Asymmetric Assembly of 2-Oxindole and α-Angelica Lactone Units to Construct Vicinal Quaternary Chiral Centers

Xin Huang,^{*a*} Jin Peng,^{*a*} Lin Dong,^{*a*} and Ying-Chun Chen*^{*a,b*}

^a Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China, ^b State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.

E-mail: ycchenhuaxi@yahoo.com.cn

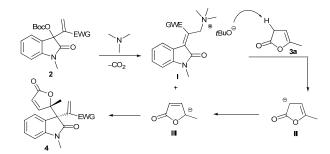
Supplementary Information

Table of Contents

- 1. General methods
- 2. The proposed catalytic mechanism
- 3. General procedure for assembly of MBH carbonates and α -angelica lactone
- 4. Crystal data and structure refinement for enantiopure 4a
- 5. NMR spectra and HPLC chromatograms

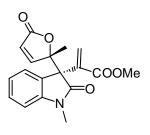
1. General Methods

NMR spectra were recorded with tetramethylsilane as the internal standard. TLC was performed on glass-backed silica plates. Column chromatography was performed using silica gel (200-300 mesh) eluting with ethyl acetate, acetone, ethyl ether and petroleum ether (PE) (EtOAc/PE, Acetone/PE or ethyl ether/PE). ¹H NMR spectra were recorded at 400 MHz (Varian) and ¹³C NMR spectra were recorded at 100 MHz (Varian). Chemical shifts are reported in ppm downfield from CDCl₃ (δ = 7.27 ppm) for ¹H NMR and relative to the central CDCl₃ resonance (δ = 77.0 ppm) for ¹³C NMR spectroscopy. Coupling constants are given in Hz. Optical rotations were measured at 589 nm at 20 °C. Enantiomeric excess was determined by HPLC analysis on Chiralpak AD, AS and Chiralcel OD columns. Mesitylene was distilled from CaH₂. All other chemicals were used without purification as commercially available. Catalysts **1a–1f**¹ were prepared according to the literature procedures. Morita–Baylis–Hillman carbonates of isatins² and α -angelica lactone³ were prepared according to the literature procedures.

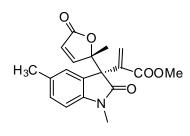

(1) (*a*) H. Waldmann, V. Khedkar, H. Dückert, M. Schürmann, I. M. Oppel and K. Kumar, *Angew. Chem.*, *Int. Ed.* 2008, **47**, 6869; (*b*) J. Peng, X. Huang, L. Jiang, H.-L. Cui and Y.-C. Chen, *Org. Lett.*, 2011, **13**, 4584.

(2) Y. M. Chung, Y. J. Im and J. N. Kim, Bull. Korean Chem. Soc. 2002, 23, 1651.

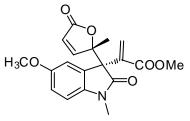
(3) J. A. Marshall, M. A. Wolf and E. M. Wallace, J. Org. Chem. 1997, 62, 367.


2. The proposed catalytic mechanism

As showing in the following scheme, the tertiary amine catalyst could attack the MBH carbonate 2, which would generate the ammonium ion I and *t*-butoxy anion. Subsequently, the strong Brønsted base would deproton the acidic C-H of α -angelica lactone **3a**, affording the anion II. Then, the isomerized anion III would attack the electrophilic ion I to deliver the allylic product **4** after the elimination of the tertiary amine catalyst.

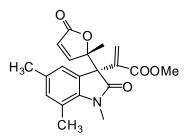

3. General procedure for assembly of MBH carbonates and α -angelica lactone

To a solution of MBH carbonate **2** (34.7 mg, 0.1 mmol), α -angelica lactone **3a** (19.6 mg, 0.2 mmol), 4Å MS (20 mg) and R-BINOL (3.0 mg) in mesitylene (0.5 mL) was added catalyst **1a** (3.2 mg, 10 mol%) at -10 °C. The mixture was kept at the temperature until the consumption of **2a**, which was monitored by TLC analysis. Purification by flash chromatography on silica gel (AcOEt/petroleum ether = 1:5) gave **4**.

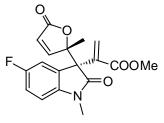

4a, 80% yield; $[\alpha]_D^{20} = +8.5$ (*c* = 0.4 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 26.532 min, t (minor) = 18.793 min,]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.26$ (t, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 7.2 Hz, 1H), 7.06 (d, *J* = 5.6 Hz, 1H), 6.96 (t, *J* = 7.6 Hz, 1H), 6.84 (s, 1H), 6.79 (d, *J* = 7.6 Hz, 1H), 6.75 (s, 1H), 5.70 (d, *J* =

5.6 Hz, 1H), 3.62 (s, 3H), 3.29 (s, 3H), 1.88 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 175.6, 171.6, 165.6, 157.1, 143.6, 136.9, 131.1, 129.2, 127.1, 125.0, 122.7, 122.4, 108.1, 89.7, 59.9, 52.3, 26.6, 19.1 ppm; ESI-HRMS: calcd. for C₁₈H₁₇NO₅+Na 350.1004, found 350.1002.

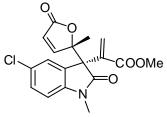
4d, 90% yield; $[\alpha]_D^{20} = +41.0$ (*c* = 0.4 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.910 min, t (minor) = 8.967 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.04$ (d, *J* = 5.6 Hz, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 6.93 (s, 1H), 6.82 (s, 1H), 6.74 (s, 1H), 6.67 (d, *J* = 8.0 Hz, 1H), 5.69 (d, *J* = 5.6 Hz,


1H), 3.62 (s, 3H), 3.26 (s, 3H), 2.24 (s, 3H), 1.87 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 175.5, 171.6, 165.7, 157.2, 141.1, 137.0, 132.3, 131.0, 129.5, 127.1, 125.8, 122.4, 107.8, 89.7, 60.0, 52.3, 26.6, 21.0, 19.1 ppm; ESI-HRMS: calcd. for C₁₉H₁₉NO₅+Na 364.1161, found 364.1156.

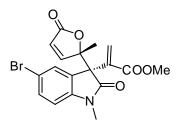
4e, 90% yield; $[\alpha]_D^{20} = +26.8$ (c = 0.5 in CHCl₃); 89% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 18.740 min, t (minor) = 11.663 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.03$ (d, J = 5.6 Hz, 1H), 6.81 (s, 1H), 6.77 (dd, J = 8.4 Hz, 2.8 Hz, 1H), 6.74 (s, 1H), 6.72 (d, J = 2.8 Hz, 1H), 6.68 (d,


J = 8.4 Hz, 1H), 5.70 (d, J = 5.6 Hz, 1H), 3.69 (s, 3H), 3.61 (s, 3H), 3.24 (s, 3H), 1.86 (s, 3H) ppm; ¹³C

NMR (100 MHz, CDCl₃): δ = 175.2, 171.7, 165.6, 157.3, 155.7, 136.9, 131.2, 128.3, 122.4, 114.7, 111.3, 108.6, 89.6, 60.2, 55.7, 52.3, 26.7, 19.1 ppm; ESI-HRMS: calcd. for C₁₉H₁₉NO₆+Na 380.1110, found 380.1109.

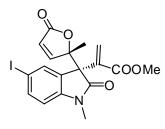

4f, 88% yield; $[\alpha]_D^{20} = +27.2$ (*c* = 0.5 in CHCl₃); 92% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 12.660 min, t (minor) = 6.586 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.05$ (d, *J* = 5.6 Hz, 1H), 6.80 (s, 1H), 6.76 (d, *J* = 2.8 Hz, 2H), 5.70 (d, *J* = 5.6 Hz, 1H), 3.63 (s, 3H), 3.52 (s, 3H), 2.49 (s, 3H), 2.18 (s,

3H), 1.86 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 176.2, 171.6, 165.7, 157.3, 138.8, 137.2, 133.5, 131.9, 130.8, 127.6, 123.7, 122.3, 119.1, 89.7, 59.5, 52.2, 23.0, 20.6, 19.2, 18.8 ppm; ESI-HRMS: calcd. for C₂₀H₂₁NO₅+Na 378.1317, found 378.1316.

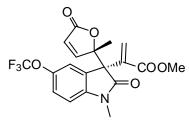


4g, 80% yield; $[\alpha]_D^{20} = +8.0$ (c = 0.2 in CHCl₃); 92% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 13.872 min, t (minor) = 8.391 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.06$ (d, J = 5.6 Hz, 1H), 6.96 (td, J = 8.8 Hz, 2.4 Hz, 1H), 6.89 (dd, J = 8.0 Hz, 2.4Hz, 1H), 6.83 (s, 1H), 6.77 (s, 1H), 6.73 (dd, J = 8.4 Hz, 4.0

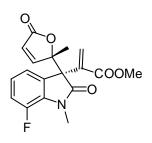
Hz, 1H), 5.75 (d, J = 5.6 Hz, 1H), 3.64 (s, 3H), 3.27 (s, 3H), 1.87 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.2$, 171.2, 165.5, 158.8 (d, ¹ $J_{C,F} = 240.8$ Hz), 157.0, 139.6, 136.6, 131.6, 128.8 (d, ³ $J_{C,F} = 8.4$ Hz), 122.5, 115.6 (d, ² $J_{C,F} = 23.6$ Hz), 113.2 (d, ² $J_{C,F} = 25.0$ Hz), 108.6 (d, ³ $J_{C,F} = 8.0$ Hz), 89.4, 60.1, 52.4, 26.8, 19.2 ppm; ESI-HRMS: calcd. for C₁₈H₁₆FNO₅+Na 368.0910, found 368.0903.



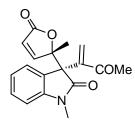
4h, 83% yield; $[\alpha]_D^{20} = +45.2$ (*c* = 0.4 in CHCl₃); 92% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 28.473 min, t (minor) = 16.415 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.23$ (dd, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.10 (d, *J* = 2.0 Hz, 1H), 7.05 (d, *J* = 5.6 Hz, 1H), 6.84 (s, 1H), 6.78 (s, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 5.76 (d, J = 5.6 Hz, 1H), 3.64 (s, 3H), 3.27 (s, 3H), 1.86 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.2, 171.1, 165.5, 156.8, 142.2, 136.5, 131.7, 129.2, 128.8, 128.0, 125.4, 122.7, 109.0, 89.3, 52.4, 26.8, 25.3, 19.2 ppm; ESI-HRMS: calcd. for C₁₈H₁₆ClNO₅+Na 384.0615, found 384.0612.$


4i, 91% yield; $[\alpha]_D^{20} = +61.0$ (*c* = 0.5 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 21.370 min, t (minor) = 11.016 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36$ (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 7.21 (d, *J* = 1.6 Hz, 1H), 7.03 (d, *J* = 5.6 Hz, 1H), 6.81 (s, 1H), 6.75 (s, 1H), 6.66 (d, *J* = 8.4 Hz, 1H),

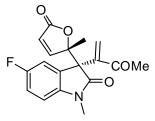
5.74 (d, *J* = 5.6 Hz, 1H), 3.62 (s, 3H), 3.24 (s, 3H), 1.84 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 175.1, 171.1, 165.5, 156.7, 142.7, 136.5, 132.1, 131.7, 129.1, 128.1, 122.7, 115.2, 109.5, 89.2, 60.0, 52.4, 26.7, 19.1 ppm; ESI-HRMS: calcd. for C₁₈H₁₆BrNO₅+Na 428.0110, found 428.0112.


4j, 90% yield; $[\alpha]_D^{20} = +60.6$ (*c* = 0.5 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 20.384 min, t (minor) = 10.854 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.58$ (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 7.39 (d, *J* = 1.6 Hz, 1H), 7.04 (d, *J* = 5.6 Hz, 1H), 6.83 (s, 1H), 6.77 (s, 1H), 6.58 (d, *J* = 8.4 Hz, 1H), 5.76 (d, *J*

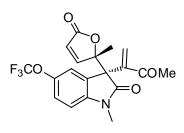
= 5.6 Hz, 1H), 3.64 (s, 3H), 3.26 (s, 3H), 1.86 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 175.0, 171.1, 165.5, 156.6, 143.4, 138.1, 136.5, 133.6, 131.7, 129.3, 122.8, 110.1, 89.2, 85.0, 52.4, 26.7, 19.1 ppm; ESI-HRMS: calcd. for C₁₈H₁₆INO₅+Na 475.9971, found 475.9981.


