coupled according to the general glycosylation procedure to yield 156 mg (198 µmol, 90%) of the title compound **17c** as an epimeric mixture (α/β 1/1). R*f* 0.47, 0.71 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3030, 2912, 1497, 1454, 1071, 733, 695; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC)⁸ δ 7.55 – 7.20 (m, 50H),

5.61 (s, 1H), 5.53 (s, 1H), 5.16 (s, 1H), 5.08 – 4.92 (m, 4H), 4.84 (d, J = 12.2 Hz, 1H), 4.77 (d, J = 11.8 Hz, 1H), 4.74 – 4.68 (m, 2H), 4.67 – 4.56 (m, 6H), 4.55 – 4.48 (m, 4H), 4.42 (d, J = 11.9 Hz, 1H), 4.31 – 4.20 (m, 3H), 4.13 – 4.03 (m, 2H), 4.00 – 3.87 (m, 6H), 3.84 – 3.71 (m, 5H), 3.71 – 3.59 (m, 2H), 3.46 (dd, J = 9.4, 3.0 Hz, 1H), 3.39 – 3.30 (m, 7H), 1.38 (d, J = 6.1 Hz, 3H), 1.35 (d, J = 6.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC)⁸ δ 138.8, 138.7, 138.6, 138.4, 138.3, 138.1, 137.6, 137.5, 128.8, 128.8, 128.6, 128.4, 128.3, 128.1, 128.0, 127.7, 127.6, 127.5, 127.4, 127.3, 127.1, 126.1, 126.0, 101.6, 101.4, 101.0, 99.8, 99.7, 99.2, 81.8, 80.4, 79.9, 79.2, 79.1, 78.5, 76.0, 75.7, 75.5, 75.4, 75.1, 73.8, 73.5, 73.2, 72.3, 72.1, 71.9, 71.0, 70.7, 68.9, 68.8, 68.5, 63.9, 63.6, 54.9, 54.8, 18.0, 17.9; ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 101.0 (J_{C-H} = 171 Hz), 99.8 (J_{C-H} = 171 Hz), 99.7 (J_{C-H} = 153 Hz), 99.2 (J_{C-H} = 168 Hz); HRMS [M+Na]⁺ calcd for C₄₈H₅₂O₁₀Na 811.34527, found 811.34492.

2,3,4-Tri-O-benzyl-6-deoxy-6-S-phenyl-6-thio-D-mannopyranosyl-(1→6)-(methyl **2,3,4-tri-O-benzyl-α-D-glucopyranoside**) (18a): Donor **8** and acceptor **15a** were coupled according to the general glycosylation procedure to yield 196 mg (198 µmol, 90%) of the title compound **18a** as an epimeric mixture (α/β 1/7). Rf 0.47 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3029, 2918, 1584, 1497, 1482, 1454, 1069, 735, 696; NMR data of the major β -linked product: ¹H NMR (400

MHz, CDCl₃, HH-COSY, HSQC) δ 7.50 – 6.95 (m, 35H, H_{arom}), 5.06 – 4.89 (m, 3H, CH₂ benzyl), 4.89 – 4.72 (m, 4H, CH₂ benzyl), 4.72 – 4.41 (m, 6H, H-1, CH₂ benzyl), 4.16 (dd, *J* = 10.2, 1.4 Hz, 1H, H-6), 4.08 (s, 1H, H-1'), 4.03 (t, *J* = 9.2 Hz, 1H, H-3), 3.85 – 3.72 (m, 2H, H-5, H-4'), 3.70 (d, *J* = 2.7 Hz, 1H, H-2'), 3.51 (dd, *J* = 9.7, 3.5 Hz, 1H, H-2), 3.49 – 3.30 (m, 8H, H-4, H-6, H-3', H-6', H-5', CH₃ OMe), 3.04 (dd, *J* = 13.7, 9.1 Hz, 1H, H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.8, 138.5, 138.2, 138.1, 138.0, 137.9, 137.3 (C_q), 128.7, 128.6, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 125.3 (CH_{arom}), 101.2 (C-1'), 97.7 (C-1), 82.1 (C3, C3'), 79.8 (C-2), 77.6, 77.5 (C-4, C-4'), 75.6 (CH₂ benzyl), 75.2 (C-5', CH₂ benzyl), 74.7, 73.7 (CH₂ benzyl), 73.5 (C-2'), 73.2, 71.4 (CH₂ benzyl), 69.5 (C-5), 68.0 (C-6), 55.0 (CH₃ OMe), 35.3 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 101.2 (J_{C1'-H1'} = 158.1 Hz, C-1'), 97.7 (J_{C1-H1} = 166.2 Hz, C-1); Diagnostic peaks from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 3.95 (t, *J* = 9.2 Hz, 0.14H, H-3), 3.27 (s, 0.42H, CH₃ OMe). HRMS [M+Na]⁺ calcd for C₆₁H₆₄O₁₀SNa 1011.41124, found 1011.41158.

Pre-activation experiment with donor 8 at room temperature: Donor **8** (157 mg, 0.22 mmol, 1 equiv) was coevaporated with toluene, dissolved in 3.0 mL DCM and stirred over 3Å molecular sieves for 30 minutes. The mixture was then cooled to -80 °C after which 21.4 μ L TfOH (242 μ mol, 1.1 equiv) was added. The mixture was allowed to warm up to room temperature in 15 minutes. Next 153 mg acceptor **15a** (0.33 mmol, 1.5 equiv) and 88 mg 2,6-di-*tert*-butyl-4-methylpyridine (429 μ mol, 2 equiv) were added in 1.4 mL DCM and the reaction was stirred overnight at room temperature. The reaction was quenched by the addition of 1mL Et₃N. After filtration over celite, the mixture was washed with sat. aq. NaHCO₃ and brine. The organic layer was dried over MgSO₄, filtered and

^{8.} Complete assignment of the peaks is omitted due to a 1:1 mixture of anomers.

concentrated. Purification by size exclusion chromatography (DCM/MeOH, 1/1, v/v) yielded 169 mg of the coupled product **18a** (171 µmol, 78%, α/β 1/1). NMR data for the α -linked product: ¹H NMR (400 MHz, CDCl₃,HH-COSY, HSQC) δ 7.64 – 6.91 (m, 35H, H_{arom}), 5.00 – 4.94 (m, 2H, CH₂ benzyl), 4.91 (d, *J* = 1.3 Hz, 1H, H-1'), 4.84 – 4.64 (m, 6H, CH₂ benzyl), 4.61 – 4.57 (m, 3H, CH₂ benzyl), 4.51 – 4.45 (m, 2H, H-1, CH₂ benzyl), 3.95 (t, *J* = 9.2 Hz, 1H, H-3), 3.86 – 3.74 (m, 5H, H-2', H-4', H-5', H-3', H-6), 3.69 – 3.58 (m, 2H, H-5, H-6), 3.39 (dd, *J* = 9.6, 3.6 Hz, 1H, H-2), 3.36 – 3.30 (m, 2H, H-6', H-4), 3.27 (s, 3H, CH₃ OMe), 2.99 (dd, *J* = 13.2, 7.5 Hz, 1H, H-6'). ¹³C NMR (101 MHz, CDCl₃) δ 138.6, 138.4, 138.2, 138.1, 138.0, 137.2 (C_q), 128.9, 128.6, 128.4, 128.3, 128.2, 127.9, 127.8, 127.6, 127.6, 125.3 (CH_{arom}), 97.8 (C-1'), 97.5 (C-1), 82.0 (C-3), 79.9 (C-2), 79.5 (C-2'), 77.7 (C-4, C-4'), 75.7, 75.1, 74.9 (CH₂ benzyl), 74.4 (C-3'), 73.1, 72.5, 71.8 (CH₂ benzyl), 71.0 (C-5'), 69.6 (C-5), 65.6 (C-6), 54.9 (CH₃ OMe), 35.6 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 97.8 (J_{C1'+H1'} = 170 Hz, C-1'), 97.5 (J_{C1+H1} = 170 Hz, C-1).

Pre-activation experiment with donor 8 at -80°C: Donor **8** (155 mg, 0.217 mmol, 1 equiv) was coevaporated with toluene, dissolved in 3.5 mL DCM and stirred over 3Å molecular sieves for 30 minutes. The mixture was then cooled to -80 °C after which 21 μ L TfOH (239 μ mol, 1.1 equiv) was added. The mixture was stirred at -80°C for 15 minutes. Next 303 mg acceptor **15a** (651 μ mol, 1.5 equiv) and 90 mg 2,6-di-*tert*-butyl-4-methylpyridine (434 μ mol, 2 equiv) were added in 1.0 mL DCM and the reaction was stirred overnight at -60 °C for 3 days. The reaction was quenched by the addition of 1mL Et₃N and the mixture was allowed to warm up to room temperature. After filtration over celite, the mixture was washed with sat. aq. NaHCO₃ and brine. The organic layer was dried over MgSO₄, filtered and concentrated. Purification by size exclusion chromatography (DCM/MeOH, 1/1, v/v) yielded 144 mg of the coupled product **18a** (146 μ mol, 67%, α/β 1/4).

Pre-activation experiment with mannoside 27 at room temperature: Mannoside **27** (123 mg, 226 μ mol, 1 equiv) and 4.5 mg Ph₂SO (23 μ mol, 0.1 equiv) were coevaporated with toluene, dissolved in 3.0 mL DCM and stirred over 3Å molecular sieves for 30 minutes. Triflic anhydride (41 μ L, 249 μ mol, 1.1 equiv) was added and the mixture was stirred for 1 minute. Next 158 mg acceptor **15a** (0.34 mmol, 1.5 equiv) and 140 mg 2,6-di-*tert*-butyl-4-methylpyridine (680 μ mol, 3 equiv) were added in 1.4 mL DCM and the reaction was stirred overnight at room temperature. The reaction was quenched by the addition of 1mL Et₃N. After filtration over celite, the mixture was washed with sat. aq. NaHCO₃ and brine. The organic layer was dried over MgSO₄, filtered and concentrated. Purification by size exclusion chromatography (DCM/MeOH, 1/1, v/v) yielded 94 mg of the coupled product **18a** (95 μ mol, 42%, α/β 1/1).

2,3,4-Tri-O-benzyl-6-deoxy-6-S-phenyl-6-thio-D-mannopyranosyl-(1 \rightarrow 3)-(p-methoxyphenyl 2-O-benzyl-4,6-O-benzylidene- β -Dgalactopyranoside) (18b): Donor 8 and acceptor 15b were coupled according to the general glycosylation procedure to yield 194 mg (196 µmol, 89%) of the title compound 18b as an epimeric mixture (α/β

1/11). R*f* 0.26, 0.43 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3032, 2858, 1584, 1506, 1454, 1060, 732, 696; NMR data of the major β-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.74 – 6.65 (m, 34H, H_{arom}), 5.55 (s, 1H, CH benzylidene), 4.99 – 4.83 (m, 5H, H-1, CH₂ benzyl), 4.63 – 4.55 (m, 2H, H-1', CH₂ benzyl), 4.46 – 4.26 (m, 4H, H-6, CH₂ benzyl), 4.24 (d, *J* = 3.4 Hz, 1H, H-4), 4.08 – 3.97 (m, 2H, H-2, H-6), 3.80 – 3.70 (m, 5H, H-4', H-3, CH₃ OMe), 3.68 (d, *J* = 2.8 Hz, 1H, H-2'), 3.44 – 3.30 (m, 3H, H-5, H-5', H-6'), 3.24 (dd, *J* = 9.3, 2.9 Hz, 1H, H-3'), 3.07 (dd, *J* = 14.1, 9.8 Hz, 1H, H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 155.2, 151.4, 138.5, 138.4, 138.0, 137.9, 137.4 (C_q), 128.7, 128.6, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.4, 127.3, 126.2, 125.3, 118.7, 114.4 (CH_{arom}), 103.0 (C-1), 102.9 (C-1'), 100.5 (CH benzylidene), 82.5 (C-3'), 78.7 (C-2), 78.1 (C-3), 77.5 (C-4'), 75.8 (C-4), 75.5 (C-5'), 75.2, 73.3 (CH₂ benzyl), 72.4 (C-2'), 71.4 (CH₂ benzyl), 68.8 (C-6), 66.6 (C-5), 55.5 (CH₃ OMe), 35.2 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 103.0 (J_{C1-H1} = 162 Hz, C-1), 102.9 (J_{C1'-H1'} = 160 Hz, C-1'); Diagnostic peak from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.43 (s, 0.09H, CH benzylidene); HRMS [M+Na]⁺ calcd for C₆₀H₆₀O₁₁Na 1011.37485, found 1011.37543.

2,3,4-Tri-O-benzyl-6-deoxy-6-S-phenyl-6-thio-D-mannopyranosyl-(1->2)-(methyl 3-O-benzyl-4,6-O-benzylidene- α -D-mannopyranoside) (18c): Donor 8 and acceptor 15c were coupled according to the general glycosylation procedure to yield 172 mg (191 µmol, 87%) of the title compound 18c as an epimeric mixture (α/β 1/5). Rf 0.54, 0.71 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3033, 2905, 1584, 1497, 1482, 1454, 1072, 736, 696; NMR data of the major β -

linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.66 – 6.87 (m, 30H, H_{arom}), 5.54 (s, 1H, CH benzylidene), 5.11 – 4.88 (m, 4H, CH₂ benzyl), 4.76 (s, 1H, H-1), 4.69 – 4.48 (m, 4H, H-1', CH₂ benzyl), 4.42 – 4.37 (m, 2H, H-2, CH₂ benzyl), 4.28 – 4.23 (m, 1H, H-6), 4.10 (t, J = 9.3 Hz, 1H, H-4), 4.01 – 3.93 (m, 2H, H-2', H-3), 3.86 – 3.76 (m, 3H, H-6, H-4', H-5), 3.49 (dd, J = 9.1, 2.9 Hz, 1H, H-3'), 3.46 – 3.37 (m, 2H, H-6', H-5'), 3.34 (s, 3H, CH₃ OMe), 2.95 (dd, J = 14.0, 9.5 Hz, 1H, H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.8, 138.6, 138.1, 137.9, 137.5, 137.0 (C_q), 128.8, 128.5, 128.3, 128.1, 128.0, 127.9, 127.5, 127.4, 126.1, 125.3 (CH_{arom}), 101.6 (CH benzylidene), 99.1 (C-1'), 98.8 (C-1), 81.8 (C-3'), 78.3 (C-4), 77.5 (C-4'), 75.2 (C-5'), 75.1, 73.6 (CH₂ benzyl), 73.5 (C-3), 73.2 (C-2'), 72.6 (C-2), 71.0, 70.3 (CH₂ benzyl), 68.8 (C-6), 63.8 (C-5), 54.9 (CH₃ OMe), 35.2 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 99.1 (J_{C1'H1'} = 155 Hz, C-1'), 98.8 (J_{C1-H1} = 167 Hz, C-1); Diagnostic peaks from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.59 (s, 0.21H, CH benzylidene), 3.17 (s, 0.65H, CH₃ OMe); HRMS [M+Na]⁺ calcd for C₅₄H₅₆O₁₀SNa 919.34864, found 919.34870.

2,3,4-Tri-O-benzyl-6-deoxy-6-*S-p***-tolyl-6-thio-D-mannopyranosyl-(1->6)**-(methyl **2,3,4-tri-O-benzyl-α-D-glucopyranoside**) (19a): Donor **9** and acceptor **15a** were coupled according to the general glycosylation procedure to yield 190 mg (189 µmol, 86%) of the title compound **19a** as an epimeric mixture (α/β 1/5). R*f* 0.60 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3030, 2911, 1497, 1489, 1454, 1070, 732, 694; NMR data of the major β -linked product: ¹H NMR (400

MHz, CDCl₃, HH-COSY, HSQC) δ 7.61 – 6.73 (m, 34H, H_{arom}), 5.07 – 4.89 (m, 3H, CH₂ benzyl), 4.89 – 4.72 (m, 4H, CH₂ benzyl), 4.72 – 4.41 (m, 6H, H-1, CH₂ benzyl), 4.19 (dd, *J* = 10.3, 1.9 Hz, 1H, H-6), 4.08 (s, 1H, H-1'), 4.03 (t, *J* = 9.2 Hz, 1H, H-3), 3.85 – 3.71 (m, 2H, H-5, H-4'), 3.70 (d, *J* = 2.9 Hz, 1H, H-2'), 3.52 (dd, *J* = 9.7, 3.5 Hz, 1H, H-2), 3.49 – 3.42 (m, 2H, H-6, H-4), 3.42 – 3.25 (m, 6H, H-3', CH₃ OMe, H-6', H-5'), 3.02 (dd, *J* = 14.0, 9.6 Hz, 1H, H-6'), 2.27 (s, 3H, CH₃ Me); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.7, 138.5, 138.1, 137.9, 135.4, 133.4 (C_q), 129.5, 129.4, 129.2, 129.0, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4 (CH_{arom}), 101.1, 97.7, 82.1, 82.0 (C-3, C-3'), 79.7 (C-2), 77.6, 77.4 (C-4, C-4'), 75.6, 75.1 (CH₂ benzyl), 75.1 (C-5'), 74.7, 73.6 (CH₂ benzyl), 73.4 (C-2'), 73.2, 71.4 (CH₂ benzyl), 69.5 (C-5), 67.9 (C-6), 55.0 (CH₃ OMe), 36.0 (C-6'), 20.9 (CH₃ Me); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 101.1 (J_{C1'-H1'} = 154.6 Hz, C-1'), 97.7 (J_{C1-H1} = 167.1 Hz, C-1); Diagnostic peaks from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 3.96 (t, *J* = 9.3 Hz, 0.19H, H-3), 2.26 (s, 0.57H, CH₃ Me); HRMS [M+Na]⁺ calcd for C₆₂H₆₆O₁₀SNa 1025.42689, found 1025.42706.