4k, 83% yield; $[\alpha]_D^{20} = +12.0$ (c = 0.2 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.291 min, t (minor) = 8.201 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.13$ (d, J = 8.4 Hz, 1H), 7.03 (d, J = 5.6 Hz, 1H), 7.01 (s, 1H), 6.84 (s, 1H), 6.78 (d, J = 7.2 Hz, 1H), 6.77 (s, 1H), 5.74

(d, J = 5.6 Hz, 1H), 3.63 (s, 3H), 3.28 (s, 3H), 1.85 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.3$, 170.9, 165.6, 156.7, 144.4, 142.3, 136.4, 131.8, 128.7, 122.6, 122.5, 119.0, 108.5, 89.2, 60.0, 52.4, 26.8, 19.2 ppm; ESI-HRMS: calcd. for C₁₉H₁₆F₃NO₆+Na 434.0827, found 434.0828.


4I, 75% yield; $[\alpha]_D{}^{20} = +27.0$ (c = 0.2 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 9.237 min, t (minor) = 7.006 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.09$ (d, J = 5.6 Hz, 1H), 6.99-6.88 (m, 3H), 6.83 (s, 1H), 6.76 (s, 1H), 5.75 (d, J = 5.6 Hz, 1H), 3.65 (s, 3H), 3.49 (d, $J_{H,F} = 2.4$ Hz, 3H), 1.87 (s, 3H) ppm; ¹³C NMR

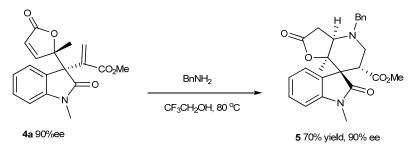
(100 MHz, CDCl₃): δ = 175.2, 171.4, 165.6, 156.9, 147.4 (d, ${}^{1}J_{C,F}$ = 242.3 Hz), 136.7, 131.5, 130.2, 129.9, 123.1 (d, ${}^{3}J_{C,F}$ = 6.4 Hz), 122.6, 120.8 (d, ${}^{4}J_{C,F}$ = 3.1 Hz), 117.2 (d, ${}^{2}J_{C,F}$ = 19.6 Hz), 89.4, 60.1, 52.4, 29.1 (d, ${}^{4}J_{C,F}$ = 6.1 Hz), 19.0 ppm; ESI-HRMS: calcd. for C₁₈H₁₆FNO₅+H 346.1091, found 346.1084.


4m, 80% yield; $[\alpha]_D^{20} = +29.2$ (*c* = 0.5 in CHCl₃); 92% ee, determined by HPLC analysis [Daicel Chiralcel AS, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 31.230 min, t (minor) = 21.196 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.22 (td, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.09 (s, 1H), 7.05 (d, *J* = 5.6 Hz, 1H), 7.04 (d, *J* = 1.2 Hz, 1H), 6.91 (td, *J* = 7.6 Hz, 1.2 Hz, 1H), 6.77 (d, *J* = 7.6 Hz, 1H), 6.61 (s, 1H),

5.68 (d, J = 5.6 Hz, 1H), 3.28 (s, 3H), 2.30 (s, 3H), 1.86 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.0, 176.0, 171.6, 157.2, 146.2, 143.6, 131.3, 129.1, 127.2, 124.6, 122.5, 122.3, 108.1, 89.6, 77.2, 26.6, 25.9, 19.0 ppm; ESI-HRMS: calcd. for C₁₈H₁₇NO₄+Na 334.1055, found 334.1054.$

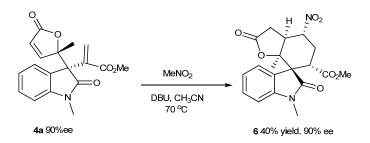
4n, 73% yield; $[\alpha]_D^{20} = +6.5$ (c = 0.4 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel Chiralcel AD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 14.320 min, t (minor) = 10.904 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.06$ (d, J = 5.6 Hz, 1H), 6.94 (td, J = 8.4 Hz, 2.4 Hz, 1H), 6.81 (dd, J = 12.0 Hz, 2.4 Hz, 1H), 6.71 (dd, J = 8.4 Hz, 4.0 Hz, 1H), 6.64 (s, 1H), 5.74 (d,

J = 5.6 Hz, 1H), 3.28 (s, 3H), 2.32 (s, 3H), 1.86 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.0$, 175.7, 171.3, 158.7 (d, ¹ $J_{C,F} = 240.5$ Hz), 157.0, 145.9, 139.6, 131.8, 128.9, 122.5, 115.4 (d, ² $J_{C,F} = 23.1$ Hz), 112.8 (d, ² $J_{C,F} = 25.4$ Hz), 108.6 (d, ³ $J_{C,F} = 7.9$ Hz), 89.3, 26.8, 25.9, 24.4, 19.1 ppm; ESI-HRMS: calcd. for C₁₈H₁₆FNO₄+Na 352.0961, found 352.0960.

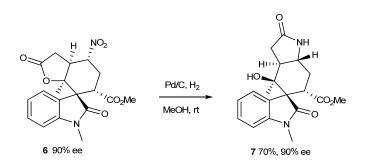

40, 80% yield; $[\alpha]_D^{20} = +2.2$ (c = 0.4 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel Chiralcel AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.253 min, t (minor) = 8.685 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.12$ (d, J = 5.2 Hz, 1H), 7.11 (s, 1H), 7.04 (d, J = 5.6 Hz, 1H), 6.95 (s, 1H), 6.77 (d, J = 8.4 Hz, 1H), 6.66 (s, 1H), 5.74 (d, J = 5.6 Hz,

1H), 3.30 (s, 3H), 2.32 (s, 3H), 1.86 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 198.0, 175.8, 170.9, 156.8, 145.8, 142.3, 132.0, 128.8, 122.6, 122.3, 118.7, 108.5, 89.2, 77.2, 59.7, 26.9, 25.9, 19.1 ppm; ESI-HRMS: calcd. for C₁₉H₁₆F₃NO₅+Na 418.0878, found 418.0878.

4p, 70% yield; $[\alpha]_D^{20} = +30.4$ (c = 0.5 in CHCl₃); dr = 83:17 (by ¹H NMR analysis); for major isomer: 80% ee, determined by HPLC analysis [Daicel Chiralcel AD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 5.937 min, t (minor) = 5.417 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.25$ (t, J = 8.0 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), 6.96 (t, J = 8.0 Hz, 1H), 6.94 (d, J = 5.6 Hz,

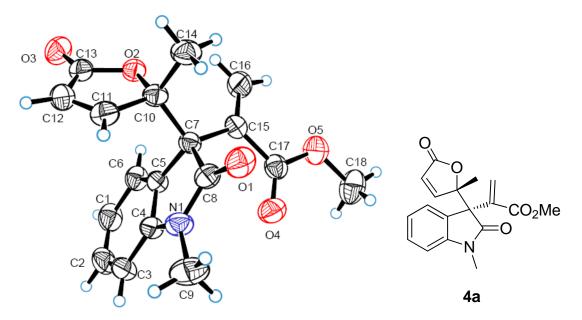

1H), 6.78 (d, J = 8.0 Hz, 1H), 6.78 (s, 1H), 6.72 (s, 1H), 5.73 (d, J = 5.6 Hz, 1H), 3.62 (s, 3H), 3.28 (s, 3H), 2.58-2.42 (m, 2H), 1.34-1.24 (m, 2H), 0.94-0.89 (m, 2H), 0.86 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.7$, 172.1, 165.8, 155.6, 143.5, 137.0, 131.1, 129.2, 127.3, 125.0, 123.6, 122.7, 108.0, 92.4, 60.5, 52.3, 29.4, 26.6, 25.2, 22.6, 13.9 ppm; ESI-HRMS: calcd. for C₂₁H₂₃NO₅+Na 392.1474, found 392.1475.

Synthetic transformations of allylic product 4a



A solution of **4a** (65.4 mg, 0.20 mmol, 90% ee) and BnNH₂ (110 μ L, 1.00 mmol) in CF₃CH₂OH (0.5mL) was stirred at 80 °C for 5 hours. Then Boc₂O (436 mg, 2.00 mmol) was added and the solution was stirred at rt until the consumption of excess BnNH₂. After removing the solvent, the residue was purified by flash chromatography on silica gel (PE/AcOEt = 2:1) to afford the product **5** as a colorless oil

(61.0 mg, 70% yield). $[\alpha]_D^{20} = -9.2$ (c = 0.9 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralcel AD, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.195 min, t (minor) = 14.046 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.54$ (d, J = 7.2 Hz, 1H), 7.41-7.30 (m, 6H), 6.97 (td, J = 7.6 Hz, 0.8 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 3.97 (d, J = 13.6 Hz, 1H), 3.71 (dd, J = 7.2 Hz, 6.0 Hz, 1H), 3.66 (d, J = 13.6 Hz, 1H), 3.35 (d, J = 5.6 Hz, 1H), 3.29 (dd, J = 12.4 Hz, 7.2 Hz, 1H), 3.28 (s, 3H), 3.23 (s, 3H), 3.05 (dd, J = 12.4 Hz, 6.0 Hz, 1H), 2.83 (d, J = 18.0 Hz, 1H), 2.66 (dd, J = 18.0 Hz, 5.6 Hz, 1H), 0.94 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.0$, 175.8, 170.9, 156.8, 145.8, 142.3, 132.0, 128.8, 122.6, 122.3, 118.7, 108.5, 89.2, 77.2, 59.7, 26.9, 25.9, 19.1 ppm; ESI-HRMS: calcd. for C₂₅H₂₆N₂O₅+H 435.1920, found 435.1920. The relative configuration has been established by 2D NMR and NOE analysis.

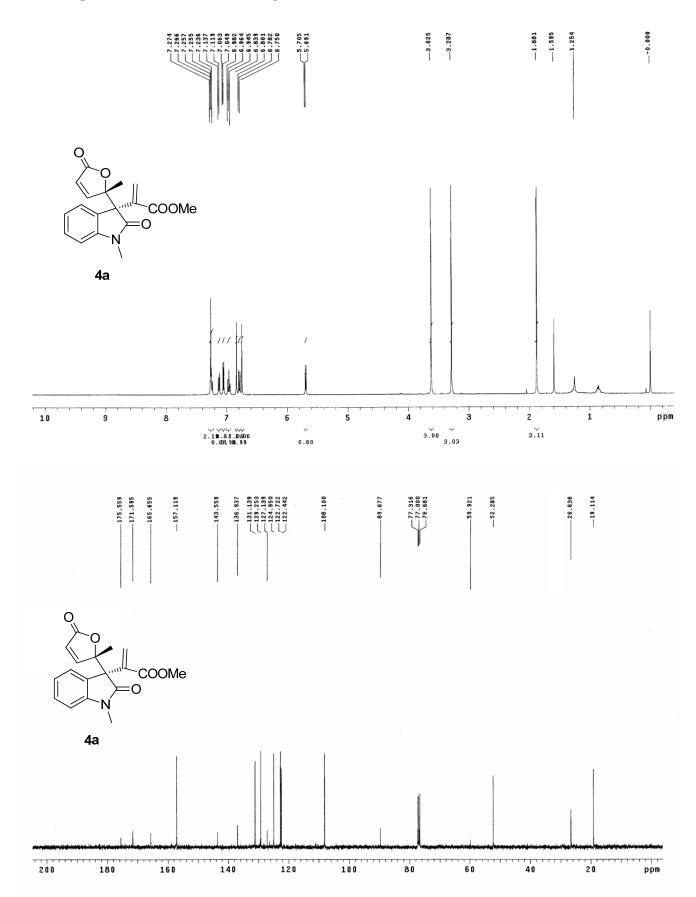


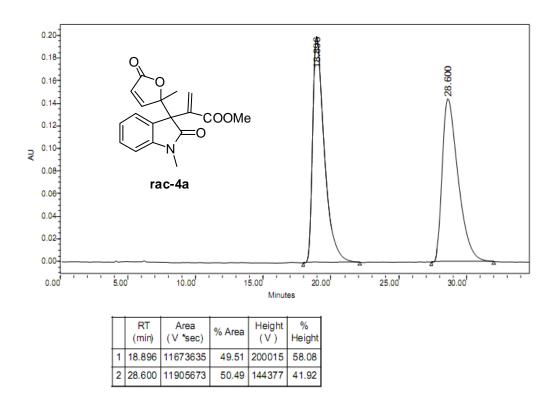
A solution of **4a** (50.0 mg, 0.15 mmol, 90% ee), MeNO₂ (1.50 mmol, 80 µL) and DBU (0.07 mmol, 11.4 mg) in CH₃CN (0.5 mL) was refluxed until the consumption of **4a** (5 h). Then the solvent was removed in vacuum and the residue was purified by flash chromatography on silica gel (PE/AcOEt = 2:1) to give **6** as a white solid (23.0 mg, 40% yield). $[\alpha]_D^{20} = +5.5$ (c = 0.9 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 26.963 min, t (minor) = 19.554 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42$ (t, J = 7.6 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 4.76 (m, 1H), 3.56 (dd, J = 12.8 Hz, 5.6 Hz, 1H), 3.46 (s, 3H), 3.29 (s, 3H), 3.11 (dd, J = 10.8 Hz, 6.8 Hz, 1H), 2.86-2.80 (m, 2H), 2.97 (dd, J = 18.0 Hz, 6.8 Hz, 1H), 2.70 (d, J = 18.0 Hz, 1H), 1.10 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 7.42.7$, 169.8, 145.0, 129.8, 126.5, 124.5, 122.7, 109.0, 86.0, 85.8, 53.3, 52.4, 42.9, 42.2, 35.4, 27.1, 26.7, 22.7 ppm; ESI-HRMS: calcd. for C₁₉H₂₀N₂O₇+Na 411.1168, found 411.1167. The relative configuration has been established by 2D NMR and NOE analysis.

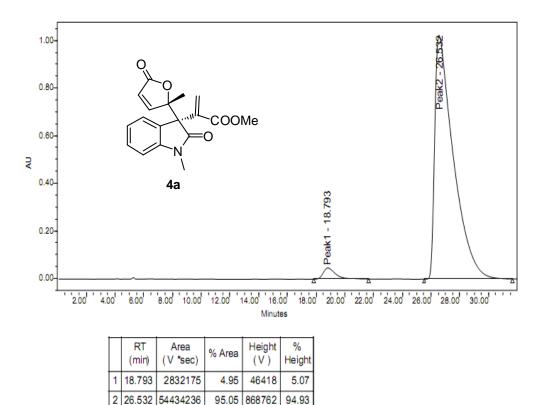
A solution of compound **6** (44.0 mg, 0.11 mmol, 90% ee) and Pd/C (10%, 5.0 mg) in MeOH was stirred at room temperature under H₂ atmosphere until the consumption of **6** (7 h). Then the reaction mixture was filtered and washed with methanol. The combined filtrates were evaporated in vacuum and the residue was purified by flash chromatography on silica gel (DCM/MeOH = 50:1) to give **7** as a white solid (27.5 mg, 70% yield). $[\alpha]_D^{20} = +16.0$ (c = 0.1 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralcel AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 14.526 min, t (minor) = 8.835 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.51$ (d, J = 7.6 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 7.6 Hz, 1H), 5.88 (bs, 1H), 3.57 (dd, J = 14.0 Hz, 4.0 Hz, 1H), 3.41 (s, 3H), 3.27 (s, 3H), 2.92-2.84 (m, 2H), 2.71-2.58 (m, 3H), 2.35 (dt, J = 8.8 Hz, 4.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.3$, 175.0, 171.4, 145.0, 129.2, 127.8, 124.9, 122.5, 108.5, 86.8, 60.8, 53.9, 52.0, 43.1, 40.2, 36.2, 26.6, 26.3, 21.8 ppm; ESI-HRMS: calcd. for C₁₉H₂₂N₂O₅+K 397.1166, found 397.1164.

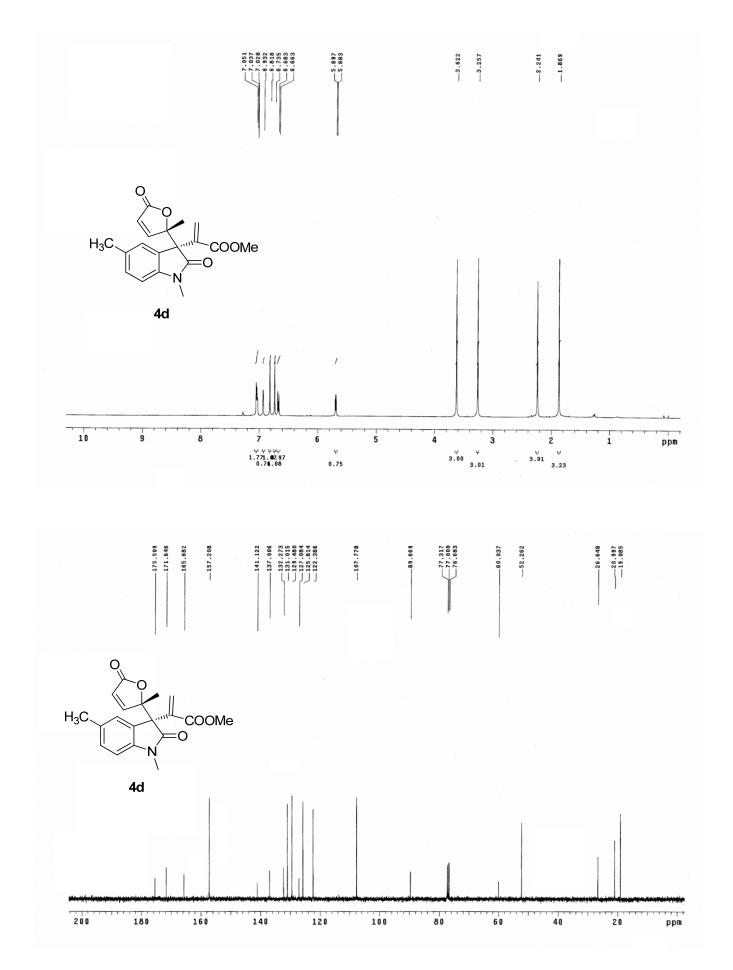
4. Crystal data and structure refinement for enantiopure 4a

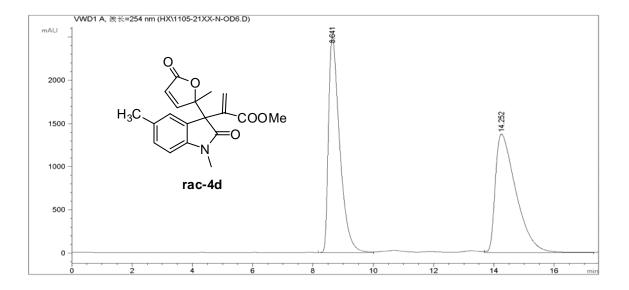
Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

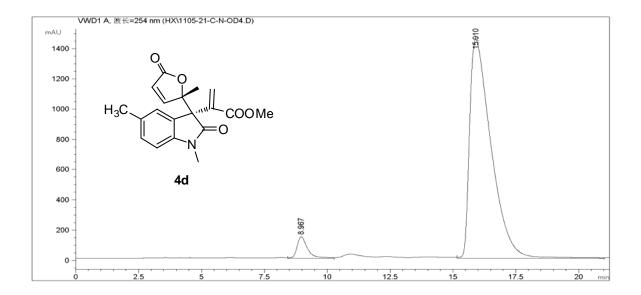

Identification code	4a
Empirical formula	$C_{18}H_{17}O_5N$
Formula weight	327.33
Temperature	291(2)
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å, b/Å, c/Å	8.923(5), 12.210(5), 15.345(5)
$\alpha/^{\circ},\beta/^{\circ},\gamma/^{\circ},$	90.000(5), 90.000(5), 90.000(5)
Volume/Å ³	1671.8(13)
Z	4
$ ho_{calc}mg/mm^3$	1.300
m/mm ⁻¹	0.795
F(000)	688
Crystal size	$0.40\times0.40\times0.32$
Theta range for data collection	4.63 to 69.70°
Index ranges	$-10 \le h \le 10, -14 \le k \le 14, -18 \le l \le 17$
Reflections collected	14220
Independent reflections	3123[R(int) = 0.0206]

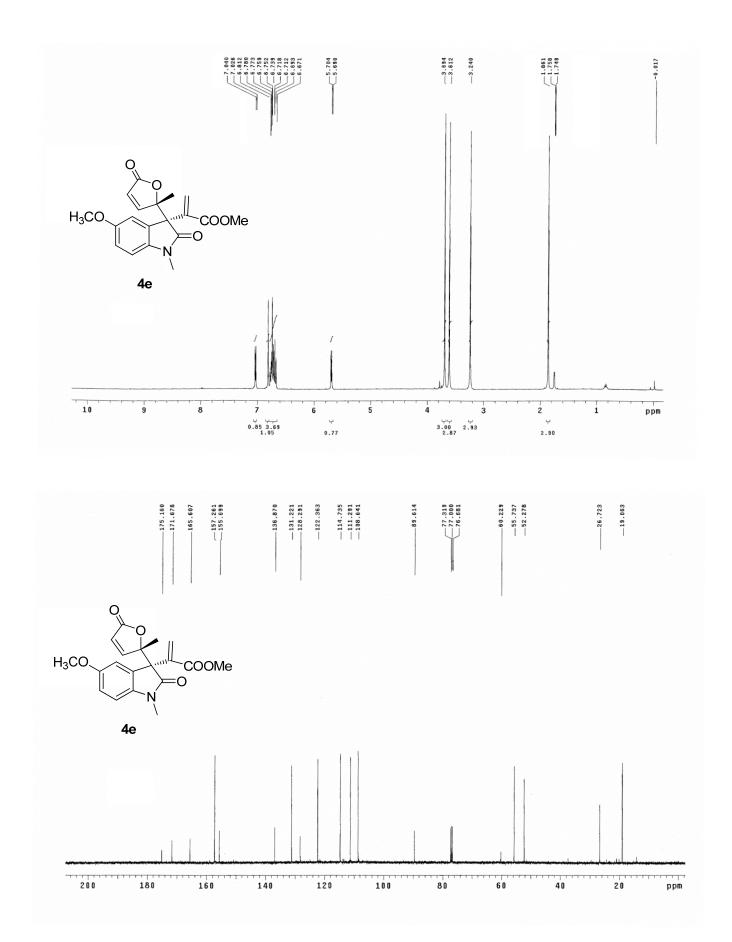

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

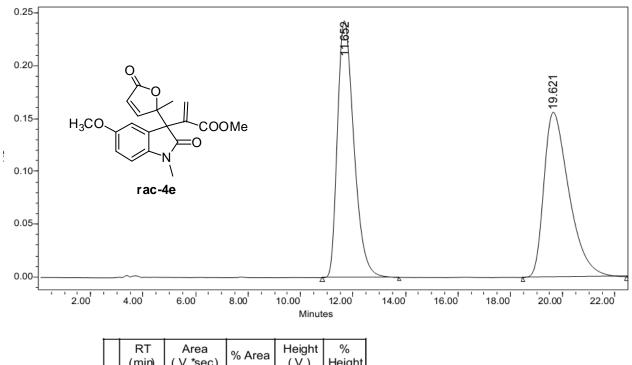

Data/restraints/parameters	3123/0/221
Goodness-of-fit on F ²	1.051
Final R indexes [I> 2σ (I)]	$R_1 = 0.0283, wR_2 = 0.0737$
Final R indexes [all data]	$R_1 = 0.0285, wR_2 = 0.0740$
Largest diff. peak/hole	0.133/-0.132


Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

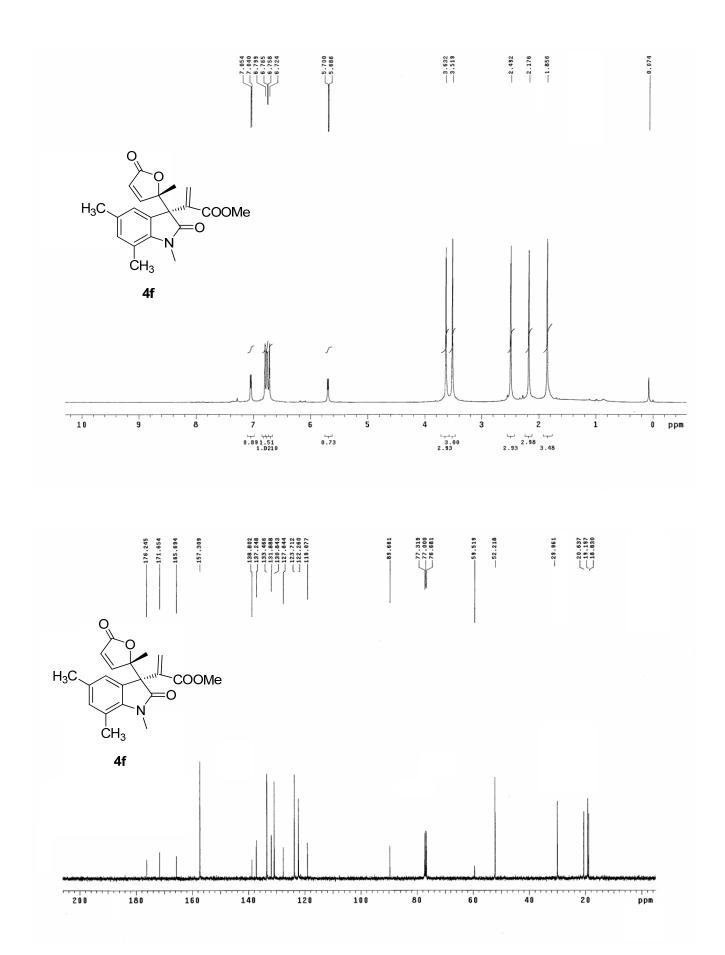

5. NMR spectra and HPLC chromatograms

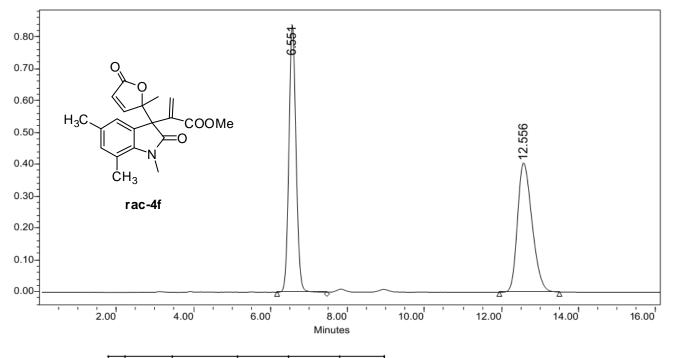


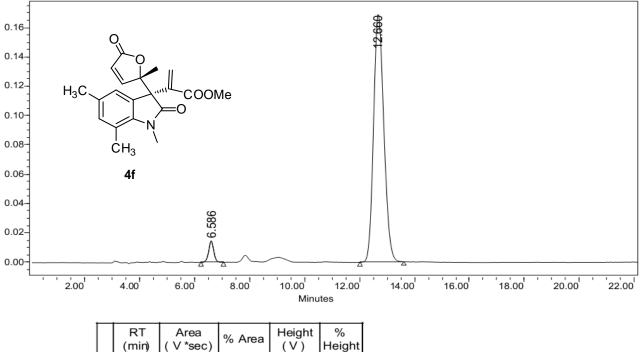


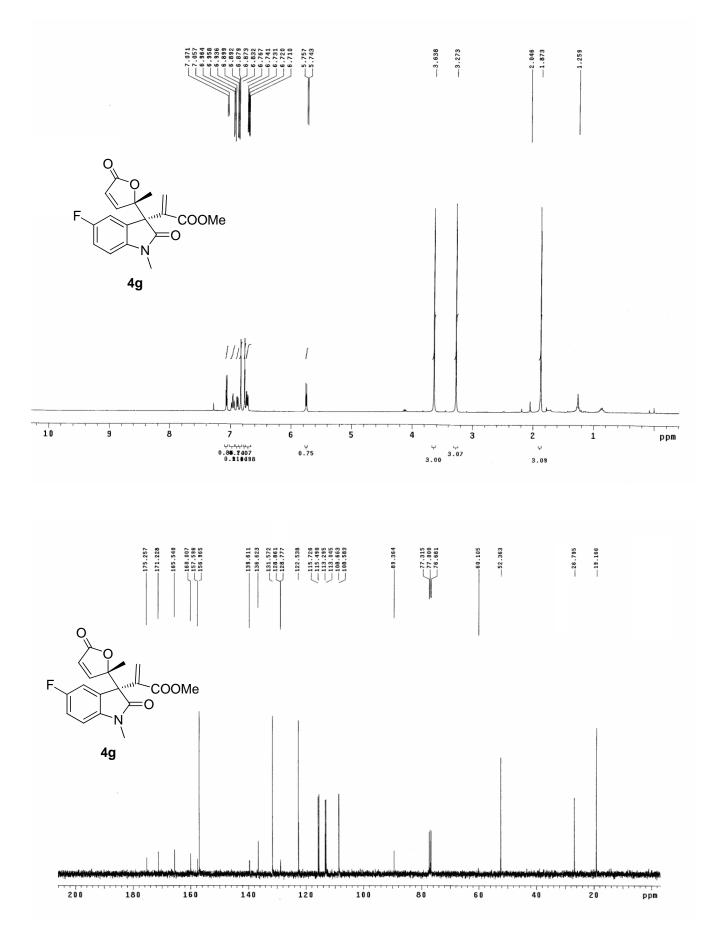


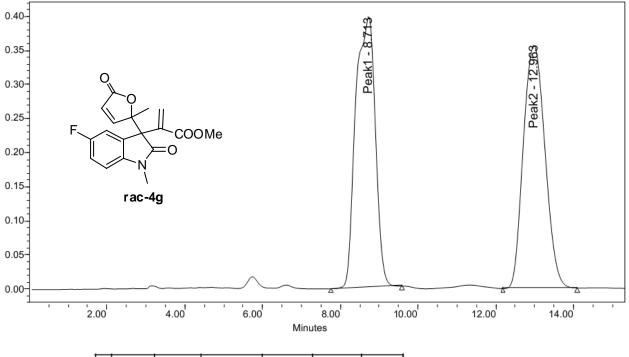
峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	mAU *s	[mAU]	8
1	8.641	VV	0.3893	6.43025e4	2484.79736	49.7821
2	14.252	VV	0.7141	6.48655e4	1373.38098	50.2179


峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	mAU *s	[mAU]	8
	-					
1	8.967	VV	0.4290	4052.00586	140.78642	4.5299
2	2 15.910	VB	0.8874	8.53974e4	1445.16736	95.4701

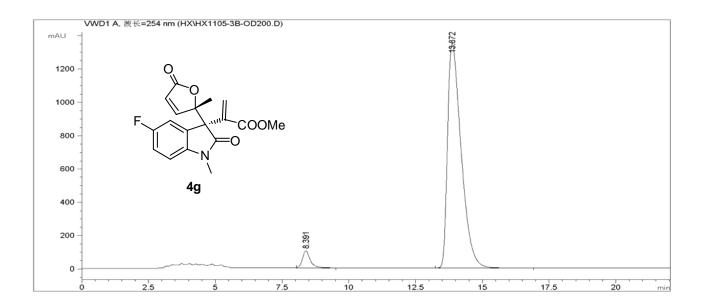



	(min)	(V *sec)	% Area	(V)	Height
1	11.652	10586116	50.34	242936	60.86
2	19.621	10443486	49.66	156225	39.14

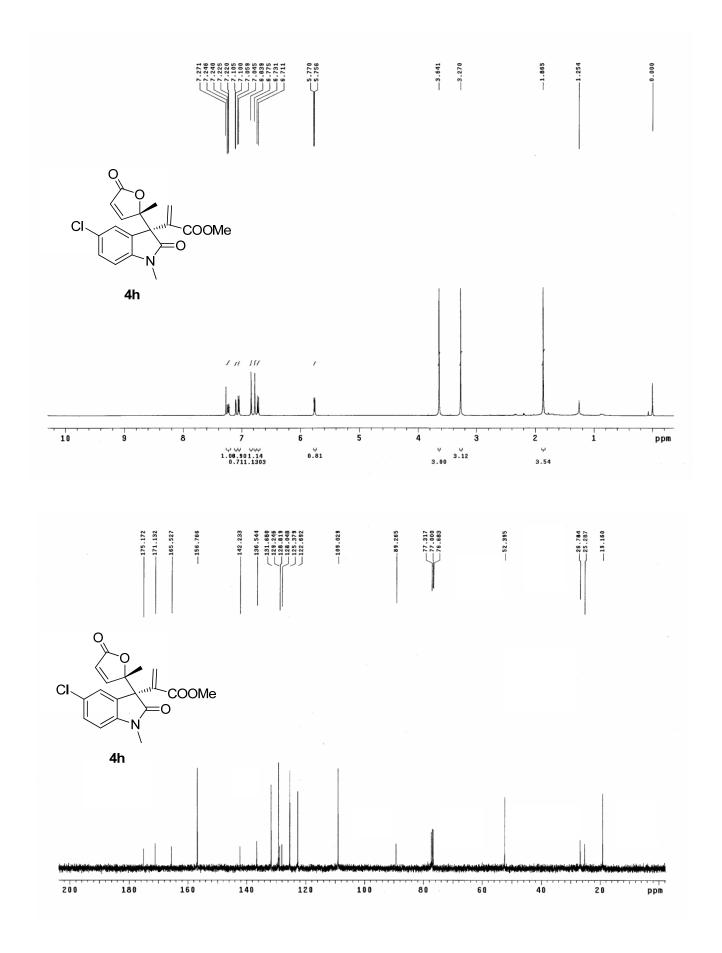


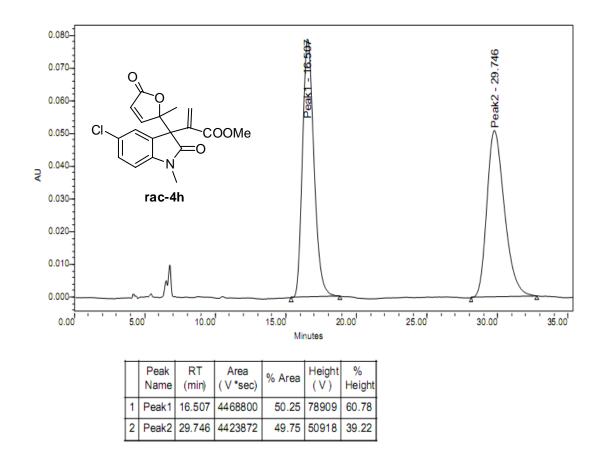


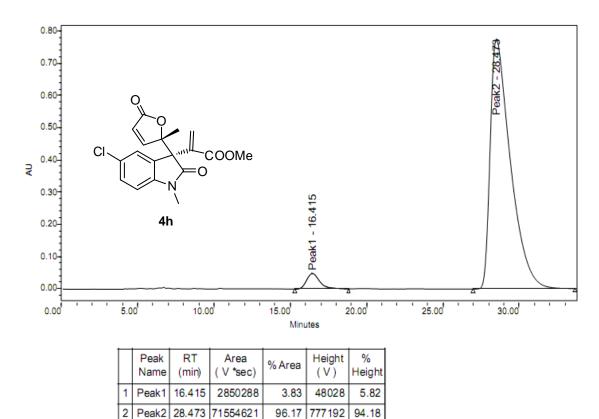
	RT (min)	Area (V *sec)	% Area		% Height
1	6.551	10716013	50.15	839477	67.45
2	12.556	10653569	49.85	405024	32.55

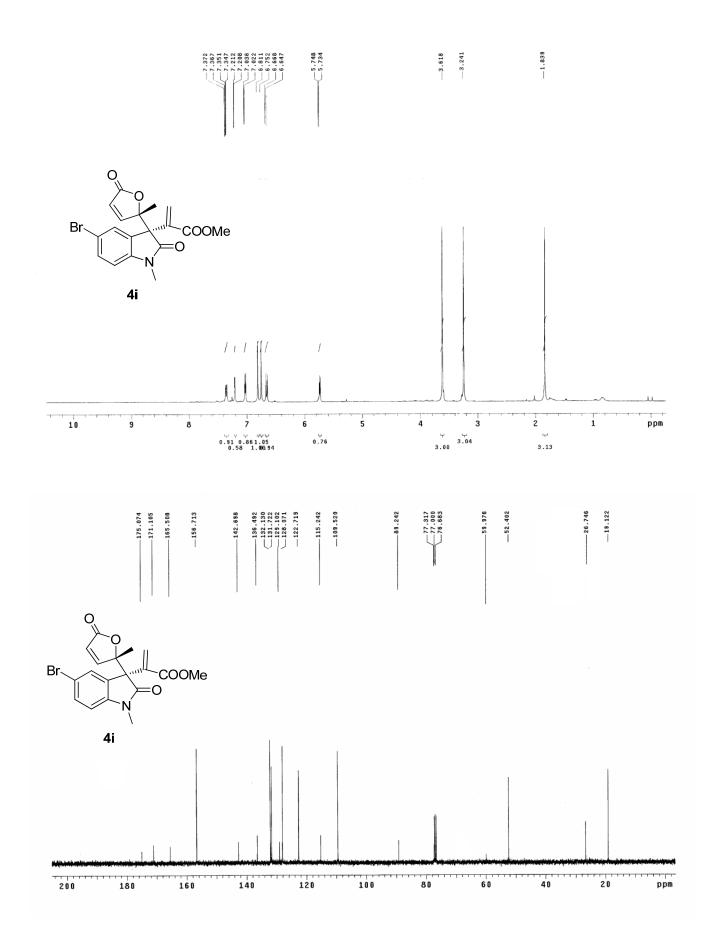


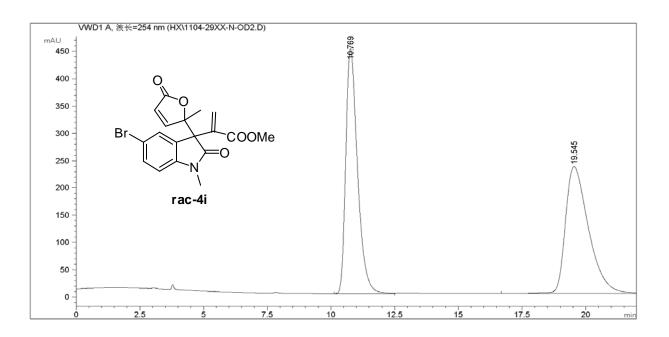
	RI (min)	Area (V*sec)	% Area	Height	% Height
1	6.586	190676	4.15	14529	7.92
2	12.660	4402915	95.85	168924	92.08