2,3,4-Tri-O-benzyl-6-deoxy-6-*S***-p-tolyl-6-thio-D-mannopyranosyl** (1 \rightarrow 3)-(*p*-methoxyphenyl 2-*O*-benzyl-4,6-*O*-benzylidene- β -D-galactopyranoside) (19b): Donor 9 and acceptor 15b were coupled according to the general glycosylation procedure to yield 124 mg (123 μ mol, 56%) of the title compound 19b as an epimeric mixture (α/β

1/8). R*f* 0.59 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3030, 2866, 1505, 1454, 1060, 731, 697; NMR data of the major β-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.74 – 6.70 (m, 33H, H_{arom}), 5.57 (s, 1H, CH benzylidene), 4.98 – 4.84 (m, 5H, CH₂ benzyl, H-1), 4.63 – 4.55 (m, 2H, H-1', CH₂ benzyl), 4.46 – 4.29 (m, 5H, CH₂ benzyl, H-6, H-4), 4.10 – 4.00 (m, 2H, H-2, H-6), 3.80 – 3.70 (m, 5H, H-4', CH₃ OMe, H-3), 3.67 (d, J = 2.9 Hz, 1H, H-2'), 3.45 (s, 1H, H-5), 3.37 – 3.27 (m, 2H, H-5', H-6'), 3.23 (dd, J = 9.3, 2.9 Hz, 1H, H-3'), 3.04 (dd, J = 14.0, 9.9 Hz, 1H, H-6'), 2.29 (s, 3H, CH₃ Me); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 155.3, 151.5, 138.5, 138.0, 135.5, 133.5 (C_q), 129.6, 128.8, 128.7, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 126.3, 118.8, 114.4

(CH_{arom}), 103.1 (C-1), 102.9 (C-1'), 100.6 (CH benzylidene), 82.5 (C-3'), 78.7 (C-2), 78.3 (C-3), 77.7 (C-4'), 75.9 (C-4), 75.3 (C-5'), 75.2, 73.3 (CH₂ benzyl), 72.4 (C-2'), 71.5 (CH₂ benzyl), 68.9 (C-6), 66.7 (C-5), 55.6 (CH₃ OMe), 36.0 (C-6'), 20.9 (CH₃ Me); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 103.1 (J_{C1-H1} = 158 Hz, C-1), 102.9 (J_{C1'-H1'} = 158 Hz, C-1'); Diagnostic peaks from the α -linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.46 (s, 0.13H, CH benzylidene), 2.08 (s, 0.38H, CH₃ Me); HRMS [M+Na]⁺ calcd for C₆₁H₆₂O₁₁SNa 1025.39050, found 1025.39141.

2,3,4-Tri-O-benzyl-6-deoxy-6-*S***-***p***-tolyl-6-thio-D-mannopyranosyl-(1→2)**-(methyl **3-O-benzyl-4,6-O-benzylidene-** α **-D-mannopyranoside**) (19c): Donor **9** and acceptor **15c** were coupled according to the general glycosylation procedure to yield 178 mg (196 µmol, 89%) of the title compound **19c** as an epimeric mixture (α/β 1/3.5). R*f* 0.55, 0.75 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3032, 2919, 1496, 1454, 1072, 735, 696; NMR data of the major β -linked

product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.67 – 7.07 (m, 29H, H_{arom}), 5.66 (s, 1H, CH benzylidene), 5.20 – 5.00 (m, 4H, CH₂ benzyl), 4.87 (s, 1H, H-1), 4.83 – 4.58 (m, 4H, H-1', CH₂ benzyl), 4.54 – 4.47 (m, 2H, CH₂ benzyl, C-2), 4.41 – 4.34 (m, 1H, H-6), 4.20 (t, *J* = 9.3 Hz, 1H, H-4), 4.12 – 4.06 (m, 2H, H-2', H-3), 3.94 – 3.83 (m, 3H, H-6, H-5, H-4'), 3.58 (dd, *J* = 9.2, 2.9 Hz, 1H, H-3'), 3.53 – 3.44 (m, 5H, H-6', H-5', CH₃ OMe), 3.05 (dd, *J* = 13.9, 9.7 Hz, 1H, H-6'), 2.38 (s, 3H, CH₃ Me); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.8, 138.6, 138.1, 137.9, 137.5, 135.5, 133.1 (C_q), 129.6, 128.8, 128.6, 128.3, 128.1, 128.0, 127.6, 127.5, 126.1 (CH_{arom}), 101.6 (CH_{arom}), 99.1 (C-1'), 98.8 (C-1), 81.8 (C-3'), 78.3 (C-4), 77.6 (C-4'), 75.3 (CH2 benzyl, C-5'), 73.6 (CH₂ benzyl), 73.5 (C-3), 73.1 (C-2'), 72.5 (C-2), 71.0, 70.3 (CH₂ benzyl), 68.9 (C-6), 63.8 (C-5), 55.0 (CH₃ OMe), 36.0 (C-6'), 20.9 (CH₃ Me); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 99.1 (J_{C1'+H1'} = 154 Hz, C-1'), 98.8 (J_{C1-H1} = 168 Hz, C-1); Diagnostic peaks from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.71 (s, 0.29H, CH benzylidene), 3.32 (s, 0.88H, CH₃ OMe); HRMS [M+Na]⁺ calcd for C₅₅H₅₈O₁₀SNa 933.36429, found 933.36435.

2,3,4-Tri-O-benzyl-6-deoxy-6-S-*p***-methoxyphenyl-6-thio-D**mannopyranosyl-(1→6)-(methyl 2,3,4-tri-*O*-benzyl-α-D-glucopyranoside) (20a): Donor 10 and acceptor 15a were coupled according to the general glycosylation procedure to yield 191 mg (187 µmol, 85%) of the title compound **20a** as an epimeric mixture (α/β 1/5). R*f* 0.52 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3031, 2908, 1593, 1496, 1454, 1070, 734, 696; NMR data of the major β-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.60 – 6.99 (m, 32H, H_{arom}), 6.86 – 6.59 (m, 2H, H_{arom}), 5.03 (d, *J* =

10.9 Hz, 1H, CH₂ benzyl), 4.97 – 4.88 (m, 2H, CH₂ benzyl), 4.88 – 4.73 (m, 4H, CH₂ benzyl), 4.66 (d, J = 12.1 Hz, 1H, CH₂ benzyl), 4.61 – 4.38 (m, 5H, CH₂ benzyl, H-1), 4.18 (dd, J = 10.3, 1.8 Hz, 1H, H-6), 4.08 (s, 1H, H-1'), 4.03 (t, J = 9.2 Hz, 1H, H-3), 3.87 – 3.69 (m, 6H, H-5, CH₃ OMe, H-4', H-2'), 3.52 (dd, J = 9.7, 3.5 Hz, 1H, H-2), 3.49 – 3.42 (m, 2H, H-6, H-4), 3.40 – 3.22 (m, 6H, H-3', CH₃ OMe, H-6', H-5'), 3.00 (dd, J = 13.5, 9.0 Hz, 1H, H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 158.5, 138.8, 138.5, 138.1, 138.0, 137.9 (C_q), 132.2, 128.4, 128.3, 128.2, 128.1, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.6, 127.5, 127.4 (CH_{arom}), 127.2 (C_q), 114.4 (CH_{arom}), 101.2 (C-1'), 97.7 (C-1), 82.1 (C-3, C-3'), 79.8 (C-2), 77.6, 77.5 (C-4, C-4'), 75.6 (CH₂ benzyl), 75.1 (C-5', CH₂ benzyl), 74.7, 73.6 (CH₂ benzyl), 73.4 (C-2'), 73.2, 71.4 (CH₂ benzyl), 69.5 (C-5), 68.0 (C-6), 55.2, 55.0 (CH₃ OMe), 37.6 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 101.2 (J_{C1'-H1'} = 154.9 Hz, C-1'), 97.7 (J_{C1-H1} = 171.7 Hz, C-1); Diagnostic peak from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 3.96 (t, J = 9.2 Hz, 0.20H, H-3); HRMS [M+Na]⁺ calcd for C₆₂H₆₆O₁₁SNa 1041.42180, found 1041.42186.

2,3,4-Tri-O-benzyl-6-deoxy-6-S-p-methoxyphenyl-6-thio-Dmannopyranosyl $(1\rightarrow 3)(-p$ -methoxyphenyl 2-O-benzyl-4,6-Obenzylidene- β -D-galactopyranoside) (20b): Donor 10 and acceptor 15b were coupled according to the general glycosylation procedure to yield 130 mg (128 µmol, 58%) of the title compound **20b** as an epimeric mixture (α/β 1/7). R*f* 0.33 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3034, 2858, 1593, 1505, 1495, 1454, 1060, 730, 696; NMR data of the major β-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.81 – 6.69 (m, 33H, H_{arom}), 5.59 (s, 1H, CH benzylidene), 4.97 – 4.84 (m, 5H, H-1, CH₂ benzyl), 4.57 (d, *J* = 11.2 Hz, 2H, H-1', CH₂ benzyl), 4.44 – 4.27 (m, 5H, H-6, H-4, CH₂ benzyl), 4.10 – 4.01 (m, 2H, H-6, H-2), 3.78 – 3.70 (m, 8H, H-3, H-4', 2*CH₃ OMe), 3.67 (d, *J* = 2.9 Hz, 1H, H-2'), 3.48 (s, 1H, H-5), 3.35 – 3.27 (m, 1H, H-5'), 3.25 – 3.19 (m, 2H, H-3', H-6'), 3.03 (dd, *J* = 13.7, 9.4 Hz, 1H, H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 158.5, 155.3, 151.5, 138.5, 138.1, 138.0, 132.06 (C_q), 132.0, 128.7, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4 (CH_{arom}), 127.4 (C_q), 126.3, 119.0, 118.8, 114.5, 114.4 (CH_{arom}), 103.1 (C-1), 102.9 (C-1'), 100.7 (CH benzylidene), 82.5 (C-3'), 78.8 (C-2), 78.2 (C-3), 77.5 (C-4'), 75.9 (C-4), 75.5 (C-5'), 75.3, 73.3 (CH₂ benzyl), 72.4 (C-2'), 71.5 (CH₂ benzyl), 68.9 (C-6), 66.7 (C-5), 55.6, 55.3 (CH₃ OMe), 37.5 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 103.1 (J_{C1-H1} = 159 Hz, C-1), 102.9 (J_{C1'-H1'} = 158 Hz, C-1'); Diagnostic peaks from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.48 (s, 0.12H, CH₃ OMe), 3.58 (s, 0.38H); HRMS [M+Na]⁺ calcd for C₆₁H₆₂O₁₂SNa 1041.38542, found 1041.38571.

2,3,4-Tri-O-benzyl-6-deoxy-6-*S-p***-methoxyphenyl-6-thio-Dmannopyranosyl-(1->2)-(methyl 3-O-benzyl-4,6-O-benzylidene-α-Dmannopyranoside)** (**20c**): Donor **10** and acceptor **15c** were coupled according to the general glycosylation procedure to yield 179 mg (194 µmol, 88%) of the title compound **20c** as an epimeric mixture (α/β 1/4.5). R*f* 0.40, 0.60 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 2910, 1593, 1495, 1454, 1072, 730, 696; NMR data of the major β -linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.57 – 7.17 (m, 27H, H_{arom}), 6.82 –

6.69 (m, 2H), 5.55 (s, 1H, CH benzylidene), 5.06 (d, *J* = 12.4 Hz, 1H, CH₂ benzyl), 5.01 – 4.90 (m, 3H, CH₂ benzyl), 4.78 (d, *J* = 0.9 Hz, 1H, H-1), 4.69 – 4.48 (m, 3H, H-1', CH₂ benzyl), 4.43 (dd, *J* = 3.3, 1.4 Hz, 1H, H-2), 4.39 (d, *J* = 11.8 Hz, 1H, CH₂ benzyl), 4.29 – 4.25 (m, 1H, H-6), 4.12 – 4.06 (m, 1H, H-4), 4.01 – 3.95 (m, 2H, H-2', H-3), 3.83 – 3.74 (m, 3H, H-6, H-4', H-5), 3.72 (s, 3H, CH₃ OMe), 3.47 (dd, *J* = 9.2, 3.0 Hz, 1H, H-3'), 3.41 – 3.34 (m, 4H, CH₃ OMe, H-5'), 3.30 (dd, *J* = 13.5, 1.7 Hz, 1H, H-6'), 2.94 (dd, *J* = 13.6, 9.2 Hz, 1H, H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 158.5, 138.8, 138.6, 138.2, 137.9, 137.5 (C_q), 132.0, 128.5, 128.3, 128.1, 128.0, 127.9, 127.6, 127.5, 127.4, 126.1, 114.5 (CH_{arom}), 101.6 (CH benzylidene), 99.1 (C1'), 98.8 C-1), 81.8 (C-3'), 78.3 (C-4), 77.6 (C-4'), 75.2 (C-5'), 75.1, 73.6 (CH₂ benzyl), 73.5 (C-3), 73.1 (C-2'), 72.5 (C-2), 71.0, 70.3 (CH₂ benzyl), 68.9 (C-6), 63.8 (C-5), 55.2, 55.0 (CH₃ OMe), 37.5 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 99.1 (J_{C1'+H1'} = 154 Hz, C-1'), 98.8 (J_{C1-H1} = 168 Hz, C-1); Diagnostic peaks from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.61 (s, 022H, CH benzylidene), 3.27 (s, 0.66H, CH₃ OMe); HRMS [M+Na]⁺ calcd for C₅₅H₅₈O₁₁SNa 949.35920, found 949.35920.

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-*p*-nitrophenyl-6-thio-D-mannopyranosyl-(1 \rightarrow 6)-(methyl **2,3,4-tri-***O*-benzyl- α -D-glucopyranoside) (**21a**): Donor **11** and acceptor **15a** were coupled according to the general glycosylation procedure to yield 180 mg (174 µmol, 79%) of the title compound as **21a** an epimeric mixture (α/β 1/7). R*f* 0.59 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3032, 2903, 1578, 1512, 1497, 1454, 1336, 1067, 733, 696; NMR data of the major β -linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 8.10 – 7.85 (m, 2H, H_{arom}), 7.50 – 7.09 (m, 32H, H_{arom}), 5.08 – 4.99 (m, 2H, CH₂ benzyl), 4.92 (d, *J* = 12.4 Hz, 1H, CH₂ benzyl), 4.87 – 4.75 (m, 4H, CH₂

benzyl), 4.69 - 4.46 (m, 6H, H-1, CH₂ benzyl), 4.12 - 4.06 (m, 2H, H-1', H-6), 4.02 (t, J = 9.2 Hz, 1H, H-3), 3.86 - 3.74 (m, 2H, H-4', H-5), 3.72 (d, J = 2.8 Hz, 1H, H-2'), 3.54 - 3.30 (m, 9H, H-2, H-6, H3', H-4, H-6', H-5', CH₃ OMe), 3.04 (dd, J = 14.1, 9.1 Hz, 1H, H-6'); 13 C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 147.9, 144.7, 138.7, 138.4, 138.2, 137.9, 137.8 (C_q), 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 125.9, 123.7, 123.6 (CH_{arom}), 101.2 (C-1'), 97.7 (C-1), 82.0 (C-3, C-1), 82.0 (C-3, C-1),

3'), 79.8 (C-2), 77.2 (C-4, C-4'), 75.6, 75.3 (CH₂ benzyl), 74.9 (C-5'), 74.6, 73.8 (CH₂ benzyl), 73.4 (C-2'), 73.2, 71.4 (CH₂ benzyl), 69.5 (C-5), 68.1 (C-6), 55.0 (CH₃ OMe), 33.9 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 101.2 (J_{C1'-H1'} = 156.0 Hz, C-1'), 97.7 (J_{C1-H1} = 168.1 Hz, C-1); Diagnostic peak from the α -linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 3.95 (t, *J* = 9.2 Hz, 0.14H, H-3); HRMS [M+Na]⁺ calcd for C₆₁H₆₃NO₁₂SNa 1056.39632, found 1056.39636.