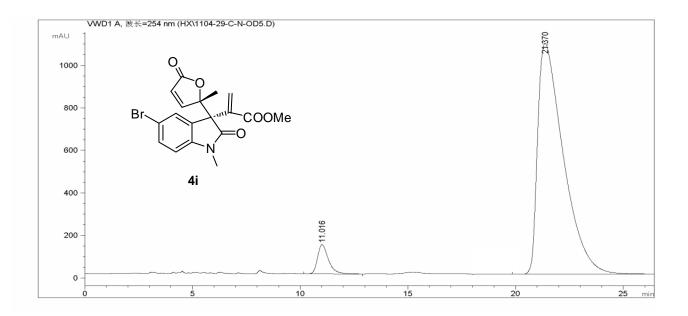


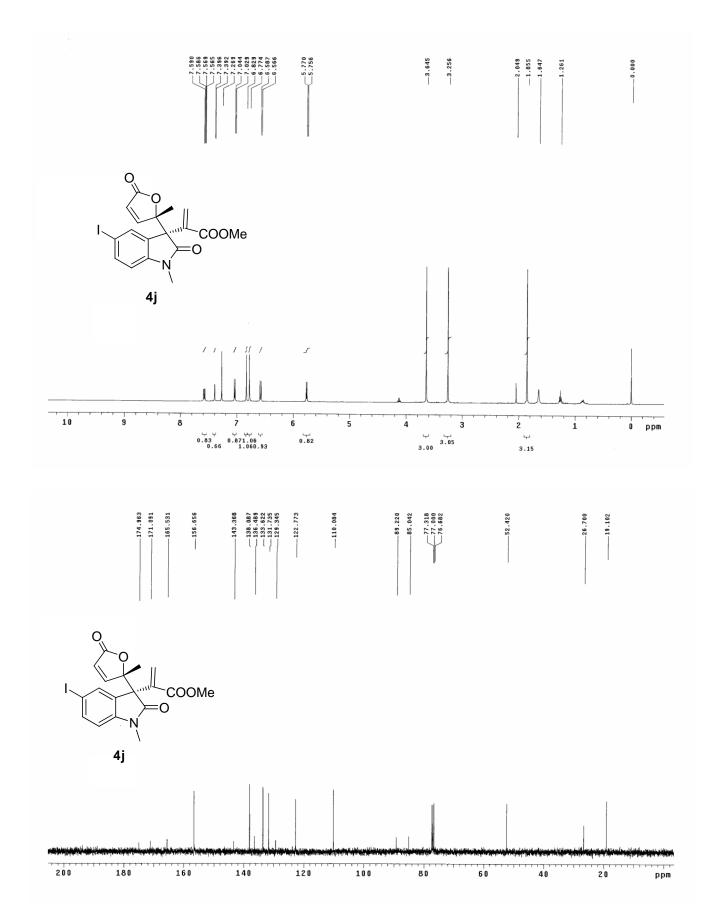


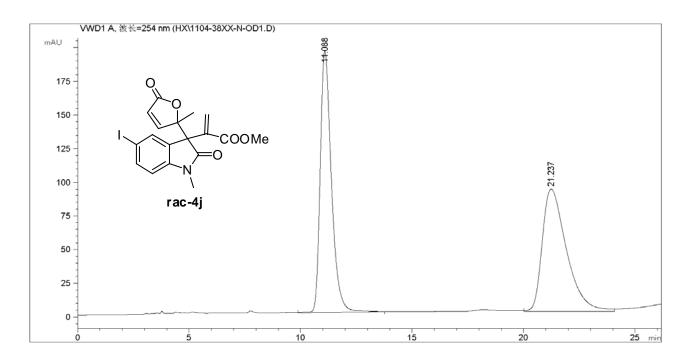

	Peak Name		Area (V*sec)	% Area	Height (V)	% Height
1	Peak1	8.713	13922205	50.15	397190	52.70
2	Peak2	12.963	13838396	49.85	356535	47.30



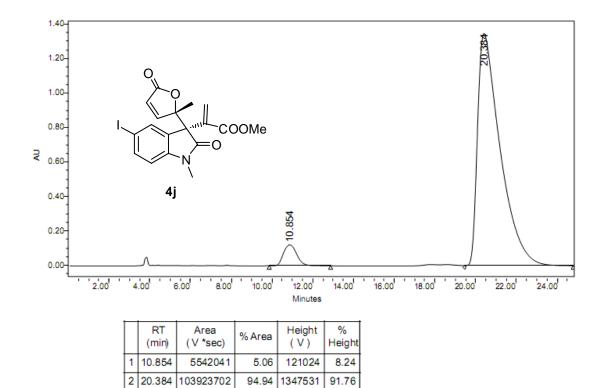

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	mAU *s	[mAU]	8
	-					
1	8.391	VV	0.2943	2045.96777	103.65731	4.1056
2	13.872	VB	0.5414	4.77881e4	1348.97253	95.8944

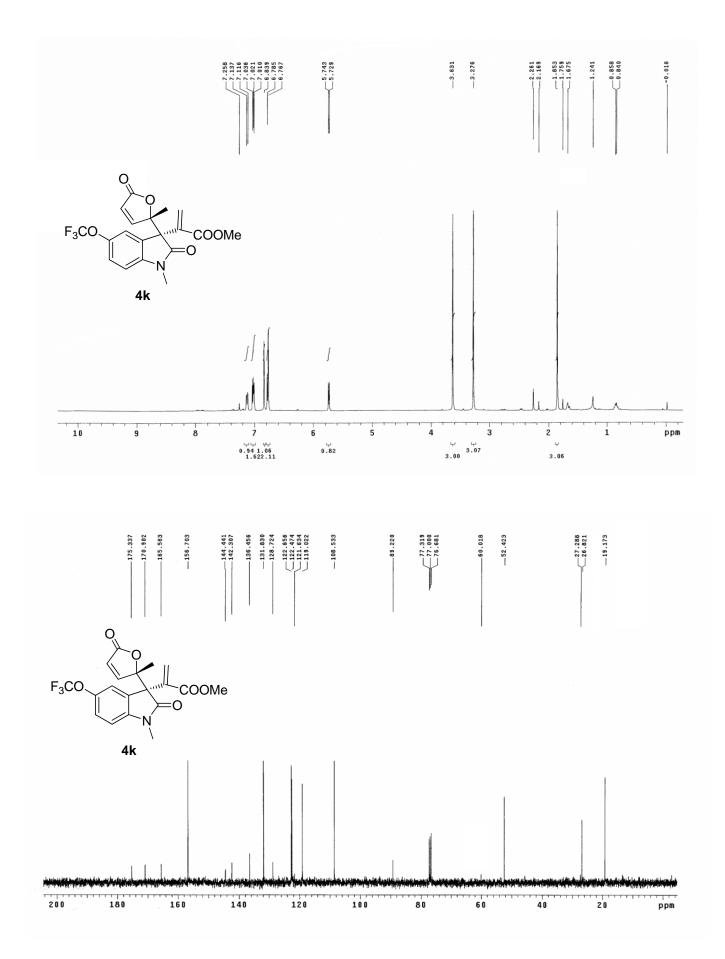


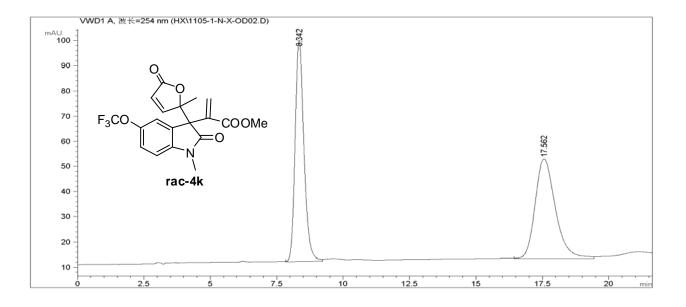


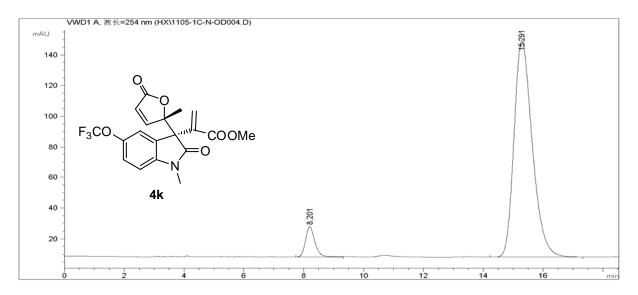


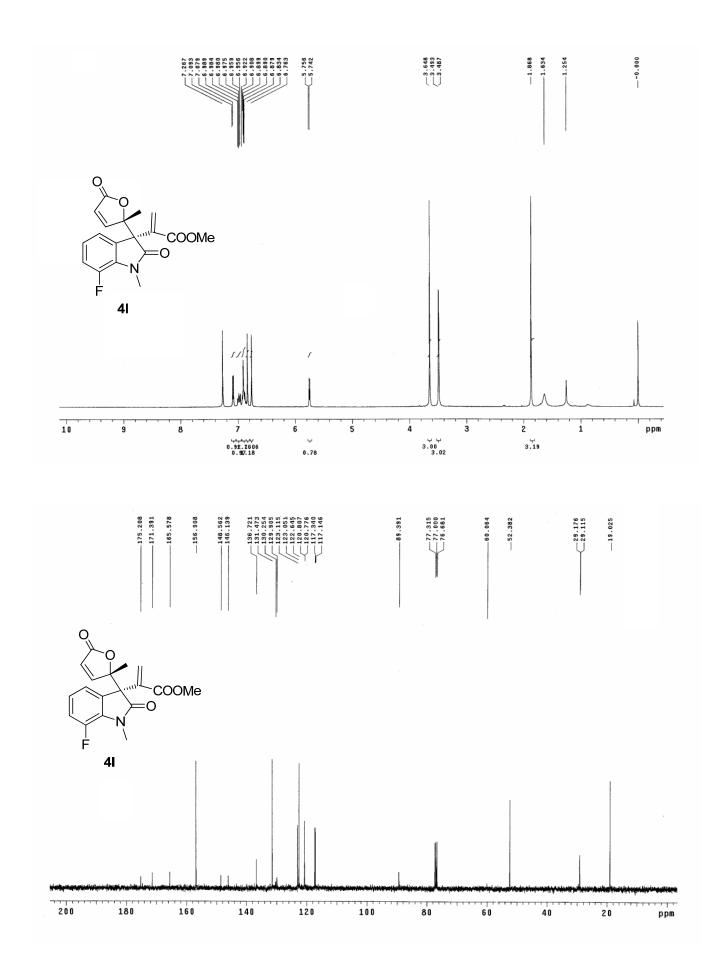
峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	mAU *s	[mAU]	8
	·					
1	10,769	BV	0.4900	1.43696e4	448.80643	49.5355
2	19.545	BBA	0.9543	1.46391e4	233.01639	50.4645