2,3,4-Tri-O-benzyl-6-deoxy-6-*S***-***p***-nitrophenyl-6-thio-Dmannopyranosyl-(1→3)-(***p***-methoxyphenyl 2-***O***-benzyl-4,6-***O***benzylidene-β-D-galactopyranoside)** (**21b**): Donor **11** and acceptor **15b** were coupled according to the general glycosylation procedure to yield 207 mg (200 µmol, 91%) of the title compound **21b** as an epimeric mixture (α/β 1/4). R*f* 0.37

(EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 2870, 1579, 1506, 1454, 1336, 1060, 730, 696; NMR data of the major β-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 8.05 – 7.96 (m, 2H, H_{arom}), 7.62 – 6.75 (m, 31H, H_{arom}), 5.56 (s, 1H, CH benzylidene), 5.03 – 4.82 (m, 5H, H-1, CH₂ benzyl), 4.65 – 4.59 (m, 2H, H-1', CH₂ benzyl), 4.43 (d, *J* = 11.6 Hz, 1H, CH₂ benzyl), 4.38 – 4.28 (m, 3H, H-6, CH₂ benzyl), 4.26 (d, *J* = 3.4 Hz, 1H, H-4), 4.10 – 3.98 (m, 2H, H-2, H-6), 3.83 – 3.70 (m, 5H, H-4', H-3, CH₃ OMe), 3.69 (d, *J* = 2.8 Hz, 1H, H-2'), 3.43 (s, 1H, H-5), 3.39 – 3.28 (m, 2H, H-5', H-6'), 3.23 (dd, *J* = 9.2, 2.9 Hz, 1H, H-3'), 3.09 – 3.00 (m, 1H, H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 155.3, 151.4, 147.9, 144.7, 138.4, 138.2, 137.9, 137.8 (C_q), 128.5, 128.4, 128.3, 128.0, 127.9, 127.6, 127.4, 126.2, 125.8, 123.7, 119.1, 118.7, 114.4 (CH_{arom}), 103.1 (C-1), 102.7 (C-1'), 100.7 (CH benzylidene), 82.4 (C-3'), 78.8 (C-2), 78.0 (C-3), 77.1 (C-4'), 75.9 (C-4), 75.3, 75.2 (CH₂ benzyl), 74.9 (C-5'), 73.4 (CH₂ benzyl), 72.3 (C-2'), 71.4 (CH₂ benzyl), 68.8 (C-6), 66.6 (C-5), 55.5 (CH₃ OMe), 33.9 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 103.1 (J_{C1-H1} = 159 Hz, C-1), 102.7 (J_{C1'-H1'} = 157 Hz, C-1'); Diagnostic peaks from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.45 (s, 0.24H, benzylidene), 2.93 (dd, *J* = 14.1, 9.2 Hz, 1H, H-6'); HRMS [M+Na]⁺ calcd for C₆₀H₅₉NO₁₃SNa 1056.35993, found 1056.36042.

2,3,4-Tri-*O*-**benzyl-6-deoxy-6-***S*-*p*-**nitrophenyl-6-thio-D-mannopyranosyl-**(1→2)-(methyl 3-*O*-**benzyl-4,6-***O*-**benzylidene-** α -**D**-**mannopyranoside**) (**21c**): Donor **11** and acceptor **15c** were coupled according to the general glycosylation procedure to yield 187 mg (198 µmol, 90%) of the title compound **21c** as an epimeric mixture (α/β 1/4). R*f* 0.47 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 2908, 1579, 1512, 1598, 1454, 1336, 1072, 730, 696; NMR data of the major β -linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.97 – 7.91 (m, 2H, H_{arom}), 7.56 – 7.14 (m, 27H, H_{arom}), 5.53

(s, 1H, CH benzylidene), 5.06 (dd, J = 11.7, 4.6 Hz, 2H, CH₂ benzyl), 4.97 (d, J = 12.3 Hz, 1H, CH₂ benzyl), 4.88 (d, J = 12.3 Hz, 1H, CH₂ benzyl), 4.73 (d, J = 1.1 Hz, 1H, H-1), 4.70 – 4.53 (m, 4H, CH₂ benzyl, H-1'), 4.43 (d, J = 11.8 Hz, 1H, CH₂ benzyl), 4.31 (dd, J = 3.3, 1.4 Hz, 1H, H-2), 4.29 – 4.24 (m, 1H, H-6), 4.11 – 4.06 (m, 1H, H-4), 4.02 (d, J = 2.9 Hz, 1H, H-2'), 3.96 (dd, J = 9.9, 3.4 Hz, 1H, H-3), 3.85 (t, J = 9.2 Hz, 1H, H-4'), 3.81 – 3.76 (m, 2H, H-5, H-6), 3.53 (dd, J = 9.1, 2.9 Hz, 1H, H-3'), 3.46 – 3.36 (m, 2H, H-6', H-5'), 3.34 (s, 3H, CH₃ OMe), 2.92 (dd, J = 13.9, 9.2 Hz, 1H, H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 147.6, 144.7, 138.6, 138.4, 137.9, 137.7, 137.4 (C_q), 128.5, 128.3, 128.2, 128.1, 127.9, 127.5, 127.4, 126.0, 125.6, 123.7 (CH_{arom}), 101.6 (CH benzylidene), 99.4 (C-1'), 99.0 (C-1), 81.7 (C-3'), 78.4 (C-4), 77.2 (C-4'), 75.3 (CH₂ benzyl), 74.8 (C-5'), 73.8 (CH₂ benzyl), 73.7, 73.4, 73.2 (C-3, C-2', C-2), 71.0, 70.7 (CH₂ benzyl), 68.8 (C-6), 63.8 (C-5), 54.9 (CH₃ OMe), 33.8 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 99.4 ($J_{C1'-H1'} = 152$ Hz, C-1'), 99.0 ($J_{C1-H1} = 168$ Hz, C-1); Diagnostic peaks from the α -linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.60 (s, 0.25H, CH benzylidene), 3.15 (s, 0.75H, CH₃ OMe); HRMS [M+Na]⁺ calcd for C₅₄H₅₅NO₁₂SNa 964.33372, found 964.33391.

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-ethyl-6-thio-D-mannopyranosyl- $(1\rightarrow 6)$ -(methyl 2,3,4-tri-*O*-benzyl- α -D-glucopyranoside) (22a): Donor 12 and acceptor 15a were coupled according to the general glycosylation procedure to yield 166 mg

(176 μ mol, 80%) of the title compound **22a** as an epimeric mixture (α/β 1/4). Rf 0.48, 0.53 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3030, 2924, 1497, 1454, 1067, 736, 696; NMR data of the major β-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.44 – 7.15 (m, 30H, H_{arom}), 5.07 – 4.89 (m, 3H, CH₂ benzyl), 4.86 – 4.73 (m, 4H, CH₂ benzyl), 4.70 – 4.43 (m, 6H, H-1, CH₂ benzyl), 4.16 (dd, J = 10.3, 1.8 Hz, 1H, H-6), 4.12 (s, 1H, H-1'), 4.02 (t, J = 9.2 Hz, 1H, H-3), 3.82 - 3.74 (m, 2H, H-5, H-4'), 3.72 (d, J = 2.8 Hz, 1H, H-2'), 3.54 - 3.42 (m, 3H, H-2, H-6, H-4), 3.40 (dd, J = 9.3, 2.9 Hz, 1H, H-3'), 3.34 – 3.27 (m, 4H, CH₃ OMe, H-5'), 2.89 (dd, J = 13.9, 2.0 Hz, 1H, H-6'), 2.71 (dd, J = 14.0, 8.6 Hz, 1H, H-6'), 2.58 (q, J = 7.4 Hz, 2H, CH₂ ethyl), 1.18 (t, J = 7.4 Hz, 3H, CH₃ ethyl); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.7, 138.6, 138.2, 138.0, 137.9 (C_q), 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3 (CH_{arom}), 101.3 (C-1'), 97.7 (C-1), 82.1, 82.0 (C-3, C-3'), 79.7 (C-2), 77.5, 77.4 (C-4, C-4'), 77.1 (C-5'), 75.5 , 75.2, 74.6, 73.6 (CH₂ benzyl), 73.5 (C-2'), 73.2, 71.4 (CH₂ benzyl), 69.6 (C-5), 68.1 (C-6), 54.9 (CH₃ OMe), 33.1 (C-6'), 26.9 (CH₂ ethyl), 14.78 (CH₃ ethyl); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 101.3 (J_{C1'-H1'} = 153.1 Hz, C-1'), 97.7 (J_{C1-H1} = 168.1 Hz, C-1); Diagnostic peaks from the α -linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 3.62 (dd, J = 11.5, 1.7 Hz, 0.22 H, H-6), 2.47 (q, J = 7.3 Hz, 0.44H, CH₂ ethyl); HRMS [M+Na]⁺ calcd for C₅₇H₆₄O₁₀SNa 963.41124, found 963.41153.

2,3,4-Tri-O-benzyl-6-deoxy-6-S-ethyl-6-thio-D-mannopyranosyl-(1 \rightarrow 3)-(*p*-methoxyphenyl 2-O-benzyl-4,6-O-benzylidene- β -Dgalactopyranoside) (22b): Donor 12 and acceptor 15b were coupled according to the general glycosylation procedure to yield 178 mg (189 µmol, 86%) of the title compound 22b as an epimeric mixture (α/β

1/3.5). R*f* 0.21, 0.29 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) IR (neat, cm⁻¹) 2867, 1506, 1454, 1062, 733, 697; NMR data of the major β-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.62 – 6.78 (m, 29H), 5.62 (s, 1H, CH benzylidene), 4.97 – 4.88 (m, 4H, H-1, CH₂ benzyl), 4.64 – 4.57 (m, 3H, H-1', CH₂ benzyl), 4.44 – 4.30 (m, 5H, H-4, H-6, CH₂ benzyl), 4.10 – 4.02 (m, 2H, H-2, H-6), 3.82 (dd, *J* = 10.0, 3.5 Hz, 1H, H-3), 3.76 – 3.70 (m, 4H, CH₃ OMe, H-4'), 3.68 (d, *J* = 2.9 Hz, 1H, H-2'), 3.51 (s, 1H, H-5), 3.32 – 3.25 (m, 1H, H-5'), 3.23 (dd, *J* = 9.3, 2.9 Hz, 1H, H-3'), 2.87 (dd, *J* = 13.7, 2.0 Hz, 1H, H-6'), 2.71 (dd, *J* = 13.7, 9.2 Hz, 1H, H-6'), 2.57 (q, *J* = 7.4 Hz, 2H, CH₂ ethyl), 1.21 (t, *J* = 7.4 Hz, 3H, CH₃ ethyl); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 155.3, 151.5, 138.5, 138.5, 138.1, 138.0 (C_q), 128.4, 128.3, 128.1, 128.0, 127.9, 127.6, 127.5, 126.3, 118.8, 114.4 (CH_{arom}), 103.1 (C-1), 102.9 (C-1'), 100.7 (CH benzylidene), 82.5 (C-3'), 78.7 (C-2), 78.4 (C-3), 77.5 (C-4'), 76.4 (C-4), 76.1 (C-5'), 75.2, 73.3 (CH₂ benzyl), 72.4 (C-2'), 71.5 (CH₂ benzyl), 68.9 (C-6), 66.7 (C-5), 55.6 (CH₃ OMe), 33.5 (C-6'), 26.8 (CH₂ ethyl), 14.9 (CH₃ ethyl); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 103.1 (J_{C1-H1} = 159 Hz, C-1), 102.9 (J_{C1'}-H_{1'} = 158 Hz, C-1'); Diagnostic peaks from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.46 (s, 0.29H, CH benzylidene), 2.32 (q, *J* = 7.4 Hz, 0.57H, CH₂ ethyl), 1.00 (t, *J* = 7.4 Hz, 0.86H, CH₃ ethyl); HRMS [M+Na]⁺ calcd for C₅₆H₆₀O₁₁SNa 963.37485, found 963.37521.

2,3,4-Tri-O-benzyl-6-deoxy-6-S-ethyl-6-thio-D-mannopyranosyl-(1→2)-(methyl 3-O-benzyl-4,6-O-benzylidene-\alpha-D-mannopyranoside) (22c): Donor **12** and acceptor **15c** were coupled according to the general glycosylation procedure to yield 146 mg (172 µmol, 78%) of the title compound **22c** as an epimeric mixture (α/β 1/1.5). Rf 0.40, 0.59 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 2926, 1718, 1497, 1454, 1075, 738, 697; NMR data of the major β -linked product: ¹H NMR (400

MHz, CDCl₃, HH-COSY, HSQC) δ 7.54 – 7.18 (m, 25H, H_{arom}), 5.54 (s, 1H, CH benzylidene), 5.09 – 4.85 (m, 2H, CH₂ benzyl), 4.79 (d, *J* = 0.8 Hz, 1H), 4.71 – 4.50 (m, 6H, H-1', CH₂ benzyl), 4.43 (d, *J* = 11.8 Hz, 1H, CH₂ benzyl), 4.39 (dd, *J* = 3.4, 1.5 Hz, 1H, H-2), 4.28 – 4.21 (m, 1H, H-6), 4.13 – 4.05 (m, 1H, H-4), 4.02 – 3.95 (m, 2H, H-2', H-3), 3.88 – 3.74 (m, 3H, H-4', H-5, H-6), 3.50 (dd, *J* = 9.3, 3.0 Hz, 1H, H-3'), 3.41 – 3.33 (m, 4H, H-5', CH₃ OMe), 2.99 – 2.89 (m, 1H, H-6'), 2.73 – 2.65 (m, 1H, H-6'), 2.55 (q, *J* = 7.4 Hz, 2H, CH₂ ethyl), 1.15 (t, *J* = 7.4 Hz, 3H, CH₃ ethyl); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.8, 138.7, 138.3, 137.5 (C_q), 128.5, 128.3, 128.1, 128.0, 127.6, 127.5, 126.1 (CH_{arom}), 101.6 (CH benzylidene), 99.0 (C-1'), 98.7 (C-1), 81.9 (C-3'), 78.5 (C-4), 77.4 (C-4'), 76.9 (C-5'), 75.2, 73.7 (CH₂

benzyl), 73.6, 73.5 (C-2', C-3), 72.8 (C-2), 71.1, 70.7 (CH₂ benzyl), 68.9 (C-6), 63.9 (C-5), 55.0 (CH₃ OMe), 33.5 (C-6'), 26.9 (CH₂ ethyl), 14.8 (CH₃ ethyl); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 99.0 (J_{C1'H1'} = 154 Hz, C-1'), 98.7 (J_{C1-H1} = 167 Hz, C-1); Diagnostic peaks from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.61 (s, 0.65H, CH benzylidene), 1.24 (t, *J* = 7.5 Hz, 1.95H, CH₃ ethyl); HRMS [M+Na]⁺ calcd for $C_{50}H_{56}O_{10}SNa$ 871.34864, found 871.34859.

2,3,4-Tri-O-benzyl-6-deoxy-6-*Se***-phenyl-6-seleno-D-mannopyranosyl-(1-\rightarrow6)**-(methyl **2,3,4-tri-O-benzyl-\alpha-D-glucopyranoside**) (**23a**): Donor **13** and acceptor **15a** were coupled according to the general glycosylation procedure to yield 226 mg (218 µmol, 99%) of the title compound **23a** as an epimeric mixture (α/β 1/7). R*f* 0.47 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3030, 2910, 1580, 1497, 1454, 1069, 731, 694; NMR data of the major β -linked product: ¹H NMR (400 MHz,

CDCl₃, HH-COSY, HSQC) δ 7.70 – 6.94 (m, 35H, H_{arom}), 5.03 (d, *J* = 10.9 Hz, 1H, CH₂ benzyl), 4.99 – 4.89 (m, 2H, CH₂ benzyl), 4.88 – 4.73 (m, 4H, CH₂ benzyl), 4.70 – 4.39 (m, 6H, H-1, CH₂ benzyl), 4.18 (br d, *J* = 9.9 Hz, 1H, H-6), 4.10 (s, 1H, H-1'), 4.04 (t, *J* = 9.2 Hz, 1H, H-3), 3.86 – 3.72 (m, 2H, H-5, H-4'), 3.71 (d, *J* = 2.3 Hz, 1H, H-2'), 3.52 (dd, *J* = 9.6, 3.4 Hz, 1H, H-2), 3.50 – 3.24 (m, 8H, H-6, H-4, H-5', H-3', CH₃ OMe, H-6'), 3.08 (dd, *J* = 12.5, 9.5 Hz, 1H, H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.7, 138.4, 138.1, 138.0, 137.9, 137.8 (C_q), 131.6, 131.4 (CH_{arom}), 131.2 (C_q), 128.8, 128.7, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 126.2 (CH_{arom}), 101.1 (C-1'), 97.6 (C-1), 82.0 (C-3, C-3'), 79.7 (C-2), 78.3 (C-4'), 77.4 (C-4), 75.7 (C-5'), 75.5, 75.1, 74.5, 73.6 (CH₂ benzyl), 73.4 (C-2'), 73.1, 71.4 (CH₂ benzyl), 69.4 (C-5), 67.9 (C-6), 54.9 (CH₃ OMe), 29.4 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 101.2 (J_{C1'H1'} = 154 Hz, C-1'), 97.6 (J_{C1-H1} = 169.0 Hz, C-1); Diagnostic peaks from the α -linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 3.97 (t, *J* = 9.2 Hz, 0.15H); HRMS [M+Na]⁺ calcd for C₆₁H₆₄O₁₀SeNa 1059.35569, found 1059.35680.

2,3,4-Tri-O-benzyl-6-deoxy-6-*Se***-phenyl-6-seleno-D-mannopyranosyl-**(1 \rightarrow 3)-(*p*-methoxyphenyl 2-O-benzyl-4,6-O-benzylidene- β -Dgalactopyranoside) (23b): Donor 13 and acceptor 15b were coupled according to the general glycosylation procedure to yield 210 mg (203 µmol, 96%) of the title compound 23b as an epimeric mixture (α/β

1/10). R*f* 0.24, 0.38 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3034, 2867, 1578, 1506, 1454, 1059, 731, 695; NMR data of the major β-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.62 – 6.73 (m, 34H, H_{arom}), 5.55 (s, 1H, CH benzylidene), 4.99 – 4.82 (m, 5H, H-1, CH₂ benzyl), 4.59 (d, *J* = 13.5 Hz, 2H, H-1', CH₂ benzyl), 4.47 – 4.25 (m, 5H, H-4, H-6, CH₂ benzyl), 4.11 – 3.96 (m, 2H, H-6, H-2), 3.80 – 3.66 (m, 6H, H-4', H-3, CH₃ OMe, H-2'), 3.44 – 3.33 (m, 2H, H-5, H-5'), 3.30 (br d, *J* = 11.3 Hz, 1H, H-6'), 3.24 (dd, *J* = 9.2, 2.4 Hz, 1H, H-3'), 3.10 (dd, *J* = 12.2, 10.2 Hz, 1H, H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 155.2, 151.4, 138.5, 138.4, 138.0, 137.9 (C_q), 131.6, 131.2, 128.9, 128.3, 128.2, 128.1, 127.9, 127.8, 127.6, 127.4, 126.2, 118.7, 114.4 (CH_{arom}), 103.0 (C-1), 102.9 (C-1'), 100.5 (CH benzylidene), 82.4 (C-3'), 78.7 (C-2), 78.4, 78.3 (C-3, C-4'), 75.9 (C-4), 75.7 (C-5'), 75.2, 73.3 (CH₂ benzyl), 72.5 (C-2'), 71.4, 68.8 (CH₂ benzyl), 66.6 (C-6), 55.5 (CH₃ OMe), 29.6 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 103.0 (J_{C1-H1} = 160 Hz, C-1), 102.9 (J_{C1'-H1'} = 159 Hz, C-1'); Diagnostic peak from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.43 (s, 0.10H, CH benzylidene); HRMS [M+Na]⁺ calcd for C₆₀H₆₀O₁₁SeNa 1059.31931, found 1059.32029.

2,3,4-Tri-O-benzyl-6-deoxy-6-*Se***-phenyl-6-seleno-D-mannopyranosyl-(1->2)**-(methyl 3-O-benzyl-4,6-O-benzylidene- α -D-mannopyranoside) (23c): Donor 13 and acceptor 15c were coupled according to the general glycosylation procedure to yield 191 mg (202 µmol, 92%) of the title compound 23c as an epimeric mixture (α/β 1/3). R*f* 0.45, 0.64 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3034, 2909, 1580, 1497, 1454, 1073, 735, 696; NMR data of the major β -linked

product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.56 – 7.12 (m, 30H, H_{arom}), 5.55 (s, 1H, CH benzylidene), 5.07 (d, *J* = 12.4 Hz, 1H, CH₂ benzyl), 5.01 – 4.88 (m, 3H, CH₂ benzyl), 4.78 (s, 1H, H-1),

4.67 (d, *J* = 12.3 Hz, 1H, CH₂ benzyl), 4.63 – 4.48 (m, 3H, H-1', CH₂ benzyl), 4.44 – 4.38 (m, 2H, H-2, CH₂ benzyl), 4.28 – 4.23 (m, 1H, H-6), 4.13 – 4.07 (m, 1H, H-4), 4.01 – 3.95 (m, 2H, H-2', H-3), 3.85 – 3.77 (m, 3H, H-6, H-4', H-5), 3.51 – 3.43 (m, 2H, H-3', H-5'), 3.40 – 3.33 (m, 4H, CH₃ OMe, H-6'), 3.01 (dd, *J* = 12.4, 9.6 Hz, 1H, H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.8, 138.6, 138.2, 137.9, 137.5 (C_q), 131.4 (CH_{arom}), 131.1 (C_q), 129.0, 128.5, 128.3, 128.1, 128.0, 127.9, 127.6, 127.4, 126.1 (CH_{arom}), 101.6 (CH benzylidene), 99.0 (C-1'), 98.7 (C-1), 81.8 (C-3'), 78.4 (C-4), 78.3 (C-4'), 75.9 (C-5'), 75.2, 73.7 (CH₂ benzyl), 73.6 (C-3), 73.4 (C-2'), 72.6 (C-2), 71.1, 70.5 (CH₂ benzyl), 68.8 (C-6), 63.8 (C-5), 55.0 (CH₃ OMe), 29.5 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 99.0 (J_{C1'-H1'} = 154 Hz, C-1'), 98.7 (J_{C1-H1} = 168 Hz, C-1); Diagnostic peaks from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.60 (s, 0.33H, CH benzylidene), 3.24 (s, 1H, CH₃ OMe), 3.09 (dd, *J* = 12.4, 9.5 Hz, 0.33H, H-6'); HRMS [M+Na]⁺ calcd for C₅₄H₅₆O₁₀SeNa 967.29309, found 967.29351.

2,3,4-Tri-*O***-benzyl-6-deoxy-6-iodo-D-mannopyranosyl-(1→6)-(methyl 2,3,4-tri-***O***-benzyl-\alpha-D-glucopyranoside) (24a):** Donor **14** and acceptor **15a** were coupled according to the general glycosylation procedure to yield 186 mg (185 µmol, 84%) of the title compound **24a** as an epimeric mixture (α/β 1/7). R*f* 0.49 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3032, 2872, 1497, 1454, 1066, 908, 728, 695; NMR data of the major β -linked product: ¹H NMR (400 MHz, CDCl₃, HH-

COSY, HSQC) δ 7.64 – 7.09 (m, 30H, H_{arom}), 5.03 (d, *J* = 10.9 Hz, 1H, CH₂ benzyl), 4.98 – 4.90 (m, 2H, CH₂ benzyl), 4.87 – 4.74 (m, 4H, CH₂ benzyl), 4.70 – 4.48 (m, 5H, H-1, CH₂ benzyl), 4.43 (d, *J* = 11.9 Hz, 1H, CH₂ benzyl), 4.27 (dd, *J* = 10.3, 1.7 Hz, 1H, H-6), 4.12 (s, 1H, H-1'), 4.04 (t, *J* = 9.2 Hz, 1H, H-3), 3.88 – 3.79 (m, 1H, H-5), 3.71 (d, *J* = 2.8 Hz, 1H, H-2'), 3.67 (t, *J* = 9.0 Hz, 1H, H-4'), 3.55 – 3.42 (m, 4H, H-2, H-6', H-6, H-4), 3.39 (dd, *J* = 9.2, 2.9 Hz, 1H, H-3'), 3.34 (s, 3H, CH₃ OMe), 3.20 (dd, *J* = 7.9, 4.5 Hz, 2H, H-5', H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.6, 138.3, 138.1, 137.9, 137.7 (C_q), 128.3, 128.2, 128.1, 128.0, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4 (CH_{arom}), 101.2 (C-1'), 97.6 (C-1), 82.0 (C-3), 81.6 (C-3'), 79.6 (C-2), 78.0 (C-4'), 77.5 (C-4), 75.6 (C-5'), 75.5, 75.2, 74.6, 73.6 (CH₂ benzyl), 73.3 (C-2'), 73.2, 71.4 (CH₂ benzyl), 69.4 (C-5), 68.3 (C-6), 55.0 (CH₃ OMe), 5.5 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 101.2 (J_{C1'+H1'} = 155.0 Hz, C-1'), 97.6 (J_{C1+H1} = 168.4 Hz, C-1); Diagnostic peak from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 3.30 (s, 0.43H, CH₃ OMe); HRMS [M+Na]⁺ calcd for C₅₅H₅₉IO₁₀Na 1029.30451, found 1029.30480.

2,3,4-Tri-*O***-benzyl-6-deoxy-6-iodo-D-mannopyranosyl-(1→3)-(***p***-methoxyphenyl 2-***O***-benzyl-4,6-***O***-benzylidene-** β **-D-galactopyranoside)** (**24b**): Donor **14** and acceptor **15b** were coupled according to the general glycosylation procedure to yield 210 mg (209 µmol, 95%) of the title compound **24b** as an epimeric mixture (α/β 1/6). R *f* 0.24, 0.39

(EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3030, 2866, 1506, 1454, 1059, 732, 696; NMR data of the major β-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.66 – 6.73 (m, 29H, H_{arom}), 5.65 (s, 1H, CH benzylidene), 4.98 – 4.84 (m, 5H, H-1, CH₂ benzyl), 4.61 – 4.56 (m, 2H, H-1', CH₂ benzyl), 4.53 (d, *J* = 3.4 Hz, 1H, H-4), 4.49 – 4.30 (m, 4H, H-6, CH₂ benzyl), 4.13 – 4.04 (m, 2H, H-6, H-2), 3.85 (dd, *J* = 10.0, 3.4 Hz, 1H, H-3), 3.75 (s, 3H, CH₃ OMe), 3.70 – 3.63 (m, 2H, H-2', H-4'), 3.57 – 3.50 (m, 2H, H-6', H-5), 3.25 (dd, *J* = 9.2, 3.0 Hz, 1H, H-3'), 3.23 – 3.14 (m, 2H, H-5', H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 155.3, 151.5, 138.5, 138.3, 138.0, 137.8 (C_q), 128.4, 128.3, 128.1, 128.0, 127.9, 127.7, 127.5, 126.3, 118.8, 114.4 (CH_{arom}), 103.1 (C-1, C-1'), 100.6 (CH benzylidene), 82.2 (C-3'), 78.7, 78.6 (C-2, C-3), 78.0 (C-4'), 76.0 (C-4), 75.6 (C-5'), 75.3 (2*CH₂ benzyl), 73.4 (CH₂ benzyl), 72.5 (C-2'), 71.5 (CH₂ benzyl), 68.9 (C-6), 66.7 (C-5), 55.6 (CH₃ OMe), 6.5 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 103.1 (J_{C1-H1} = 160 Hz, C-1, J_{C1'-H1'} = 158 Hz, C-1'); Diagnostic peak from the α-linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.45 (s, 0.16H, CH benzylidene); HRMS [M+Na]⁺ calcd for C₅₄H₅₅IO₁₁Na 1029.26813, found 1029.26818.

2,3,4-Tri-*O*-benzyl-6-deoxy-6-iodo-D-mannopyranosyl- $(1 \rightarrow 2)$ -(methyl 3-*O*-benzyl-4,6-*O*-benzylidene- α -D-mannopyranoside) (24c): Donor 14 and acceptor

15c were coupled according to the general glycosylation procedure to yield 175 mg (191 μ mol, 87%) of the title compound **24c** as an epimeric mixture (α/β 1/3). Rf 0.45, 0.71 (EtOAc/PE, 1/3, v/v); IR (neat, cm⁻¹) 3032, 2916, 1497, 1454, 1073, 735, 696; NMR data of the major β -linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.59 – 7.19 (m, 25H, H_{arom}), 5.55 (s, 1H, CH benzylidene), 5.06 (d, J = 12.4 Hz, 1H, CH₂ benzyl), 4.98 (dd, J = 11.3, 5.1 Hz, 3H, CH₂ benzyl), 4.81 (s, 1H, H-1), 4.73 - 4.57 (m, 3H, H-1', CH₂ benzyl), 4.55 - 4.48 (m, 2H, H-2, CH₂ benzyl), 4.40 (d, J = 11.9 Hz, 1H, CH₂ benzyl), 4.29 - 4.25 (m, 1H, H-6), 4.13 - 4.03 (m, 1H, H-4), 4.04 - 3.97 (m, 2H, H-2', H-3), 3.86 - 3.71 (m, 3H, H-5, H-6, H-4'), 3.55 (dd, J = 10.3, 1.6 Hz, 1H, H-6'), 3.50 (dd, J = 9.2, 2.9 Hz, 1H, H-3'), 3.37 (s, 3H, CH₃ OMe), 3.32 – 3.25 (m, 1H, H-5'), 3.23 – 3.16 (m, 1H, H-6'); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.77, 138.5, 137.9, 137.7, 137.5 (Cq), 128.5, 128.4, 128.3, 128.1, 128.0, 127.6, 127.5, 126.1 (CH_{arom}), 101.6 (CH benzylidene), 98.8 (C-1'), 98.5 (C-1), 81.4 (C-3'), 78.3 (C-4), 78.0 (C-4'), 76.0 (C-5'), 75.3, 73.7 (CH₂ benzyl), 73.5 (C-3), 73.2 (C-2'), 72.4 (C-2), 71.0, 70.5 (CH₂ benzyl), 68.8 (C-6), 63.8 (C-5), 55.0 (CH₃ OMe), 5.7 (C-6'); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 98.8 (J_{C1'-H1'} = 154 Hz, C-1'), 98.5 (J_{C1-H1} = 168 Hz, C-1); Diagnostic peaks from the α -linked product: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.62 (s, 0.32H, CH benzylidene), 3.34 (s, 1H, CH₃ OMe); HRMS [M+Na]⁺ calcd for C₄₈H₅₁IO₁₀Na 937.24173, found 937.24191.

Methyl (d3) 2,3,4-tri-O-benzyl-6-deoxy-6-S-phenyl-6-thio-D-mannopyranoside PhS-OBn (26) (NMR tube experiment): Donor 8 (38 mg, 53 µmol, 1 equiv) was BnO BnO OCD3 coevaporated with toluene and transferred with 0.6 mL CD₂Cl₂ to a dry NMR tube capped with a septum. The temperature was lowered to -80°C, 4.7 µL triflic acid (53 µmol, 1 equiv) was added, the tube was shaken thoroughly and NMR spectra were recorded (crude sulfonium species **25**: ¹H NMR (400 MHz, CD₂Cl₂, HH-COSY, HSQC, T = 193 K) δ 7.89 – 7.03 (m, 20H, H_{arom}), 5.87 (d, J = 2.3 Hz, 1H, H-1), 5.74 (d, J = 7.4 Hz, 1H, H-5), 4.82 (d, J = 11.7 Hz, 1H, CH₂ benzyl), 4.75 – 4.63 (m, 3H, CH₂ benzyl), 4.59 – 4.51 (m, 3H, CH₂ benzyl, H-6), 4.21 (t, J = 3.4 Hz, 1H, H-2), 3.94 (app s, 1H, H-3), 3.91 – 3.89 (m, 1H, H-4), 3.71 (dd, J = 13.0, 7.5 Hz, 1H, H-6); ¹³C NMR (100 MHz, CD₂Cl₂, HH-COSY, HSQC, T = 193 K) δ 137.4, 137.3, 136.9 (C_a), 135.5, 131.7, 130.9, 129.7, 129.5, 129.4, 129.3, 129.1, 129.1, 128.9, 128.8, 128.6, 128.5, 128.4, 128.2 (CH_{arom}), 127.0 (C_q), 126.7, 125.9, 121.2 (CH_{arom}), 105.2 (C-1), 82.4 (C-5), 75.6 (C-4), 75.2 (CH₂ benzyl), 74.6 (C-2), 74.0 (C-3), 73.2, 72.8 (CH₂ benzyl), 52.4 (C-6)). Next 25 μ L MeOH-d4 was added, the tube was shaken thoroughly and was kept at room temperature overnight to give the crude title compound **26** as a mixture of anomers (α/β $3.5:1)^9$. NMR data of the major α -linked product: ¹H NMR (400 MHz, CD₂Cl₂, HH-COSY, HSQC) δ 7.50 – 6.95 (m, 20H, H_{arom}), 4.97 (d, J = 11.1 Hz, 1H, CH₂ benzyl), 4.76 – 4.64 (m, 3H, CH₂ benzyl, H-1), 4.64 – 4.53 (m, 3H, CH₂ benzyl), 3.91 – 3.71 (m, 4H, H-3, H-4, H-2, H-5), 3.42 (dd, J = 13.4, 1.7 Hz, 1H, H-6), 3.02 (dd, J = 13.4, 8.6 Hz, 1H, H-6); ¹³C NMR (100 MHz, CD₂Cl₂, HH-COSY, HSQC) δ 139.1, 138.9, 138.8, 137.7 (C_a), 130.6, 129.7, 129.6, 129.5, 129.4, 129.1, 128.9, 128.7, 128.6, 128.5, 128.3, 128.2, 126.5, 126.2 (CH_{arom}), 99.4 (C-1), 80.6 (C-3), 78.3 (C-4), 75.7 (C-2, CH₂ benzyl), 73.5, 72.5 (CH₂ benzyl), 71.6 (C-5), 36.3 (C-6). Diagnostic peak from the β-linked product: ¹H NMR (400 MHz, CD₂Cl₂, HH-COSY, HSQC) δ 4.32 (s, H-1); ¹³C NMR (150 MHz, CD₂Cl₂, HH-COSY, HSQC) δ 103.1 (0.29C, C-1).⁹

Synthesis of 18a by pre-activation of 8:

Donor **8** (155 mg, 0.21 mmol) was dissolved in DCM (3.5 mL) and the solution was cooled to -80 °C. TfOH (21 μ L, 0.24 mmol, 1.1 eq) was added and the mixture was stirred at -80 °C for 15 min, after which a mixture of **15a** (303 mg, 0.61 mmol, 3 eq) and DTBMP (90 mg, 0.43 mmol, 2 eq) in DCM (1 mL) was added and the resulting mixture was stirred at -60 °C over weekend. The reaction was quenched by the addition of Et₃N (1 mL) at -60 °C. The mixture was filtered over celite, concentrated and purified by size-exclusion chromatography (DCM/MeOH, 1/1, v/v) to give product **18a** (144mg, 0.15 mmol, 67%).

^{9.} Due to overlapping peaks in ¹H spectrum, the anomeric ratio was based on integration of the ¹³C spectrum.

Control experiments to exclude acid catalyzed anomerisation:

1)

Compound **18a** (144 mg, 0.15 mmol) and TTBP (72 mg, 0.29 mmol, 2 eq) were dissolved in DCM- d_2 (1 mL). TfOH (13 μ L, 0.15 mmol, 1 eq) was added and the mixture was stirred for a period of 5 days. NMR spectroscopy of the mixture did not indicate any change in the composition of the mixture. 2)

Dimer **18b** (126 mg, 0.13 mmol) was dissolved in 2.5 mL DCM and stirred over 3Å molecular sieves for 30 minutes. The mixture was then cooled to -80 °C after which TfOH (0.025 mmol) in DCM (0.1 ml) was added and the reaction was stirred overnight at -80 °C. The reaction was quenched by the addition of 0.6 mL Et₃N at -80 °C. After filtration over celite, the mixture was washed with sat. aq. NaHCO₃ and brine. The organic layer was dried over MgSO₄, filtered and evaporated. NMR spectroscopy of the mixture did not indicate any anomerisation.