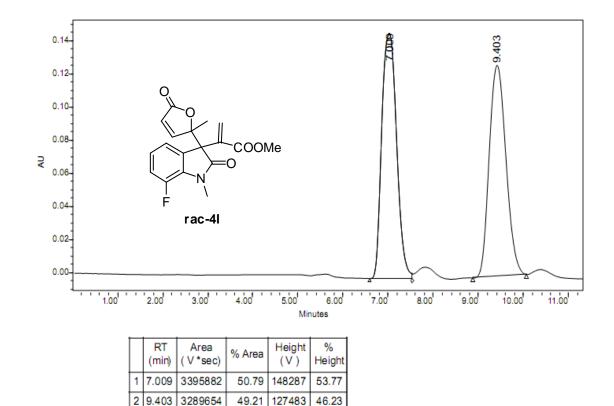


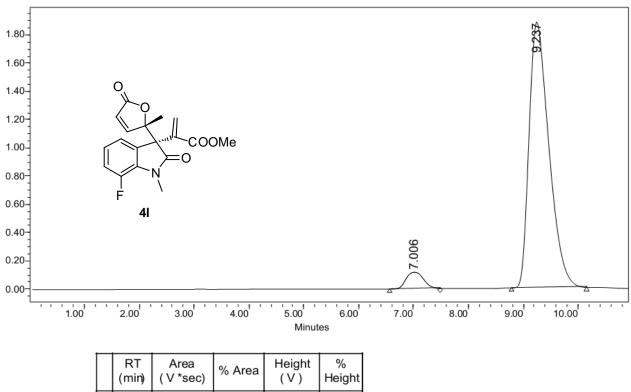

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	mAU *s	[mAU]	8
	-	-				
1	. 11.016	VV	0.5329	4837.74268	137.45110	5.1199
2	21.370	VBA	1.2500	8.96514e4	1084.32117	94.8801

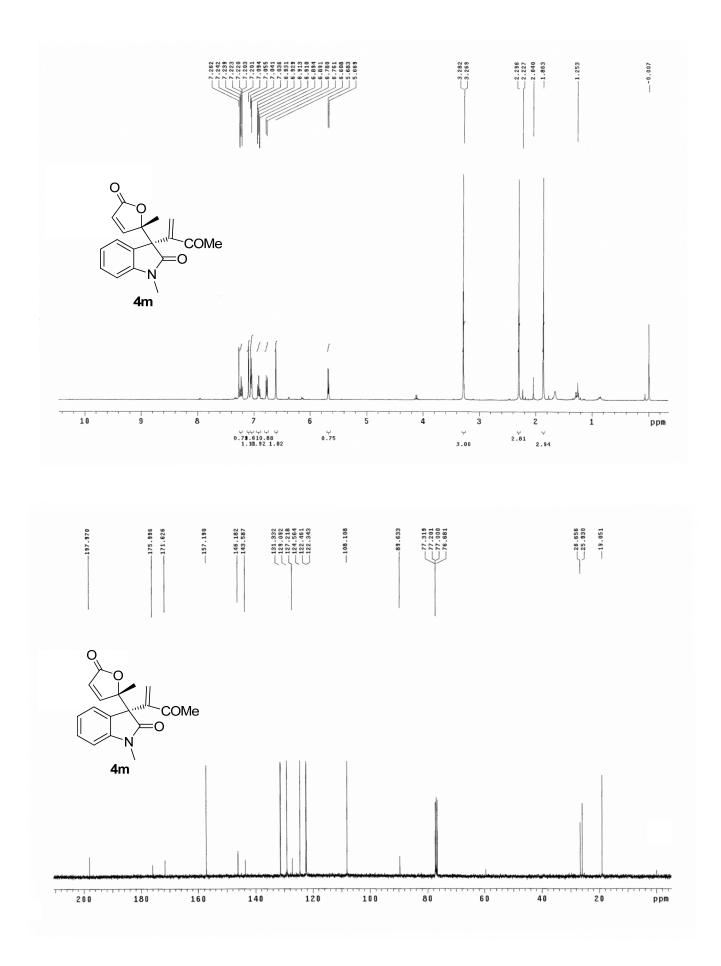


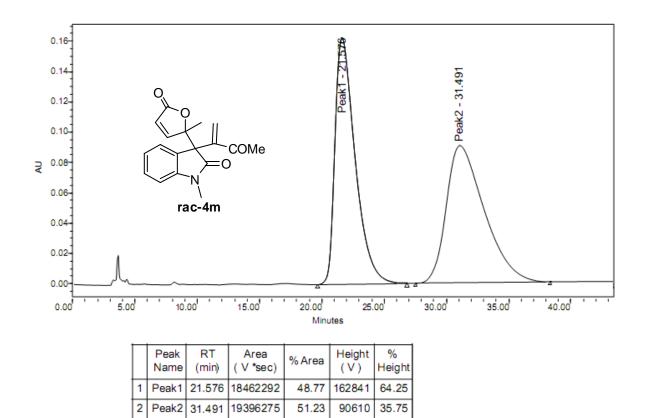

峰	保留时间	类型	峰宽	峰面积	i ng	译高	峰面积
#	[min]		[min]	mAU *s	s [mAU]	8
	·						
1	. 11.088	BB	0.5299	6786.749	951 194	.25641	49.7116
2	21.237	BB	1.1414	6865.480	682 91	.08699	50.2884

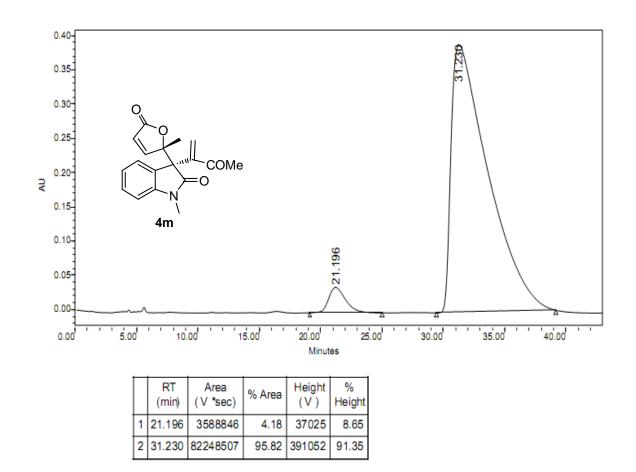


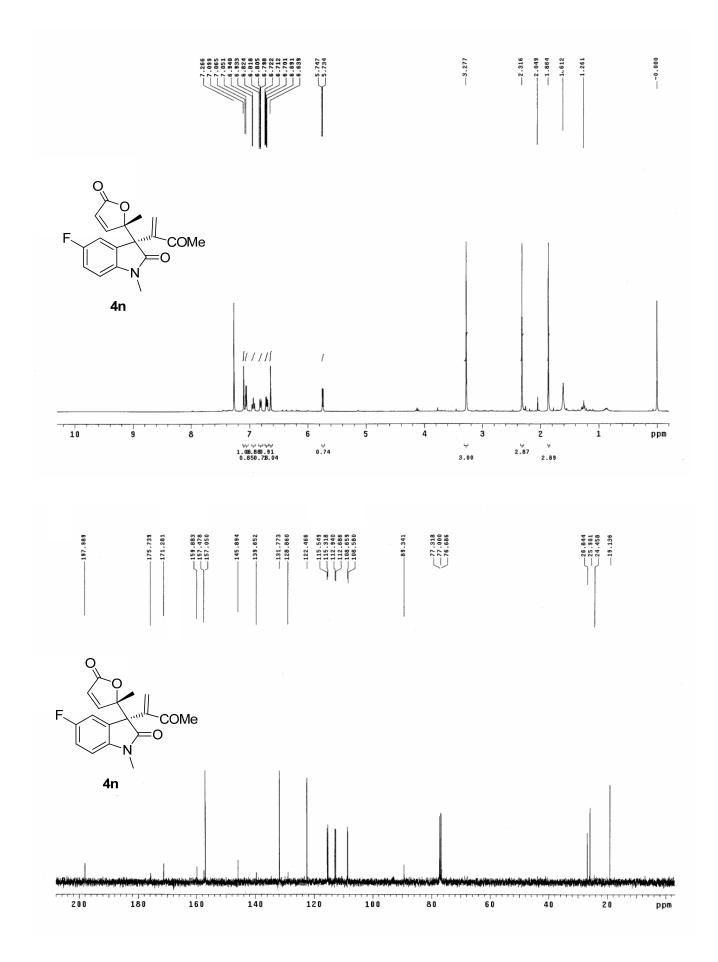


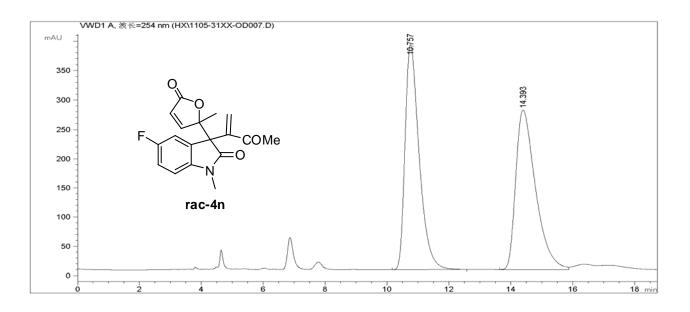

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	mAU *s	[mAU]	8
1	8.342	BV	0.3509	2027.46423	87.82693	49.2600
2	17.562	BB	0.8066	2088.37720	39.65810	50.7400

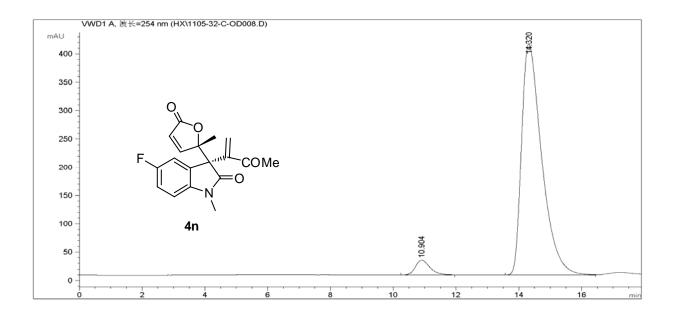

峰	全保留时间 类型 峰宽		峰面积	峰高	峰面积	
#	[min]		[min]	mAU *s	[mAU]	8
	-					
1	8.201	BB	0.3343	433.77298	19.57243	6.7566
2	15.291	VB	0.6583	5986.25537	141.01189	93.2434

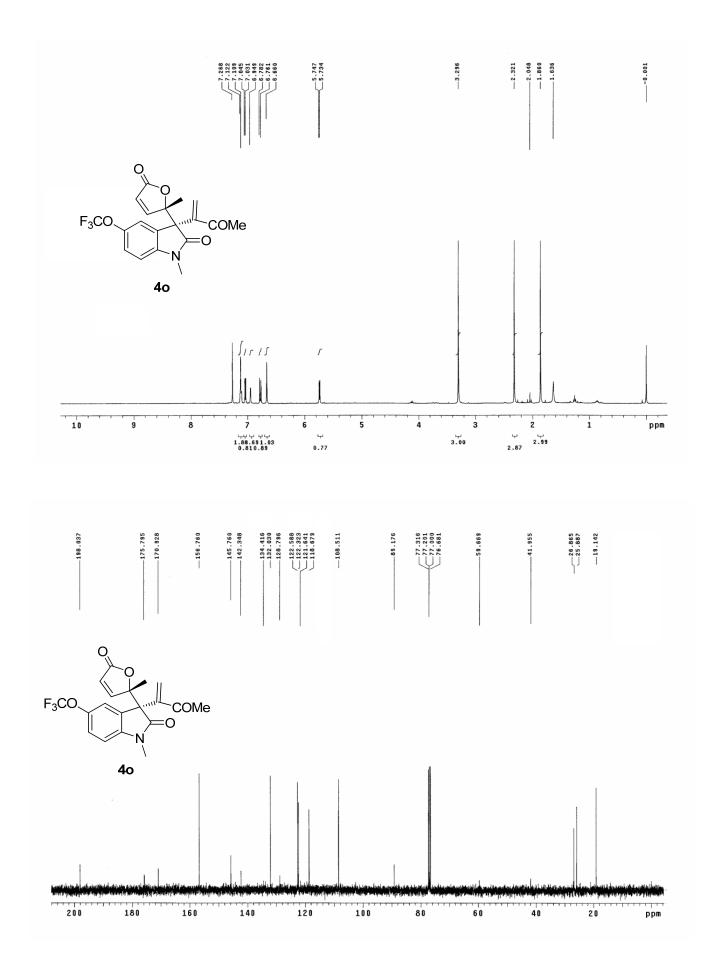


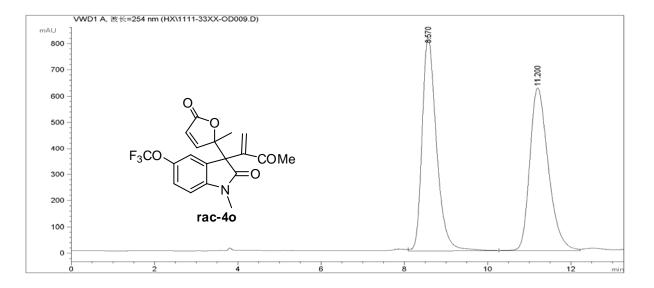




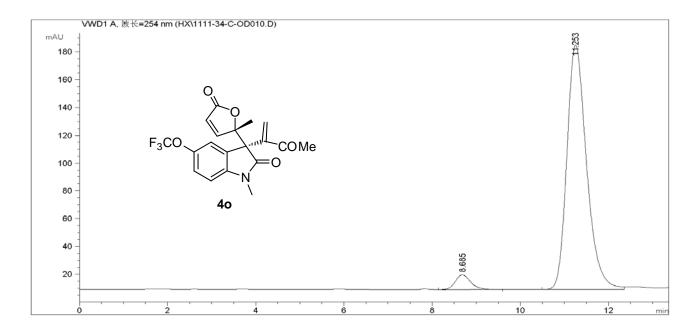

	RT (min)	Area (V*sec)	% Area	Height (V)	% Height	
1	7.006	2613011	5.23	117281	5.86	
2	9.237	47320700	94.77	1884370	94.14	