Reagents and conditions: (*i*) 1) butadione, CSA 2) allylBr, NaH 3) TFA/H₂O (9:1), 53% over 3 steps (*ii*) 1. BnBr, NaH 2) KOtBu, DMF, reflux 3) MeOH, cat *p*-TsOH, 80% (*iii*) 1) Ph₃P, imidazole, I₂, THF, 70°C 2) NaBH₄, 100 °C 3) Ac₂O, pyridine, 63% over 3 steps (*iv*) NaOMe, MeOH, 95% (v) 1) H₂O/TFA (5:2) 2) Ac₂O, pyridine 3) piperidine, THF, 86% over 3 steps (*vi*) CF₃C(=NPh)Cl, Cs₂CO₃, acetone, H₂O, 59%.

Allylo OAllyl HO OMe

Methyl 2,6-di-*O***-allyl-** α -**D-mannopyranoside (S11):** To a stirred solution of 5.0 g methyl α -D-mannopyranoside (25.75 mmol, 1 equiv) in 50 mL methanol were added 11.3 mL trimethyl orthoformate (103.0 mmol, 4 equiv), 2.46 mL butane-2,3-dione (28.32 mmol, 1.1 equiv) and 598 mg (±)-camphorsulfonic acid (2.57 mmol, 0.1)

equiv). The reaction was stirred under refluxing conditions overnight, cooled to ambient temperature and quenched by the addition of 1.79 mL Et₃N (12.88 mmol, 0.5 equiv). After concentration of the mixture and coevaporation with toluene, the residue was dissolved in 50 mL N,N-dimethylformamide and 6.67 mL ally bromide (77.13 mmol, 3 equiv) and 3.09 g NaH (60% dispersion in mineral oil, 77.13 mmol, 3 equiv) were added. The reaction was stirred overnight and was subsequently quenched by the addition of 6.25 mL of MeOH. The mixture was partitioned between water and diethyl ether. The organic layer was washed with aq. 1 M HCl, sat. aq. NaHCO₃ and water. Next, 100 mL TFA/H₂O (9/1, v/v) was added and the reaction was stirred for 30 min. Another 40 mL of water was added and the mixture was concentrated in vacuo and coevaporated with toluene. Flash column chromatography using EtOAc/PE ($1/1 \rightarrow 3/2$) gave the title compound **S11** (3.73 g, 13.60 mmol, 53% over 3 steps). Rf 0.21 (EtOAc/PE, 3/2, v/v); [α]_D²² +21 (c 1.0, CH₂Cl₂); IR (neat, cm⁻¹) 3372, 2912, 1136, 1051; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, HMBC) δ 6.01 – 5.82 (m, 2H, CH allyl), 5.34 – 5.22 (m, 2H, CH₂ allyl), 5.22 – 5.12 (m, 2H, CH₂ allyl), 4.76 (d, J = 1.2 Hz, 1H, H-1), 4.21 – 4.00 (m, 4H, CH₂ allyl), 3.82 – 3.57 (m, 8H, H-2, H-3, H-4, H-5, H-6, OH), 3.36 (s, 3H, CH₃ OMe); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, HMBC) δ 134.5, 134.2 (CH allyl), 117.4, 116.7 (CH₂ allyl), 98.1 (C-1), 77.2 (C-2), 72.2, 71.8 (CH₂ allyl), 71.1 (C-3), 70.7 (C-4), 69.7 (C-6), 68.6 (C-5), 54.5 (CH₃ OMe); HRMS [M+Na]⁺ calcd for C₁₃H₂₂O₆Na 297.13086, found 297.13077.

Methyl 3,4-di-*O***-benzyl-** α **-D-mannopyranoside (S12):** To a solution of 4.22 g methyl 2,6-di-*O***-allyl-** α -D-mannopyranoside **S11** (15.38 mmol, 1 equiv) in 60 mL DMF were added 5.52 mL benzyl bromide (46.15 mmol, 3 equiv) and 1.85 g NaH (60% in mineral oil, 46.15 mmol, 3 equiv). The reaction was stirred overnight at room

temperature and quenched by the addition of 3.73 mL MeOH. The mixture was partitioned between Et_2O and water and the organic layer was washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. The residue was coevaporated with toluene and dissolved in 60 mL DMF. 3.55 g sodium tert-butoxide (36.93 mmol, 2.4 equiv) was added and the mixture was stirred overnight at 120 °C. After cooling to ambient temperature, the mixture was partitioned between Et_2O and water and the aqueous layer was extracted with Et_2O . The combined organic layers were washed with water and brine, dried over MgSO₄, filtered and concentrated. The residue was dissolved in 60 mL MeOH and 293 mg *p*-toluenesulfonic acid monohydrate (1.54 mmol, 0.1 equiv) was added. When TLC analysis showed complete consumption of the starting material, the

reaction mixture was neutralized by the addition of 1.07 mL Et₃N and the solvent was removed under vacuum. Flash column chromatography using EtOAc/PE ($3/7 \rightarrow 1/0$) gave the title compound **S12** (461 g, 12.31 mmol, 80% over 2 steps). R*f* 0.20 (EtOAc/PE, 7/3, v/v); $[\alpha]_D^{22}$ +49 (c 1.0, CH₂Cl₂); IR (neat, cm⁻¹) 3388, 2918, 1454, 1064, 737, 698; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.39 – 7.22 (m, 10H, H_{arom}), 4.88 (d, *J* = 10.9 Hz, 1H, CH₂ benzyl), 4.74 (d, *J* = 1.3 Hz, 1H, H-1), 4.72 – 4.63 (m, 3H, CH₂ benzyl), 4.00 (dd, *J* = 3.0, 1.7 Hz, 1H, H-2), 3.94 (t, *J* = 9.5 Hz, 1H, H-4), 3.85 (dd, *J* = 9.3, 3.2 Hz, 1H, H-3), 3.82 (d, *J* = 1.5 Hz, 2H, H-6), 3.60 (dt, *J* = 9.7, 2.8 Hz, 1H, H-5), 3.28 (s, 3H, CH₃ OMe), 3.22 (s, 2H, OH); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, HMBC) δ 138.3, 137.8 (C_q), 128.3, 128.2, 127.7, 127.6, 127.5 (CH_{arom}), 100.2 (C-1), 79.7 (C-3), 75.0 (CH₂ benzyl), 73.7 (C-4), 71.8 (CH₂ benzyl), 71.4 (C-5), 68.2 (C-2), 61.5 (C-6), 54.7 (CH₃ OMe); HRMS [M+Na]⁺ calcd for C₂₁H₂₆O₆Na 397.16216, found 397.16153.

BnO OAc BnO OMe

Methyl 2-O-acetyl-3,4-di-O-benzyl-6-deoxy-α-D-mannopyranoside (S13):

2.99 g Diol **S12** (7.97 mmol, 1 equiv) was dissolved in 40 mL toluene and argon was bubbled through the mixture for 15 minutes. To this solution 3.14 g Ph_3P (11.98

mmol, 1.5 equiv), 1.09 g imidazole (15.97 mmol, 2 equiv) and 2.84 g l₂ (11.18 mmol, 1.4 equiv) were added and the reaction was stirred at 70 °C for 90 minutes. The reaction was quenched by adding sat. aq. Na₂S₂O₃. The mixture was diluted with EtOAc and the organic phase was washed with sat. aq. Na₂S₂O₃, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. The residue was coevaporated with toluene and dissolved in 40 mL DMSO. To this solution 1.81 g NaBH₄ (47.82 mmol, 6 equiv) was added and the reaction was stirred at 100 °C overnight. 20 mL Acetone was added and the reaction was stirred at 100 °C for another 15 min. The flask was allowed to cool to room temperature and the mixture was partitioned between water and EtOAc. The organic layer was washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. The residue was filtered through a plug of silica gel using EtOAc/PE (1/3) as the eluent. After evaporation of the solvent, the crude mixture was dissolved in 30 mL pyridine and 10 mL acetic anhydride was added. The reaction was stirred overnight and quenched with MeOH. Removal of the solvents and coevaporation with toluene gave a crude mixture that was purified by flash column chromatography using EtOAc/toluene (1/19). This yielded the title compound **S13** (2.00 g, 4.99 mmol, 63% over 3 steps) as the major product. R_f 0.65 (EtOAc/PE, 3/7, v/v); $[\alpha]_{D}^{22}$ +7 (c 1.0, CH₂Cl₂); IR (neat, cm⁻¹) 2910, 1747, 1454, 1370, 1233, 1078, 698; ¹H NMR (300 MHz, CDCl₃, HH-COSY, HSQC) δ 7.46 – 7.06 (m, 10H, H_{arom}), 5.37 (dd, J = 3.4, 1.8 Hz, 1H, H-2), 4.91 (d, J = 10.9 Hz, 1H, CH₂ benzyl), 4.67 (d, J = 11.2 Hz, 1H, CH₂ benzyl), 4.62 – 4.58 (m, 2H, H-1, CH₂ benzyl), 4.49 (d, J = 11.2 Hz, 1H, CH₂ benzyl), 3.91 (dd, J = 9.3, 3.5 Hz, 1H, H-3), 3.80 – 3.65 (m, 1H, H-5), 3.43 (t, J = 9.4 Hz, 1H, H-4), 3.30 (s, 3H, CH₃ OMe), 2.11 (s, 3H, CH₃ Ac), 1.33 (d, J = 6.2 Hz, 3H, H-6); ¹³C NMR (75 MHz, CDCl₃, HH-COSY, HSQC) δ 170.1 (C=O), 138.3, 137.9 (C_α), 128.2, 128.1, 127.8, 127.7, 127.5, 127.4 (CH_{arom}), 98.5 (C-1), 79.8 (C-4), 77.8 (C-3), 75.1 (CH₂ benzyl), 71.5 (CH₂ benzyl), 68.7 (C-2), 67.3 (C-5), 54.5 (CH₃ OMe), 20.8 (CH₃ Ac), 17.8 (C-6); HRMS [M+Na]⁺ calcd for C₂₃H₂₈O₆Na 423.17781, found 423.17768; Methyl 2,6-anhydro-3,4-di-O-benzyl- α -D-mannopyranoside **S15** was isolated as a side product (509 mg, 1.43 mmol, 18%). Rf 0.40 (EtOAc/PE, 1/3, v/v); [α]_D²² +3 (c 1.0, CH₂Cl₂); IR (neat, cm⁻¹) 2880, 1454, 1113, 737, 696; ¹H NMR (300 MHz, CDCl₃, HH-COSY, HSQC) δ 7.38 – 7.16 (m, 10H, H_{arom}), 5.04 (d, J = 2.7 Hz, 1H, H-1), 4.63 – 4.53 (m, 3H, CH₂ benzyl), 4.46 (d, J = 11.8 Hz, 1H, CH₂ benzyl), 4.09 – 4.03 (m, 2H, H-3, H-5), 3.99 – 3.89 (m, 2H, H-2, H-6), 3.70 (dd, J = 9.7, 0.7 Hz, 1H, H-6), 3.55 – 3.52 (m, 1H, H-4), 3.42 (s, 3H, CH₃ OMe); δ¹³C NMR (75 MHz, CDCl₃, HH-COSY, HSQC) δ 137.7, 137.7 (C_a), 128.1, 127.6, 127.5, 127.4 (CH_{arom}), 99.8 (C-1), 79.9 (C-4), 77.5 (C-3), 70.5, 69.9 (CH₂ benzyl), 68.3 (C-5), 67.8 (C-2), 65.8 (C-6), 55.2 (CH₃ OMe); HRMS [M+Na]⁺ calcd for C₂₁H₂₄O₅Na 379.15160, found 379.15176.

Methyl 3,4-di-*O***-benzyl-6-deoxy-** α **-D-mannopyranoside (29):** A catalytic amount of NaOMe (54 mg, 1.00 mmol, 0.2 equiv) was added to a solution of 2.00 g mannopyranoside **S13** (4.99 mmol, 1 equiv) and the solution was stirred overnight at room temperature. 286 μ L AcOH (4.99 mmol, 1 equiv) was added and the solvent

was removed *in vacuo*. The residue was partitioned between EtOAc and water and the organic layer was washed with sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated, yielding the title alcohol **29** as a colorless oil (1.70 g, 4.74 mmol, 95%). R*f* 0.28 (EtOAc/PE, 3/7, v/v); $[\alpha]_D^{22}$ +44 (c 1.0, CH₂Cl₂); IR (neat, cm⁻¹) 3462, 2908, 1454, 1056, 974, 735, 696; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.39 – 7.20 (m, 10H, H_{arom}), 4.87 (d, *J* = 11.0 Hz, 1H, CH₂ benzyl), 4.68 – 4.58 (m, 4H, H-1, CH₂ benzyl), 3.98 (d, *J* = 1.3 Hz, 1H, H-2), 3.80 (dd, *J* = 9.1, 3.2 Hz, 1H, H-3), 3.73 – 3.64 (m, 1H, H-5), 3.46 (t, *J* = 9.3 Hz, 1H, H-4), 3.28 (s, 3H, CH₃ OMe), 2.91 (s, 1H, OH), 1.31 (d, *J* = 6.3 Hz, 3H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 138.2, 137.7 (C_q), 128.2, 128.1, 127.6, 127.6, 127.6, 127.4 (CH_{arom}), 99.9 (C-1), 79.7 (C-3, C-4), 75.0 (CH₂ benzyl), 71.6 (CH₂ benzyl), 68.1 (C-2), 67.0 (C-55), 54.4 (CH₃ OMe), 17.7 (C-6); HRMS [M+Na]⁺ calcd for C₂₁H₂₆O₅Na 381.16725, found 381.16720.

2-O-Acetyl-3,4-di-O-benzyl-6-deoxy-D-mannopyranose (S14): Methyl 3,4-di-*O*-benzyl-6-deoxy-α-D-mannopyranoside **29** (509 mg, 1.42 mmol, 1 equiv) was refluxed for 1 hour in 7 mL H-O/TEA (5/2 y/y) and subsequently coevaporated with

 \circ H refluxed for 1 hour in 7 mL H₂O/TFA (5/2, v/v) and subsequently coevaporated with toluene. The crude product was stirred in 8 mL pyridine/Ac₂O (3/1, v/v) overnight. After quenching by the addition of MeOH, the mixture was evaporated and partitioned between EtOAc and water. The organic layer was washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. Next, the residue was dissolved in 8 mL THF/piperidine (7/1, v/v) and was stirred overnight. The reaction mixture was diluted by the addition of EtOAc and washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. Flash column chromatography using EtOAc/PE ($1/4 \rightarrow 2/3$) gave the title compound **S14** (474 mg, 1.23 mmol, 86%) over 3 steps). Rf 0.24 (EtOAc/PE, 3/7, v/v); IR (neat, cm⁻¹) 3384, 2935, 1736, 1454, 1370, 1232, 1052, 736, 697; NMR data of the major anomer (α): ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 5.36 (s, 1H, H-2), 5.09 (s, 1H, H-1), 4.91 (d, J = 10.8 Hz, 1H, CH₂ benzyl), 4.69 (d, J = 11.3 Hz, 1H, CH₂ benzyl), 4.61 (d, J = 10.9 Hz, 1H, CH₂ benzyl), 4.53 (d, J = 11.2 Hz, 1H, CH₂ benzyl), 4.04 – 3.93 (m, 2H, H-3, H-5), 3.48 - 3.41 (m, 1H, H-4), 2.14 (s, 3H, CH₃ Ac), 1.30 (d, J = 6.2 Hz, 3H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 170.5 (C=O Ac), 138.3, 137.9 (C_a), 128.3, 128.0, 127.9, 127.7, 127.6 (CH_{arom}), 92.3 (C-1), 78.8 (C-4), 77.4 (C-3), 75.3 (CH₂ benzyl), 71.7 (CH₂ benzyl), 69.4 (C-2), 67.7 (C-5), 21.1 (CH₃ Ac), 18.0 (C-6); HRMS [M+Na]⁺ calcd for C₂₂H₂₆O₆Na 409.16216, found 409.16195.

2-O-acetyl-3,4-di-O-benzyl-6-deoxy-D-mannopyranosyl

N-

phenyltrifluoroacetimidate (32): To a solution of 554 mg hemiacetal **S14** (1.43 mmol, 1 equiv) in 8 mL acetone/H₂O (19/1, v/v) were added 513 mg Cs₂CO₃ (1.58 mmol, 1.1 equiv) and 434 μ L ClC(C=NPh)CF₃ (2.87 mmol, 2.0 equiv). The mixture was stirred for 2 days at ambient temperature, evaporated slightly and

filtered over celite. After evaporation the crude product was purified by flash column chromatography using EtOAc/toluene (0/1 \rightarrow 3/97) with 1% triethylamine to give 469 mg (841 µmol, 59%) of the title imidate as a mixture of epimers. R*f* 0.51 (EtOAc/PE, 1/9, v/v); IR (neat, cm⁻¹) 3032, 1748, 1718, 1598, 1490, 1453, 1370, 1334, 1208, 1162, 1112, 751, 694; NMR data of the major anomer (α): ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 7.63 – 6.60 (m, 15H, H_{arom}), 6.09 (s, 1H, H-1), 5.48 – 5.43 (m, 1H, H-2), 4.90 (d, *J* = 11.0 Hz, 1H, CH₂ benzyl), 4.70 (d, *J* = 11.2 Hz, 1H, CH₂ benzyl), 4.63 (d, *J* = 11.0 Hz, 1H, CH₂ benzyl), 4.57 (d, *J* = 11.2 Hz, 1H, CH₂ benzyl), 3.95 (dd, *J* = 9.3, 3.4 Hz, 1H, H-3), 3.92 – 3.84 (m, 1H, H-5), 3.50 (t, *J* = 9.4 Hz, 1H, H-4), 2.10 (s, 3H, CH₃ Ac), 1.34 (d, *J* = 6.2 Hz, 3H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, T = 333 K) δ 169.8 (C=O), 143.4, 138.4, 137.7 (C_q), 128.8, 128.4, 128.2, 128.0, 127.9, 127.7, 124.5, 119.5 (CH_{arom}), 94.7 (C-1), 79.4 (C-4), 77.5 (C-3), 75.4 (CH₂ benzyl), 72.3 (CH₂ benzyl), 70.7 (C-5), 67.9 (C-2), 20.7 (CH₃ Ac), 18.0 (C-6); HRMS [M-(OC(N=Ph)CF₃)]⁺ calcd for C₂₂H₂₅O₅ 369.16965, found 369.16964.

Reagents and conditions: *i*) 1) TBSCl, imidazole, DMF 2) BnBr, NaH, DMF 3) TBAF, THF, 60% over 3 steps *ii*) 1) Ph₃P, imidazole, I₂, toluene, 70°C 2) PhSH, DiPEA. DMF 3) NapBr, NaH. DMF, 77% over 3 steps *iii*) 1) cat. H₂SO₄, Ac₂O 2) piperidine, THF (77% over 2 steps) *iv*) CF₃C(=NPh)Cl, Cs₂CO₃, acetone, H₂O, 94%.

HO BnO HO **Methyl 2,4-di-***O***-benzyl-** α **-D-mannopyranoside (S16):** To a mixture of 996 mg methyl α -D-mannopyranoside (5.13 mmol, 1 equiv) in 25 mL DMF were added 1.22 g imidazole (17.95 mmol, 3.5 equiv) and 2.32 g TBSCl (15.39 mmol, 3 equiv). After 2

hours of stirring, TLC analysis showed complete consumption of the starting material. The reaction was quenched by the addition of 375 μ L MeOH. The mixture was partitioned between H₂O and Et₂O and the aqueous layer was extracted. The combined organic phases were washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. The crude product was coevaporated with toluene and subsequently dissolved in 25 mL of DMF. To this solution 1.84 mL BnBr (15.39 mmol, 3 equiv) and 616 mg NaH (60% in mineral oil, 15.39 mmol, 3 equiv) were added. After stirring at ambient temperature overnight, the reaction was guenched with 2.08 mL MeOH, taken up in Et₂O and washed with 5% aq. LiCl and brine. After drying over MgSO₄, filtration and concentration under reduced pressure, the residue was dissolved in 5 mL THF and treated with 20.52 mL 1.0 M TBAF (in THF, 20.52 mmol, 4 equiv). The mixture was stirred for 2 hours and subsequently partitioned between EtOAc and H₂O. The water layer was further extracted with EtOAc and the combined organic layers were dried (MgSO₄), filtered and concentrated. Purification by flash column chromatography using EtOAc/PE (2/3 \rightarrow 1/1) afforded the target compound S16 (1.16 g, 3.10 mmol, 60% over 3 steps). Rf 0.33 (EtOAc/PE, 1/1, v/v); $[\alpha]_{D}^{22}$ +20 (c 1.0, CH₂Cl₂); IR (neat, cm⁻¹) 3446, 2906, 1454, 1028, 698; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.38 – 7.22 (m, 10H, H_{arom}), 4.88 (d, J = 11.2 Hz, 1H, CH₂ Bn), 4.72 (d, J = 1.3 Hz, 1H, H-1), 4.69 (d, J = 11.8 Hz, 1H, CH₂ Bn), 4.64 (d, J = 11.2 Hz, 1H, CH₂ Bn), 4.58 (d, J = 11.8 Hz, 1H, CH₂ Bn), 4.02 – 3.93 (m, 1H, H-3), 3.84 (dd, J = 11.8, 2.5 Hz, 1H, H-6), 3.76 (dd, J = 11.8, 3.8 Hz, 1H, H-6), 3.73 – 3.63 (m, 2H, H-2, H-4), 3.60 – 3.54 (m, 1H, H-5), 3.29 (s, 3H, CH₃ OMe), 2.49 (d, J = 8.6 Hz, 1H, OH), 2.36 (s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ138.4, 137.7 (C_q Ph), 128.6, 128.5, 128.1, 128.0, 127.9, 127.8 (CH_{arom}), 98.3 (C-1), 78.4 (C-2), 76.4 (C-4), 74.9, 73.2 (CH₂ Bn), 71.7 (C-3), 71.3 (C-5), 62.2 (C-6), 54.9 (CH₃ OMe); HRMS [M+Na]⁺ calcd for C₂₁H₂₆O₆Na 397.16216, found 397.16050.

Methyl2,4-di-O-benzyl-6-deoxy-3-(2-napthylmethyl)-6-thiophenyl-α-D-mannopyranoside (S17):Argon was bubbled through a solution of 1.16 g methyl2,4-di-O-benzyl-α-D-mannopyranoside (3.10 mmol, 1 equiv) in 20 mL toluene.Next,1.22 g triphenylphosphine (4.65 mmol, 1.5 equiv), 422 mg imidazole (6.20 mmol, 2.0

equiv) and 1.10 g iodine (4.34 mmol, 1.4 equiv) were added and the mixture was stirred for 3 hours at 70 °C. The reaction was quenched by the addition of sat. aq. Na₂S₂O₃ and the organic phase was diluted with EtOAc. Washing with H₂O and brine, drying (MgSO₄), filtration and evaporation afforded the crude product, which was dissolved in 15 mL of DMF. To this solution 1.10 mL DiPEA (6.20 mmol, 2 equiv) and 475 μ L thiophenol (4.65 mmol, 1.5 equiv) were added. After stirring at ambient temperature for 1 hour, TLC-MS analysis showed complete consumption of the starting material and the emergence of the desired product. The reaction was diluted with Et₂O, washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. The crude product was dissolved in 15 mL DMF and 1.37 g 2-(bromomethyl)naphthalene (6.20 mmol, 2 equiv) and 248 mg NaH (60% in mineral oil, 6.20 mmol, 2 equiv) were added. After stirring overnight, the mixture was partitioned between H₂O and Et₂O and the aqueous layer was extracted. The combined organic phases were washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. Purification by flash column chromatography using EtOAc/PE (1/19 \rightarrow 1/9) afforded the title compound **S17** (1.46 g, 2.40 mmol, 77% over 3 steps). R*f* 0.42 (EtOAc/PE, 1/6, v/v); $[\alpha]_D^{22}$ +6 (c 1.0, CH₂Cl₂); IR (neat, cm⁻¹) 2908, 1454, 1064, 733; ¹H NMR (300 MHz, CDCl₃, HH-COSY, HSQC, HMBC) δ 7.83 – 7.65 (m, 4H, H_{arom}), 7.50 – 7.02 (m, 18H, H_{arom}), 5.01 (d, *J* = 11.2 Hz, 1H, CH₂ Bn), 4.73 – 4.72 (m, *J* = 2.4 Hz, 5H, CH₂ Bn, CH₂ Nap, H-1), 4.64 (d, *J* = 11.2 Hz, 1H, CH₂ Bn), 3.97 – 3.69 (m, 4H, H-3, H-4, H-2, H-5), 3.48 – 3.40 (m, 1H, H-6), 3.27 (s, 3H, CH₃ OMe), 3.05 (dd, *J* = 13.4, 8.6 Hz, 1H, H-6); ¹³C NMR (75 MHz, CDCl₃, HH-COSY, HSQC, HMBC) δ 138.3, 138.1, 137.0, 135.8, 133.2, 132.8 (C_q Ph), 128.7, 128.4, 128.3, 128.0, 127.8, 127.7, 127.6, 126.1, 126.0, 125.7, 125.6, 125.5 (CH_{arom}), 98.7 (C-1), 80.1 (C-3), 77.8 (C-4), 75.1 (CH₂ Bn), 74.51 (C-2), 72.6 (CH₂ Bn), 71.9 (CH₂ Nap), 71.0 (C-5), 54.6 (CH₃ OMe), 35.7 (C-6); HRMS [M+Na]⁺ calcd for C₃₈H₃₈O₅SNa 629.23322, found 629.23180.

2,4-Di-O-benzyl-6-deoxy-3-(2-napthylmethyl)-6-thiophenyl-D-mannopyranose (S18): A catalytic amount of concentrated sulphuric acid was added to a solution of

1.21 g methyl 2,4-di-O-benzyl-6-deoxy-3-(2-napthylmethyl)-6-thiophenyl- α -D-ОН mannopyranoside **S17** (1.99 mmol, 1 equiv) in 10 mL acetic anhydride at 0 °C. The reaction was quenched by the addition of triethylamine after 7 hours of stirring at 0 °C. The mixture was partitioned between H₂O and EtOAc and the organic layer was washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. The crude product was dissolved in 10 mL THF and 590 µL piperidine (5.97 mmol, 3 equiv) was added. After stirring overnight, the mixture was partitioned between H₂O and EtOAc and the aqueous layer was washed with aq. 1 M HCl, sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. Purification by flash column chromatography using EtOAc/toluene (0/1 \rightarrow 1/19) gave the title compound **S18** (902 mg, 1.52 mmol, 77% over 2 steps). Rf 0.23 (EtOAc/PE, 1/4, v/v); IR (neat, cm⁻¹) 3403, 3060, 2926, 1454, 1069, 732; NMR data of the major anomer: ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, HMBC) δ 7.81 - 7.65 (m, 4H, H_{arom}), 7.45 - 7.04 (m, 18H, H_{arom}), 5.19 (dd, J = 3.1, 1.7 Hz, 1H, H-1), 5.00 (d, J = 11.1 Hz, 1H, CH₂ Bn), 4.70 (s, 2H, CH₂ Nap), 4.66 (s, 2H, CH₂ Bn), 4.62 (d, J = 11.2 Hz, 1H, CH₂ Bn), 4.11 -4.03 (m, 1H, H-5), 4.00 (dd, J = 9.2, 2.8 Hz, 1H, H-3), 3.89 (t, J = 9.3 Hz, 1H, H-4), 3.80 - 3.76 (m, 1H, H-2), 3.58 (d, J = 3.6 Hz, 1H, OH), 3.42 (dd, J = 13.5, 1.9 Hz, 1H, H-6), 3.04 (dd, J = 13.6, 8.5 Hz, 1H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, HMBC) δ 138.5, 138.4, 137.1, 136.0, 133.4, 133.1 (C_α), 129.1, 129.0, 128.7, 128.6, 128.3, 128.2, 128.1, 128.0, 127.9, 126.5, 126.3, 126.0, 125.8 (CH_{arom}), 92.6 (C-1), 79.8 (C-3), 78.0 (C-4), 75.4 (CH₂ Bn), 75.1 (C-2), 72.8 (CH₂ Bn), 72.3 (C-1), 71.3 (C-5), 35.9 (C-6); HRMS $[M+Na]^+$ calcd for $C_{37}H_{36}O_5SNa$ 615.21757 found 615.21714.

2,4-Di-O-benzyl-6-deoxy-3-(2-napthylmethyl)-6-thiophenyl-D-mannopyranosyl N-phenyltrifluoroacetimidate (28): To a solution of 902 mg hemiacetal **S18** (1.52 mmol, 1 equiv) in 8 mL acetone/H₂O (19/1, v/v) were added 545 mg Cs_2CO_3 (1.67 mmol, 1.1 equiv) and 632 mg $ClC(C=NPh)CF_3$ (3.04 mmol, 2.0 equiv). The mixture was stirred overnight at ambient temperature, evaporated

slightly and filtered over Celite. After evaporation the crude product was purified by flash column chromatography using EtOAc/PE ($1/19 \rightarrow 1/9$) with 1% triethyamine to give 1.10 g (1.43 mmol, 94%) of the title imidate **28** as a mixture of epimers. R*f* 0.65 (EtOAc/PE, 3/17, v/v); IR (neat, cm⁻¹) 3063, 1718, 1117, 694; NMR data of the major anomer : ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, T = 333K) δ 7.84 – 7.68 (m, 4H, H_{arom}), 7.50 – 6.99 (m, 21H, H_{arom}), 6.67 (d, *J* = 7.5 Hz, 2H, H_{arom}), 6.15 (s, 1H, H-1), 4.95 (d, *J* = 11.2 Hz, 1H, CH₂ Bn/Nap), 4.80 (d, *J* = 11.9 Hz, 1H, CH₂ Bn/Nap), 4.72 (d, *J* = 11.9 Hz, 1H, CH₂ Bn/Nap), 4.67 – 4.58 (m, 3H, CH₂ Bn/Nap), 4.03 – 3.90 (m, 3H, H-5, H-4, H-3), 3.82 (t, *J* = 2.3 Hz, 1H, H-2), 3.42 – 3.34 (m, 1H, H-6), 3.06 (dd, *J* = 13.7, 7.1 Hz, 1H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, T = 333K) δ 143.5, 138.3, 137.8, 136.8, 135.6, 133.4, 133.2 (C_q), 129.8, 129.3, 128.8, 128.7, 128.4, 128.3, 128.2, 127.9, 127.8, 127.7, 126.7, 126.3, 126.2, 126.1, 126.0, 125.9, 124.3, 119.4 (CH_{arom}), 95.4 (C-1), 79.4 (C-3), 77.1 (C-4/C-5), 75.2 (CH₂ Bn/Nap), 74.1 (C-4/C-5, C-2), 72.9 (CH₂ Bn/Nap), 36.4 (C-6); HRMS [M-(OC(N=Ph)CF₃)]⁺ calcd for C₃₇H₃₅O₄S 575.22506, found 575.22512.

2,4-Di-*O*-benzyl-6-deoxy-3-(2-napthylmethyl)-6-thiophenyl- β -Dmannopyranosyl-(1->2)-(methyl 3,4-di-*O*-benzyl-6-deoxy-α-Dmannopyranoside) (30): Imidate donor 28 (367 mg, 481 µmol, 1 equiv) and

mannopyranoside) (30): Imidate donor **28** (367 mg, 481 μ mol, 1 equiv) and 258 mg acceptor **29** (721 μ mol, 1.5 equiv) were co-evaporated together with toluene. Freshly distilled DCM (7 mL) and 3Å activated molecular

sieves were added and the mixture was stirred under argon for 30 min at room temperature. The mixture was cooled to -80 °C and 386 µL of a well-shaken 0.25 M solution of TfOH in DCM (0.2 equiv) was added. After stirring for 4 nights at -80 °C, 1 mL of Et₃N was added, the mixture was filtered over Celite and the solvent was removed under reduced pressure. The epimeric mixture could be separated by flash column chromatography using EtOAc/toluene (0/1 \rightarrow 1/19) giving the title β linked disaccharide **30** (341 mg, 366 μmol, 76%) Rf 0.30 (EtOAc/PE, 3/17, v/v); [α]_D²² -32 (c 1.0, CH₂Cl₂); IR (neat, cm⁻¹) 3030, 2900, 1454, 1068, 732, 696; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) δ 7.84 – 7.67 (m, 4H, H_{arom}), 7.58 – 7.05 (m, 28H, H_{arom}), 5.12 (d, J = 12.0 Hz, 1H, CH₂ Bn/Nap), 5.06 (d, J = 11.1 Hz, 1H, CH₂ Bn/Nap), 5.02 (d, J = 11.6 Hz, 1H, CH₂ Bn/Nap), 4.95 (d, J = 12.1 Hz, 1H, CH₂ Bn/Nap), 4.91 (d, J = 11.0 Hz, 1H, CH₂ Bn/Nap), 4.71 – 4.62 (m, 3H, H-1, CH₂ Bn/Nap), 4.56 – 4.50 (m, 4H, H-1', CH₂ Bn/Nap), 4.38 (dd, J = 3.1, 2.0 Hz, 1H, H-2), 4.04 (d, J = 3.0 Hz, 1H, H-2'), 3.93 (dd, J = 9.0, 3.3 Hz, 1H, H-3), 3.82 (t, J = 9.2 Hz, 1H, H-4'), 3.74 - 3.65 (m, 1H, H-5), 3.53 (dd, J = 9.2, 3.0 Hz, 1H, H-3'), 3.48 (t, J = 9.2 Hz, 1H, H-4), 3.45 – 3.39 (m, 2H, H-5', H-6'), 3.33 (s, 3H, CH₃ OMe), 2.93 (dd, J = 13.9, 9.6 Hz, 1H, H-6'), 1.28 (d, J = 6.2 Hz, 3H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 139.0, 138.6, 138.5, 138.2, 137.0, 135.4, 133.1, 132.9 (C_q), 128.8, 128.6, 128.4, 128.2, 128.1, 128.1, 128.0, 128.0, 127.9, 127.9, 127.7, 127.6, 127.5, 127.4, 127.0, 126.2, 126.0, 125.8, 125.6, 125.4 (CH_{arom}), 99.3 (C-1'), 97.9 (C-1), 81.6 (C-3'), 79.7 (C-4), 77.7, 77.6 (C-3, C-4'), 75.2 (CH₂ Bn/Nap), 75.0 (C-5', CH₂ Bn/Nap), 73.8 (CH₂ Bn/Nap), 73.2 (C-2'), 71.8 (C-2), 70.8 (CH₂ Bn/Nap), 69.9 (CH₂ Bn/Nap), 67.4 (C-5), 54.7 (CH₃ OMe), 35.4 (C-6'), 18.2 (C-6); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 99.3 (J_{C1'-H1'} = 153.9 Hz, C-1'), 97.9 (J_{C1-H1} = 166.1 Hz, C-1); HRMS [M+Na]⁺ calcd for C₅₈H₆₀O₉SNa 955.38503, found 955.38453.