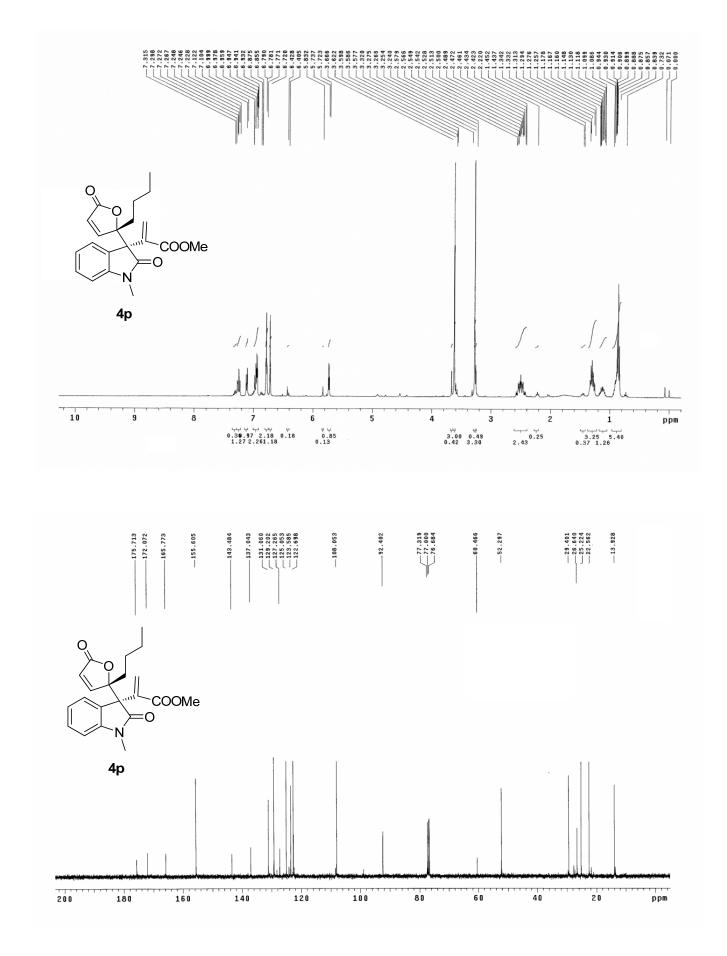


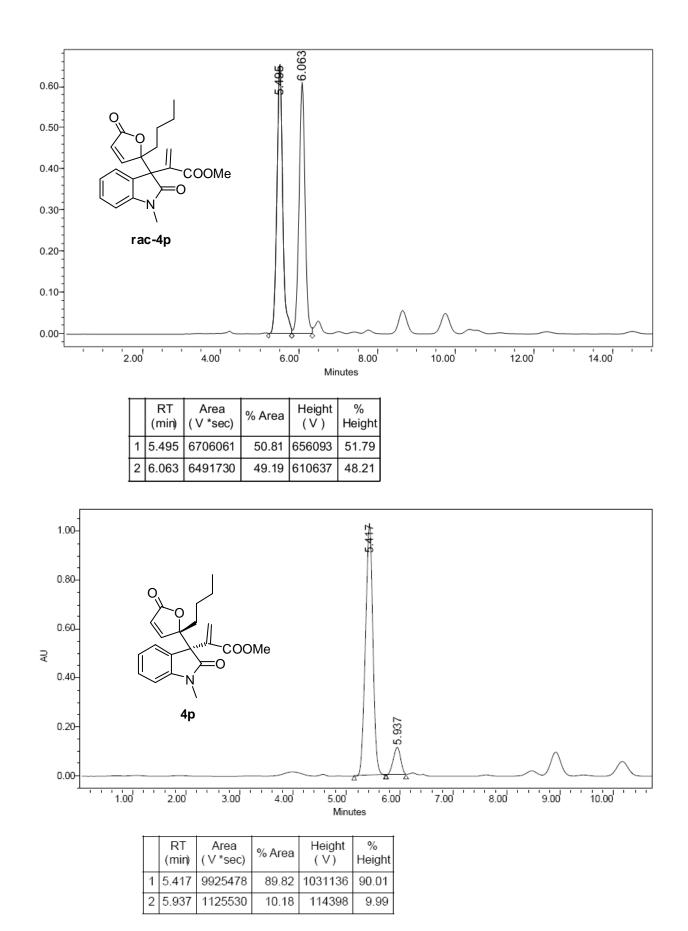


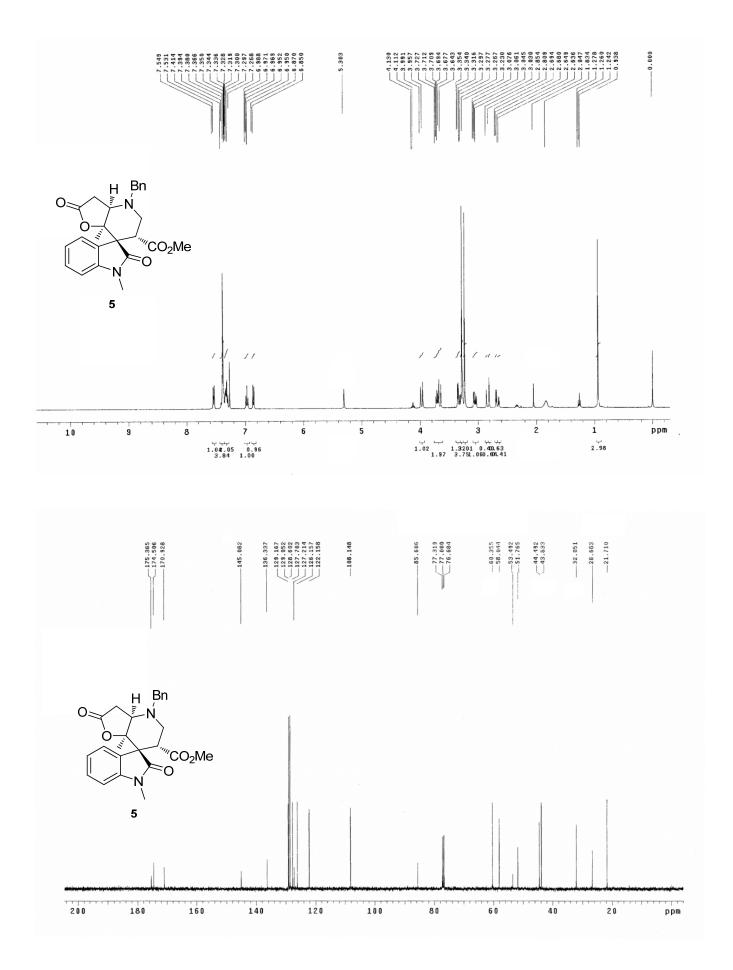
峰	保留时间	类型	峰宽	峰面	积	峰高	5	峰面积	
#	[min]		[min]	mAU	*s	[mAU]	8	
	-	-							
1	10.757	BB	0.4830	1.2247:	2e4	383.7	6743	50.1846	
2	2 14.393	BV	0.6829	1.2157	1e4	272.8	7119	49.8154	

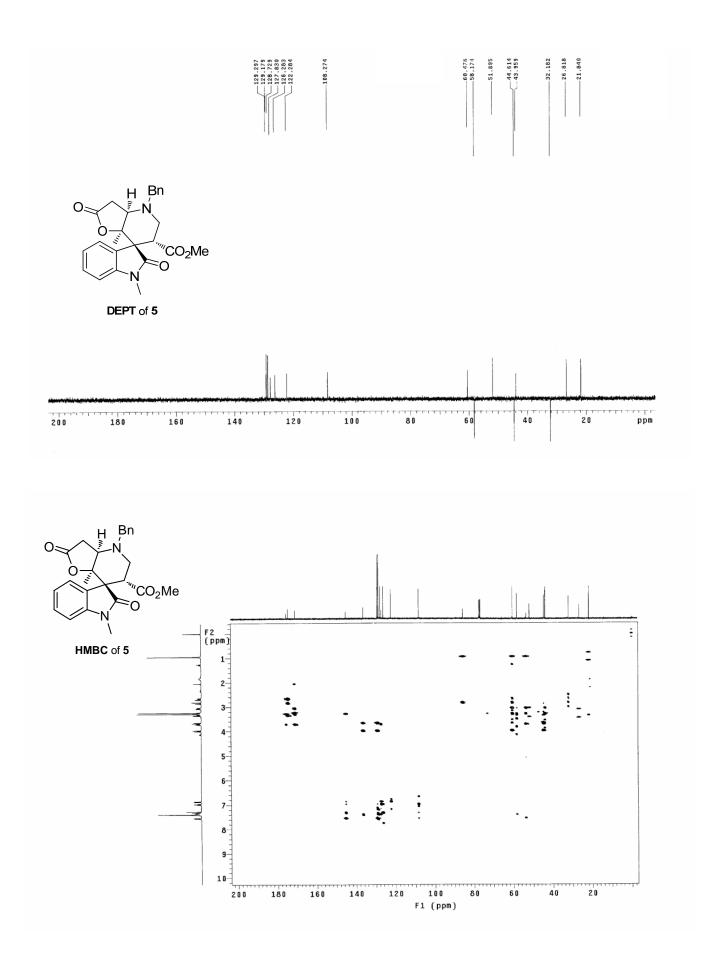


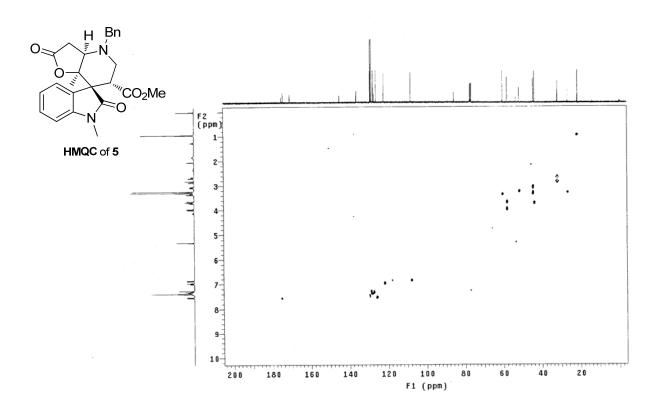
峰	保留时间	类型	峰宽	峰面积		峰高		峰面积
#	[min]		[min]	mAU	*s	[mAU]	8
	·							
1	. 10.904	BB	0.4860	836.0	0775	26.2	9274	4.3890
2	14.320	BB	0.6776	1.8211	6e4	408.2	8864	95.6110