2,4-di-O-benzyl-6-deoxy-6-thiophenyl-β-D-mannopyranosyl-(1→2)-(methyl **3,4-di-O-benzyl-6-deoxy-α-D-mannopyranoside**) (**31**): To a solution of 140 mg disaccharide **30** (150 µmol, 1 equiv) in 5 mL DCM was added 0.1 mL H₂O and 68 mg 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (300 µmol, 2 equiv). After 1 hour the reaction was quenched by the

addition of sat. aq. NaHCO₃ and the layers were separated. The aqueous phase was extracted with DCM and the combined organic fractions were dried over MgSO₄, filtered and concentrated. Flash column chromatography using EtOAc/toluene (1/9 \rightarrow 1/4) gave alcohol **31** (71 mg, 89 μ mol, 60%). Rf 0.25 (EtOAc/PE, 3/7, v/v); $[\alpha]_{D}^{22}$ +38 (c 1.0, CH₂Cl₂); IR (neat, cm⁻¹) 3526, 3030, 2902, 1454, 1067, 736, 697; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC) 7.47 (dd, J = 7.6, 1.7 Hz, 2H, H_{arom}), 7.43 (dd, J = 6.6, 2.9 Hz, 2H, H_{arom}), 7.34 – 7.08 (m, 21H, H_{arom}), 5.20 (d, J = 11.2 Hz, 1H, CH₂ Bn), 5.02 – 4.96 (m, 2H, CH₂ Bn), 4.86 (d, J = 11.0 Hz, 1H, CH₂ Bn), 4.71 (d, J = 1.6 Hz, 1H, H-1), 4.68 (d, J = 11.2 Hz, 1H, CH₂ Bn), 4.63 (s, 1H, H-1'), 4.57 (d, J = 11.2 Hz, 1H, CH₂ Bn), 4.52 (d, J = 11.5 Hz, 1H, CH₂ Bn), 4.47 (d, J = 11.0 Hz, 1H, CH₂ Bn), 4.39 (dd, J = 3.2, 2.0 Hz, 1H, H-2), 3.92 (dd, J = 9.1, 3.4 Hz, 1H, H-3), 3.88 (d, J = 3.8 Hz, 1H, H-2'), 3.73 – 3.63 (m, 2H, H-5, H-3'), 3.48 – 3.36 (m, 4H, H-4, H-4', H-5', H-6'), 3.35 (s, 3H, CH₃ OMe), 2.90 (dd, J = 13.3, 8.3 Hz, 1H, H-6'), 2.62 (s, 1H, OH), 1.25 (d, J = 6.2 Hz, 3H, H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 139.0, 138.4, 138.2, 138.1, 136.9 (C_a), 128.8, 128.7, 128.4, 128.2, 128.1, 128.0, 127.9, 127.7, 127.5, 127.1, 125.5 (CH_{arom}), 99.3 (C-1'), 97.9 (C-1), 79.7 (C-4, C-4'), 77.8 (C-3), 77.5 (C-2'), 75.1, 74.9, 74.8 (CH₂ Bn), 74.4 (C-5'), 74.1 (C-3'), 71.9 (C-2), 70.1 (CH₂ Bn), 67.4 (C-5), 54.8 (CH₃ OMe), 35.4 (C-6'), 18.2; ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 99.3 (J_{C1'-H1'} = 154.3 Hz, C-1'), 97.9 (J_{C1-H1} = 166.2 Hz, C-1); HRMS [M+Na]⁺ calcd for C₄₇H₅₂O₉SNa 815.32243, found 815.32190.

2-O-acetyl-3,4-di-O-benzyl-6-deoxy-α-D-mannopyranosyl-(1→3)-2,4-di-O-benzyl-6-deoxy-6-thiophenyl-β-D-mannopyranosyl-(1→2)-(methyl 3,4-di-O-benzyl-6-deoxy-α-D-mannopyranoside) (33): Imidate donor 32 (173 mg, 311 µmol, 1.7 equiv) and 142 mg acceptor 31 (179 µmol, 1 equiv) were co-evaporated together with toluene. Freshly distilled DCM (3 mL) and 3Å activated molecular sieves were added and the mixture was stirred under argon atmosphere for 30 min at room temperature. The mixture was cooled to 0 °C and 100 µL of a well-shaken 0.62 M solution of TfOH in DCM (0.35 equiv) was added. After stirring for 15 min at 0 °C, 250 µL Et₃N was added and the solvent was removed under reduced pressure. Flash column chromatography using EtOAc/toluene (1/19 \rightarrow 3/17) gave the title trisaccharide **33** (175 mg, 151 μ mol, 84%). Rf 0.50 (EtOAc/PE, 3/7, v/v); $[\alpha]_{D}^{22}$ -5 (c 1.0, CH₂Cl₂); IR (neat, cm⁻¹) 3032, 2908, 1743, 1454, 1233, 1070, 736, 697; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, HMBC) δ 7.51 – 7.09 (m, 35H, H_{arom}), 5.46 (apparent s, 1H, H-2"), 5.15 (d, J = 11.5 Hz, 1H, CH₂ Bn), 5.05 (app s, 1H, H-1"), 4.99 (d, J = 11.5 Hz, 1H, CH₂ Bn), 4.93 (d, J = 11.2 Hz, 1H, CH₂ Bn), 4.89 – 4.81 (m, 2H, CH₂ Bn), 4.75 - 4.69 (m, 2H, H-1, CH₂ Bn), 4.68 - 4.59 (m, 3H, H-1', CH₂ Bn), 4.56 - 4.45 (m, 4H, CH₂ Bn), 4.38 (app s, 1H, H-2), 3.98 – 3.86 (m, 3H, H-3", H-3, H-2'), 3.81 – 3.74 (m, 2H, H-4', H-5"), 3.71 – 3.64 (m, 2H, H-5, H-3'), 3.45 – 3.33 (m, 6H, H-4", H-4, H-5', CH₃ OMe), 3.30 (d, J = 13.5 Hz, 1H, H-6'), 2.82 (dd, J = 13.5, 9.4 Hz, 1H, H-6'), 2.08 (s, 3H, CH₃ Ac), 1.27 (t, J = 5.7 Hz, 6H, H-6'', H-6); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, HMBC) δ 170.1 (C=O Ac), 139.0, 138.7, 138.6, 137.9, 137.7, 136.8 (C₀), 128.8, 128.5, 128.3, 128.2, 128.1, 128.0, 127.9, 127.7, 127.6, 127.5, 127.4, 127.1, 125.6 (CH_{arom}), 99.6 (C-1"), 99.2 (C-1'), 98.0 (C-1), 80.3 (C-3'), 79.9 (C-4), 79.7 (C-4"), 78.4 (C-4'), 77.8 (C-2', C-3"), 77.5 (C-3), 75.4, 75.1 (CH2 Bn), 74.9 (C-5'), 74.4 (CH2 Bn), 71.9 (CH2 Bn), 71.7 (C-2), 70.0 (CH2 Bn), 69.1 (C-2"), 68.4 (C-5"), 67.5 (C-5), 54.8 (CH₃ OMe), 35.3 (C-6'), 21.0 (CH₃ Ac), 18.1 (C-6, C-6"); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 99.6 (J_{C1"-H1"} = 171.7 Hz, C-1"), 99.2 (J_{C1'-H1'} = 154.5 Hz, C-1'), 98.0 $(J_{C1-H1} = 171.7 \text{ Hz}, \text{C-1}); \text{ HRMS } [M+Na]^+ \text{ calcd for } C_{69}H_{76}O_{14}\text{SNa} 1183.48480, \text{ found } 1183.48542.$

3,4-Di-O-benzyl-6-deoxy-α-D-mannopyranosyl-(1→3)-2,4-di-O-benzyl-6-deoxy-6-thiophenyl-β-D-mannopyranosyl-(1→2)-(methyl 3,4-di-O-benzyl-6-deoxy-α-D-mannopyranoside) (34): To a solution of 175 mg (151 μmol, 1 equiv) trisaccharide 33 in 3 mL MeOH was added 20 mg NaOMe (377 μmol, 2.5 equiv) and the mixture was stirred overnight at

ambient temperature. The reaction was quenched with 43 µL acetic acid (755 µmol, 5 equiv) and the solvent was evaporated. The crude mixture was partitioned between EtOAc and H₂O. The organic phase was washed with sat. aq. NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated. Flash column chromatography using EtOAc/toluene (1/4 \rightarrow 3/7) gave the title alcohol 34 (165 mg, 147 μ mol, 98%). Rf 0.33 (EtOAc/PE, 2/3, v/v); $[\alpha]_{D}^{22}$ +27 (c 0.66, CH₂Cl₂); IR (neat, cm⁻¹) 2928, 1454, 1074, 697; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, HMBC) δ 7.53 – 7.06 (m, 35H, H_{arom}), 5.16 (d, J = 11.5 Hz, 1H, CH₂ benzyl), 5.11 (d, J = 1.6 Hz, 1H, H-1"), 5.00 (d, J = 11.5 Hz, 1H, CH₂ benzyl), 4.92 -4.82 (m, 2H, CH₂ benzyl), 4.76 – 4.59 (m, 7H, H-1, H-1', CH₂ benzyl), 4.55 – 4.44 (m, 3H, CH₂ benzyl), 4.38 (dd, J = 3.0, 2.1 Hz, 1H, H-2), 4.03 – 3.97 (m, 1H, H-2"), 3.93 – 3.87 (m, 2H, H-3, H-3"), 3.85 (dd, J = 9.1, 3.2 Hz, 1H, H-3"), 3.82 - 3.72 (m, 2H, H-5", H-4'), 3.72 - 3.63 (m, 2H, H-2', H-5), 3.49 - 3.28 (m, 7H, H-4", H-4, H-5', CH₃ OMe, H-6'), 2.86 (dd, J = 13.4, 9.2 Hz, 1H, H-6'), 2.41 (d, J = 1.8 Hz, 1H, OH), 1.26 – 1.25 (d, J = 6.1 Hz, 6H, H-6, H-6"); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC, HMBC) δ 139.1, 138.6, 138.5, 137.9, 137.7, 136.8 (C_a), 128.9, 128.6, 128.5, 128.3, 128.2, 128.0, 127.9, 127.8, 127.6, 127.5, 127.4, 127.0, 125.6 (CH_{arom}), 101.2 (C-1"), 99.3 (C-1"), 98.0 (C-1), 80.6 (C-2"), 79.9, 79.8, 79.7 (C-3", C-4", C-4), 78.4 (C-4'), 77.9 (C-3), 77.6 (C-3'), 75.4 (CH₂ benzyl), 75.1 (CH₂ benzyl), 75.0 (CH₂ benzyl), 74.8 (C-5'), 74.3 (CH₂ benzyl), 72.3 (CH₂ benzyl), 71.8 (C-2), 70.0 (CH₂ benzyl), 69.0 (C-2''), 68.0 (C-5"), 67.5 (C-5), 54.8 (CH₃ OMe), 35.3 (C-6'), 18.1 (C-6, C-6"); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 101.2 (J_{C1"-H1"} = 170.2 Hz, C-1"), 99.3 (J_{C1'-H1'} = 154.1 Hz, C-1'), 98.0 (J_{C1-H1} = 166.7 Hz, C-1); HRMS $[M+Na]^{+}$ calcd for $C_{67}H_{74}O_{13}SNa$ 1141.47423, found 1141.47440.

2,3,4-tri-O-benzyl-6-deoxy-6-thiophenyl-β-Dmannopyranosyl-(1→2)-3,4-di-O-benzyl-6-deoxy-α-Dmannopyranosyl-(1→3)-2,4-di-O-benzyl-6-deoxy-6thiophenyl-β-D-mannopyranosyl-(1→2)-(methyl 3,4-di-Obenzyl-6-deoxy-α-D-mannopyranoside) (35): Imidate donor 8 (70 mg, 98 µmol, 1.5 equiv) and 73 mg acceptor 34 (65 µmol, 1.0 equiv) were co-evaporated together with toluene. Freshly distilled DCM (1 mL) and 3Å activated molecular sieves were added and the mixture was stirred under argon for 30 min at room temperature. The mixture was cooled to -60 °C and a solution of 13 μmol of TfOH in 0.1 mL DCM (0.2 equiv) was added. After stirring for 3 nights at -60 °C, 0.5 mL of Et₃N was added, the mixture was filtered over celite and the solvent was removed under reduced pressure. The epimeric mixture (α/β 1:3) could be separated by flash column chromatography using EtOAc/toluene (1/99 \rightarrow 3/97) giving the title tetrasaccharide **35** (60 mg, 36 µmol, 55%). Rf 0.26 (EtOAc/toluene, 1/19, v/v); $[\alpha]_{D}^{22}$ -12 (c 0.6, CH₂Cl₂); IR (neat, cm⁻¹) 2932, 1454, 1364, 1074, 1028, 737, 697; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, HMBC) δ 7.77 – 6.79 (m, 55H, H_{arom}), 5.12 (d, J = 1.1 Hz, 1H, H-1"), 5.08 – 4.97 (m, 5H, CH₂ benzyl), 4.93 – 4.84 (m, 2H, CH₂ benzyl), 4.84 – 4.74 (m, 3H, CH₂ benzyl), 4.71 (d, J = 1.5 Hz, 1H, H-1), 4.60 (s, 1H, H-1'), 4.59 – 4.43 (m, 7H, CH₂ benzyl), 4.39 (dd, J = 3.0, 2.0 Hz, 1H, H-2), 4.36 - 4.32 (m, 1H, H-2"), 4.30 (d, J = 12.2 Hz, 1H, CH₂ benzyl), 3.95 (dd, J = 9.1, 3.2 Hz, 1H, H-3"), 3.91 (dd, J = 9.0, 3.4 Hz, 1H, H-3), 3.85 (d, J = 1.5 Hz, 1H, H-2'), 3.81 (s, 1H, H-1'''), 3.79 - 3.72 (m, 3H, H-4', H-3', H-2'''), 3.71 - 3.61 (m, 2H, H-5, H-5''), 3.56 (t, J = 9.2 Hz, 1H, H-4'''), 3.46 – 3.33 (m, 6H, H-4, H-4'', H-5', CH₃ OMe), 3.31 – 3.19 (m, 2H, H-6''', H-6'), 2.89 (dd, J = 9.1, 3.0 Hz, 1H, H-3'''), 2.84 – 2.64 (m, 3H, H-6', H-5''', H-6'''), 1.27 (d, J = 6.3 Hz, 3H, H-6), 1.22 (d, J = 6.1 Hz, 3H, H-6"); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 139.0, 138.8, 138.7, 138.6, 138.5, 138.3, 138.1, 137.9, 137.2, 136.6 (C_a), 128.8, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.8, 127.6, 127.5, 127.4, 127.2, 127.0, 126.0, 125.5, 125.2 (CH_{arom}), 99.4 (C-1'''), 99.2 (C-1'), 99.0 (C-1''), 97.9 (C-1), 81.0 (C-3'''), 79.7 (C-4), 79.6 (C-4''), 78.5, 78.4 (C-3', C-4'), 77.8 (C-3), 77.5 (C-3'', C-4''), 77.14 (C-2'), 75.1, 74.9 (CH₂ benzyl, C-5'), 74.8 (CH₂ benzyl), 74.6 (C-5'''), 74.4, 73.8 (CH₂ benzyl), 73.3 (C-2""), 72.3 (C-2"), 71.6 (C-2), 70.6, 70.0 (CH2 benzyl), 68.4 (C-5"), 67.5 (C-5), 54.8 (CH3 OMe), 34.9 (C-6'), 34.6 (C-6'''), 18.5 (C-6''), 18.2 (C-6); ¹³C-HMBC NMR (100 MHz, CDCl₃) δ 99.4 (J_{C1'''-H1'''} = 155.0 Hz, C-1'''), 99.2 (J_{C1'-H1'} = 154.6 Hz, C-1'), 99.0 (J_{C1"-H1"} = 168.4 Hz, C-1''), 97.9 (J_{C1-H1} = 165.8 Hz, C-1); HRMS $[M+Na]^+$ calcd for $C_{100}H_{106}O_{17}S_2Na$ 1666.67972, found 1666.68036.

2,3,4-tri-O-benzyl-6-deoxy-β-D-mannopyranosyl-(1→2)-3,4di-O-benzyl-6-deoxy-α-D-mannopyranosyl-(1→3)-2,4-di-Obenzyl-6-deoxy-β-D-mannopyranosyl-(1→2)-(methyl 3,4-di-O-benzyl-6-deoxy-α-D-mannopyranoside) (36): To a solution of tetrasaccharide 35 (9.2 mg, 5.6 µmol) were added 300 mg

Raney nickel 2800 (slurry in H₂O) and 3 mL of MeOH. The mixture was allowed to reflux under H₂ atmosphere overnight. Filtration over celite gave the crude product, which was purified by flash column chromatography using EtOAc/toluene (1/9) giving the title tetrarhamnoside 36 (7.7 mg, 5.4 µmol, 96%). Rf 0.30 (EtOAc/toluene, 1/9, v/v); $[\alpha]_{D}^{22}$ -58 (c 0.15, CH₂Cl₂); IR (neat, cm⁻¹) 2934, 1454, 1364, 1074, 735, 697; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC, HMBC) δ 7.50 – 7.02 (m, 45H, H_{arom}), 5.13 – 5.07 (m, 2H, H-1", CH₂ benzyl), 5.00 (d, J = 12.1 Hz, 1H, CH₂ benzyl), 4.96 – 4.79 (m, 6H, CH₂ benzyl), 4.77 – 4.68 (m, 3H, H-1, CH₂ benzyl), 4.65 – 4.56 (m, 3H, H-1', CH₂ benzyl), 4.50 – 4.42 (m, 5H, CH₂ benzyl), 4.35 - 4.30 (m, 2H, H-2, CH₂ benzyl), 4.20 - 4.17 (m, 1H, H-2"), 4.02 (s, 1H, H-1""), 3.92 (dd, J = 9.0, 3.2 Hz, 1H, H-3"), 3.90 – 3.84 (m, 2Hm H-2', H-3), 3.78 (d, J = 3.0 Hz, 1H, H-2""), 3.76 - 3.59 (m, 4H, H-5", H-3', H-5, H-4'), 3.53 - 3.38 (m, 3H, H-4", H-4", H-4), 3.38 - 3.29 (m, 4H, CH₃ OMe, H-5'), 3.05 (dd, J = 9.4, 3.1 Hz, 1H, H-3'''), 2.82 – 2.72 (m, 1H, H-5'''), 1.31 – 1.20 (m, 12H, H-6, H-6', H-6'', H-6'''); ¹³C NMR (100 MHz, CDCl₃, HH-COSY, HSQC) δ 139.0, 138.9, 138.7, 138.5, 138.4, 138.3 (C_a), 128.5, 128.3, 128.2, 128.1, 127.9, 127.6, 127.5, 127.4, 127.3, 127.2, 126.2 (CH_{arom}), 99.8 (C-1'''), 99.3 (C-1'', C-1'), 98.2 (C-1), 81.2 (C-3'''), 80.5 (C-4'), 79.9, 79.8, 79.7 (C-4'', C-4, C-4'''), 79.4 (C-3'), 78.0, 77.9, 77.8 (C-3, C-2', C-3"), 75.1, 74.9, 74.8, 74.5, 74.3 (CH₂ benzyl), 73.8 (CH₂ benzyl, C-2""), 73.3 (C-2""), 72.0 (C-2, C-5"), 71.6 (C-5""), 70.7, 70.6, 70.4 (CH₂ benzyl), 68.4 (C-5"), 67.6 (C-5), 54.7 (CH₃ OMe), 18.5, 18.1, 17.9, 17.8 (C-6, C-6', C-6'', C-6'''); 13 C-HMBC NMR (100 MHz, 98.2 (J_{C1-H1} = 165.3 Hz, C-1); HRMS [M+Na]⁺ calcd for C₈₈H₉₈O₁₇Na 1449.66962, found 1449.67083.

6-deoxy-β-D-mannopyranosyl-(1→2)-6-deoxy-α-Dmannopyranosyl-(1→3)-6-deoxy-β-D-mannopyranosyl-(1→2)-(methyl 6-deoxy-α-D-mannopyranoside) (37): A solution of 7.7 mg (5.4 µmol) tetramer **36** in 5 mL ^tBuOH/H₂O (7/3, v/v) was purged with argon for 15 minutes. Next half a

teaspoon of palladium on activated charcoal was added and the mixture was stirred overnight under hydrogen atmosphere. Filtration over Celite and subsequent lyophilisation afforded 2.8 mg of the pure title compound **37** (4.6 µmol, 85%). ¹H NMR (600 MHz, D₂O, HH-COSY, HSQC, HMBC) δ 5.12 (d, *J* = 1.2 Hz, 1H, H-1"), 4.79 (d, *J* = 1.2 Hz, 1H, H-1), 4.72 (s, 1H, H-1'), 4.70 (s, 1H, H-1'''), 4.22 (dd, *J* = 3.2, 1.7 Hz, 1H, H-2''), 4.10 – 4.07 (m, 2H, H-2', H-2), 4.00 (d, *J* = 3.2 Hz, 1H, H-2'''), 3.87 – 3.83 (m, 2H, H-3'', H-5''), 3.71 (dd, *J* = 9.8, 3.4 Hz, 1H, H-3), 3.69 – 3.62 (m, 2H, H-5, H-3'), 3.59 – 3.56 (m, 1H, H-3'''), 3.50 – 3.36 (m, 9H, H-4', H-4'', H-4, H-5', CH₃ OMe, H-4''', H-5'''), 1.32 – 1.27 (m, 12H, H-6, H-6', H-6'', H-6'''); ¹³C NMR (150 MHz, D₂O, HH-COSY, HSQC, HMBC) δ 101.1 (C-1''), 99.5 (C-1''', C-1), 99.2 (C-1'), 81.7 (C-3'), 78.3 (C-2''), 78.1 (C-2), 73.5 (C-3''', C-4, C-4''), 73.3 (C-5'''), 73.1 (C-5'), 72.9 (C-4'''), 72.2 (C-4'), 71.9 (C-2'''), 71.8 (C-2'), 70.6 (C-3), 70.5 (C-3''), 70.3 (C-5''), 69.6 (C-5), 55.8 (CH₃ OMe), 17.7, 17.6, 17.5 (C-6, C-6', C-6'', C-6'''); ¹³C-HMBC NMR (150 MHz, D₂O) δ 101.1 (J_{C1''-H1''} = 170.6 Hz, C-1''), 99.5 (J_{C1''H1}'' = 159.8 Hz, C-1'''), 99.5 (J_{C1-H1} = 170.6 Hz, C-1), 99.2 (J_{C1'-H1}'' = 160.0 Hz, C-1''); HRMS [M+Na]⁺ calcd for C₂₅H₄₄O₁₇Na 639.24707, found 639.24695.

2,3,4,6-Tetra-O-benzyl-α-D-mannopyranosyl (N-phenyl)trifluoroacetimidates (6):

2,3,4-tri-*O*-benzyl-6-deoxy-α-D-mannopyranosyl (*N*-phenyl)trifluoroacetimidate (7):

7,373 7,356 7,333 7,333 7,293 7,293 7,250 7,550

Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-6-*S*-phenyl-6-thio-α-D-mannopyranoside (S4):

3.876 3.869 3.8869 3.826 3.878 3.772 3.772 3.772 3.772 3.772 3.772 3.772 3.772 3.772 3.772 3.772 3.772 3.772 3.404 3.271 3.271 3.271 3.272 3.205 3.205 3.205 3.205 3.207

56

2,3,4-tri-*O*-benzyl-6-deoxy-6-*S*-phenyl-6-thio-α-D-mannopyranosyl (*N*-phenyl)trifluoroacetimidate (8):

Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-6-*S-p*-tolyl-6-thio-α-D-mannopyranoside (S5):

Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-6-*S*-*p*-methoxyphenyl-6-thio-α-D-mannopyranoside (S6):

2,3,4-tri-*O*-benzyl-6-deoxy-6-*S-p*-methoxyphenyl-6-thio-α-D-mannopyranosyl (*N*-phenyl)trifluoroacetimidate (10):

Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-6-*S-p*-nitrophenyl-6-thio-α-D-mannopyranoside (S7):

2,3,4-tri-*O*-benzyl-6-deoxy-6-*S-p*-nitrophenyl-6-thio-α-D-mannopyranosyl (*N*-phenyl)trifluoroacetimidate (11):

$Methyl \ \textbf{2,3,4-tri-O-benzyl-6-deoxy-6-S-ethyl-6-thio-α-D$-mannopyranoside (S8):}$

2,3,4-tri-*O*-benzyl-6-deoxy-6-*S*-ethyl-6-thio-α-D-mannopyranosyl (*N*-phenyl)trifluoroacetimidate (12):

Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-6-Se-phenyl-6-seleno-α-D-mannopyranoside (S9):

2,3,4-tri-*O*-benzyl-6-deoxy-6-Se-phenyl-6-seleno-α-D-mannopyranosyl (*N*-phenyl)trifluoroacetimidate (13):

90 85 f1 (ppm) 80 75 70 65 60

20 15

30 25

55

50 45 40 35

 160
 155
 150
 145
 140
 135
 130
 125
 120
 115
 110
 105
 100
 95

2,3,4-Tri-O-benzyl-6-deoxy-6-iodo-D-mannopyranose (S10):

2,3,4-tri-*O*-benzyl-6-deoxy-6-iodo- α/β -D-mannopyranosyl (*N*-phenyl)trifluoroacetimidate (14):

4-Methoxyphenyl 2-*O*-benzyl-4,6-*O*-benzylidene-α-D-galactopyranoside (15b):

2,3,4-Tri-*O*-benzyl-6-deoxy-D-mannopyranosyl- $(1\rightarrow 2)$ - methyl 3-*O*-benzyl-4,6-*O*-benzylidene- α -D-mannopyranoside (17c):

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-phenyl-6-thio-D-mannopyranosyl-(1→6)-methyl 2,3,4-tri-*O*-benzyl- α -D-glucopyranoside (18a) (α/β 1/7):

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-phenyl-6-thio-D-mannopyranosyl- $(1\rightarrow 3)$ -*p*-methoxyphenyl 2-*O*-benzyl-4,6-*O*-benzylidene- α -D-galactopyranoside (18b):

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-phenyl-6-thio-D-mannopyranosyl- $(1\rightarrow 2)$ - methyl 3-*O*-benzyl-4,6-*O*-benzylidene- α -D-mannopyranoside (18c):

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-*p*-tolyl-6-thio-D-mannopyranosyl- $(1\rightarrow 6)$ -methyl 2,3,4-tri-*O*-benzyl- α -D-glucopyranoside (19a):

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-*p*-tolyl-6-thio-D-mannopyranosyl $(1\rightarrow 3)$ -*p*-methoxyphenyl 2-*O*-benzyl-4,6-*O*-benzylidene- α -D-galactopyranoside (19b):

7,551 7,557 7,557 7,558 7,558 7,558 7,558 7,539

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-*p*-tolyl-6-thio-D-mannopyranosyl- $(1 \rightarrow 2)$ - methyl 3-*O*-benzyl-4,6-*O*-benzylidene- α -D-mannopyranoside (19c):

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-*p*-methoxyphenyl-6-thio-D-mannopyranosyl- $(1\rightarrow 6)$ -methyl 2,3,4-tri-*O*-benzyl- α -D-glucopyranoside (20a):

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-*p*-methoxyphenyl-6-thio-D-mannopyranosyl- $(1 \rightarrow 2)$ - methyl 3-*O*-benzyl-4,6-*O*-benzylidene- α -D-mannopyranoside (20c):

155 150 145 140 135 125 120 115 110 105 95 90 f1 (ppm)

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-*p*-nitrophenyl-6-thio-D-mannopyranosyl- $(1\rightarrow 3)$ -*p*-methoxyphenyl 2-*O*-benzyl-4,6-*O*-benzylidene- α -D-galactopyranoside (21b):

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-*p*-nitrophenyl-6-thio-D-mannopyranosyl- $(1 \rightarrow 2)$ - methyl 3-*O*-benzyl-4,6-*O*-benzylidene- α -D-mannopyranoside (21c):

8 012 8

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-ethyl-6-thio-D-mannopyranosyl-(1→6)-methyl 2,3,4-tri-*O*-benzyl-α-D-glucopyranoside (22a):

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-ethyl-6-thio-D-mannopyranosyl- $(1\rightarrow 3)$ -*p*-methoxyphenyl 2-*O*-benzyl-4,6-*O*-benzylidene- α -D-galactopyranoside (22b):

7,556 7,759

2,3,4-Tri-*O*-benzyl-6-deoxy-6-*S*-ethyl-6-thio-D-mannopyranosyl- $(1\rightarrow 2)$ -methyl 3-*O*-benzyl-4,6-*O*-benzylidene- α -D-mannopyranoside (22c):

2,3,4-Tri-*O*-benzyl-6-deoxy-6-Se-phenyl-6-seleno-D-mannopyranosyl- $(1\rightarrow 6)$ -methyl 2,3,4-tri-*O*-benzyl- α -D-glucopyranoside (23a):

2,3,4-Tri-*O*-benzyl-6-deoxy-6-Se-phenyl-6-seleno-D-mannopyranosyl - $(1\rightarrow 3)$ -*p*-methoxyphenyl 2-*O*-benzyl-4,6-*O*-benzylidene- α -D-galactopyranoside (23b):

2,3,4-Tri-O-benzyl-6-deoxy-6-Se-phenyl-6-seleno-D-mannopyranosyl- $(1\rightarrow 2)$ - methyl 3-O-benzyl-4,6-O-benzylidene- α -D-mannopyranoside (23c):

2,3,4-Tri-*O*-benzyl-6-deoxy-6-iodo-D-mannopyranosyl- $(1 \rightarrow 6)$ -methyl 2,3,4-tri-*O*-benzyl- α -D-glucopyranoside (24a):

2,3,4-Tri-*O*-benzyl-6-deoxy-6-iodo-D-mannopyranosyl- $(1\rightarrow 3)$ -*p*-methoxyphenyl 2-*O*-benzyl-4,6-*O*-benzylidene- α -D-galactopyranoside (24b):

S68

2,3,4-Tri-O-benzyl-6-deoxy-6-iodo-D-mannopyranosyl- $(1\rightarrow 2)$ - methyl 3-O-benzyl-4,6-O-benzylidene- α -D-mannopyranoside (24c):

1,6-Anhydro-2,3,4-tri-*O***-benzyl-5-deoxy-5-S-phenyl-5-sulfonium-** β **-D-mannopyranose triflate (25)** (from imidate donor **8**, T = 193 K, NMR tube experiment):

1,6-Anhydro-2,3,4-tri-*O***-benzyl-5-deoxy-5-S-phenyl-5-sulfonium-**β**-***D***-mannopyranose triflate (25)** (from mannoside **27**, NMR tube experiment):

Methyl 3,4-di-*O*-benzyl-α-D-mannopyranoside (S12):

Methyl 2-O-acetyl-3,4-di-O-benzyl-6-deoxy-α-D-mannopyranoside (S13):

Methyl 2,6-anhydro-3,4-di-*O*-benzyl-α-D-mannopyranoside (S15):

Methyl 3,4-di-*O*-benzyl-6-deoxy-α-D-mannopyranoside (29):

2-O-Acetyl-3,4-di-O-benzyl-6-deoxy-D-mannopyranose (S14):

2-O-acetyl-3,4-di-O-benzyl-6-deoxy-D-mannopyranosyl N-phenyltrifluoroacetimidate (32):

Methyl 2,4-di-*O*-benzyl-α-D-mannopyranoside (S16):

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

2,4-Di-O-benzyl-6-deoxy-3-(2-napthylmethyl)-6-thiophenyl-D-mannopyranose (S18):

2,4-Di-O-benzyl-6-deoxy-3-(2-napthylmethyl)-6-thiophenyl-D-mannopyranosyl *N*-phenyltrifluoroacetimidate (28):

8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 fl(ppm)

2,4-Di-*O*-benzyl-6-deoxy-3-(2-napthylmethyl)-6-thiophenyl- β -D-mannopyranosyl-(1 \rightarrow 2)-(methyl 3,4-di-*O*-benzyl-6-deoxy- α -D-mannopyranoside) (30):

7, 2002 7,

20 15 145 140 135 130 125 120 115 110 105 100 95 90 85 80 f1 (ppm) 70 55 50 40 35 30 25 75 65 60 45

2,4-di-*O*-benzyl-6-deoxy-6-thiophenyl- β -D-mannopyranosyl- $(1 \rightarrow 2)$ -(methyl 3,4-di-*O*-benzyl-6-deoxy- α -D-mannopyranoside) (31):

2-*O*-acetyl-3,4-di-*O*-benzyl-6-deoxy- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2,4-di-*O*-benzyl-6-deoxy-6thiophenyl- β -D-mannopyranosyl- $(1\rightarrow 2)$ -(methyl 3,4-di-*O*-benzyl-6-deoxy- α -D-mannopyranoside) (33):

3,4-Di-*O*-benzyl-6-deoxy- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzyl-6-deoxy-6-thiophenyl- β -D-mannopyranosyl- $(1 \rightarrow 2)$ -(methyl 3,4-di-*O*-benzyl-6-deoxy- α -D-mannopyranoside) (34):

2,3,4-tri-*O*-benzyl-6-deoxy-6-thiophenyl- β -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4-di-*O*-benzyl-6-deoxy- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzyl-6-deoxy-6-thiophenyl- β -D-mannopyranosyl- $(1 \rightarrow 2)$ -(methyl 3,4-di-*O*-benzyl-6-deoxy- α -D-mannopyranoside) (35):

2,3,4-tri-*O*-benzyl-6-deoxy- β -D-mannopyranosyl-(1→2)-3,4-di-*O*-benzyl-6-deoxy- α -D-mannopyranosyl-(1→3)-2,4-di-*O*-benzyl-6-deoxy- β -D-mannopyranosyl-(1→2)-(methyl 3,4-di-*O*-benzyl-6-deoxy- α -D-mannopyranoside) (36):

6-deoxy-β-D-mannopyranosyl-(1→2)-6-deoxy-α-D-mannopyranosyl-(1→3)-6-deoxy-β-D-mannopyranosyl-(1→2)-(methyl 6-deoxy-α-D-mannopyranoside) (37):