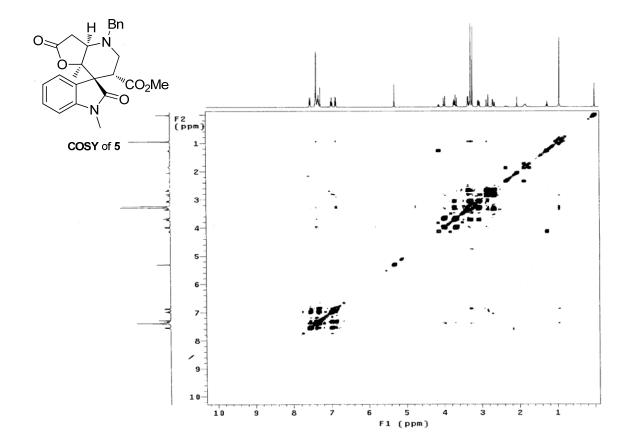


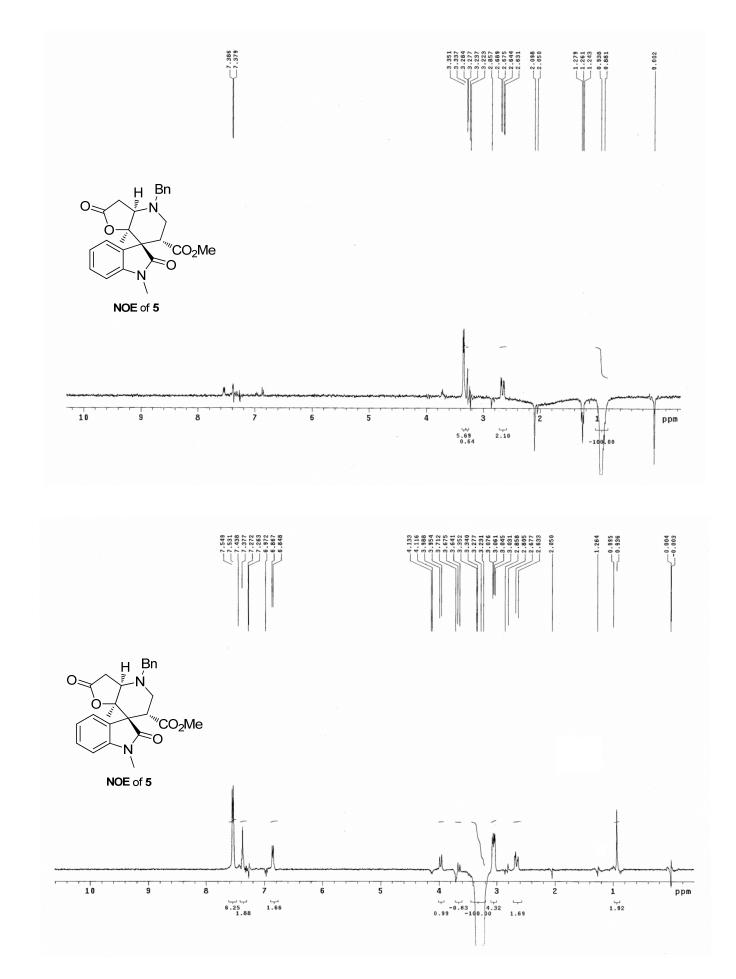


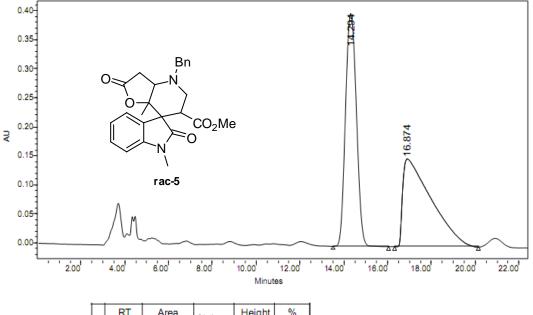

峰 保留时间	类型	峰宽	峰面积	峰高	峰面积
# [min]		[min]	mAU *s	[mAU]	8
				-	
1 8.570	VV	0.3675	1.95446e4	814.02753	50.3948
2 11.200	VV	0.4776	1.92384e4	621.59009	49.6052

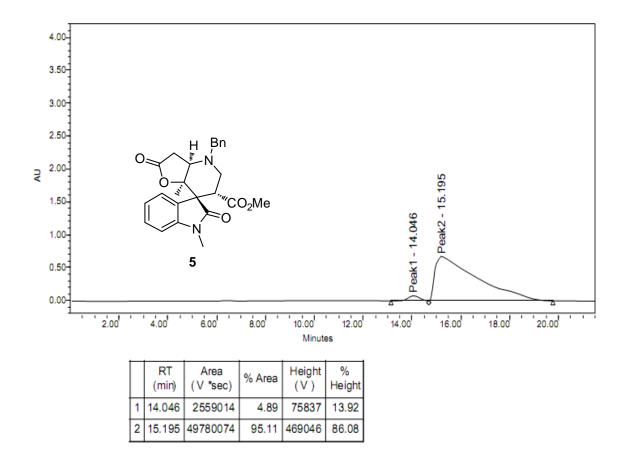


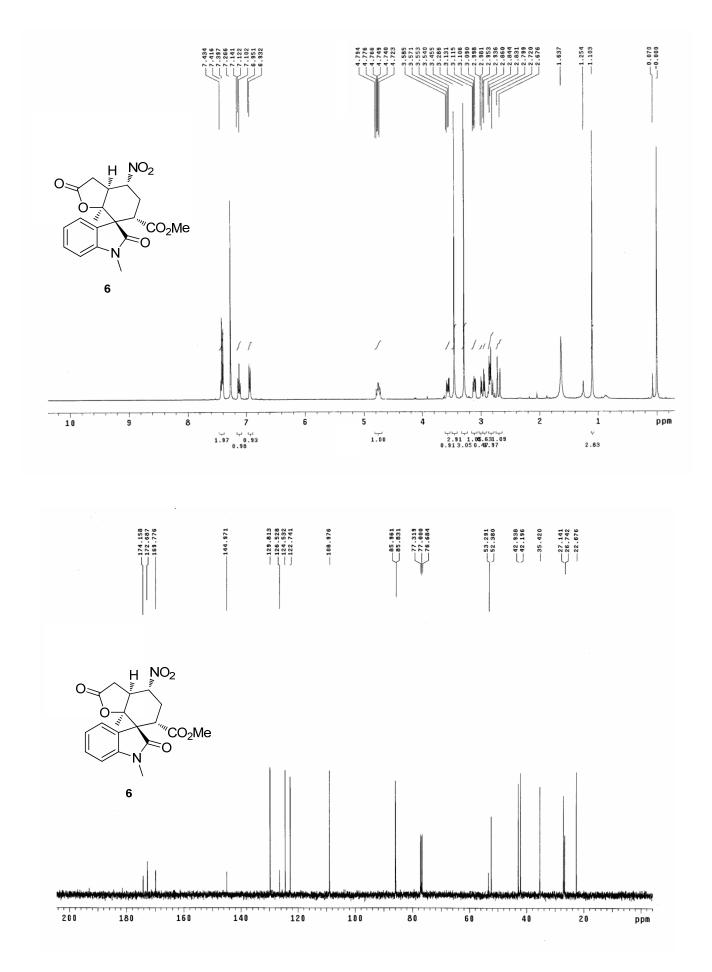

峰	保留时间	类型	峰宽	峰ī	面积	峰	高	峰面积
#	[min]		[min]	mAU	*s	[mAU]	%
	-							
1	8.685	VB	0.3699	257.	98065	10.0	65350	4.5200
2	11.253	BV	0.4723	5449.	52588	175.7	79794	95.4800

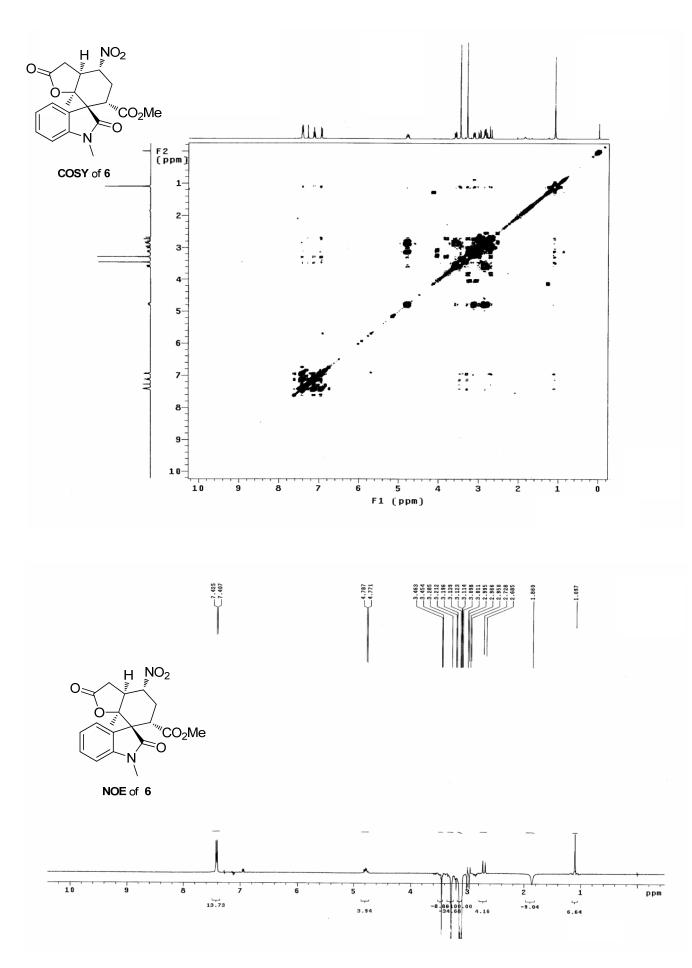


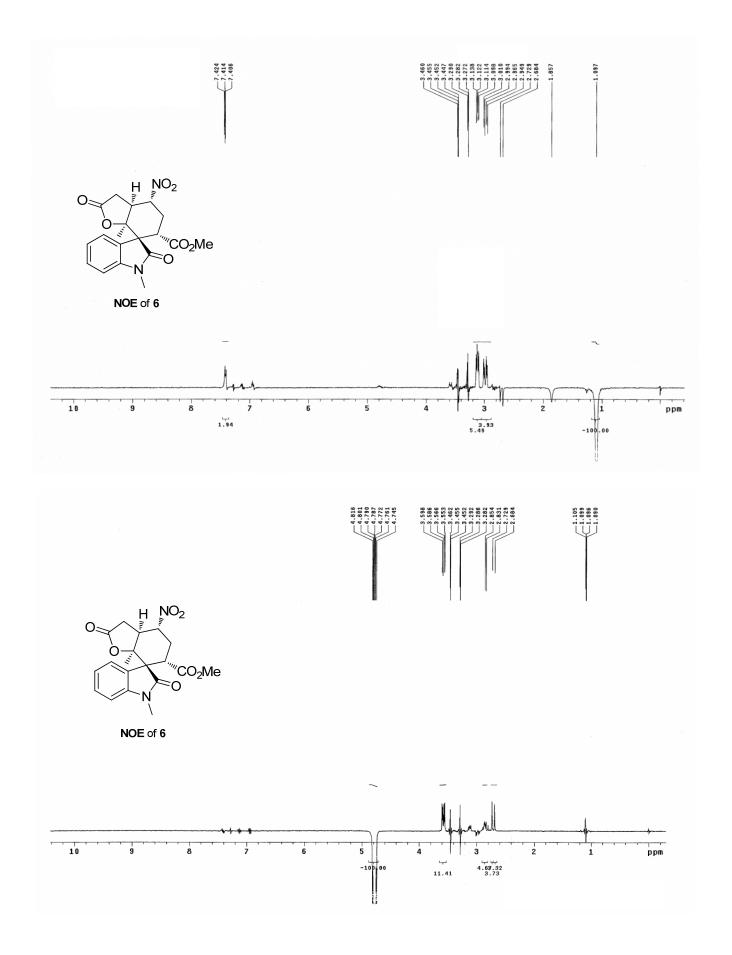


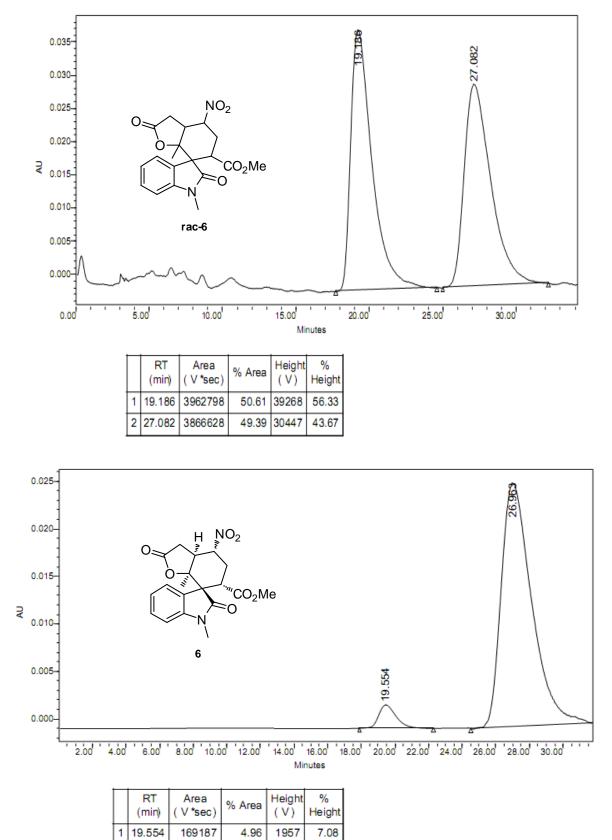




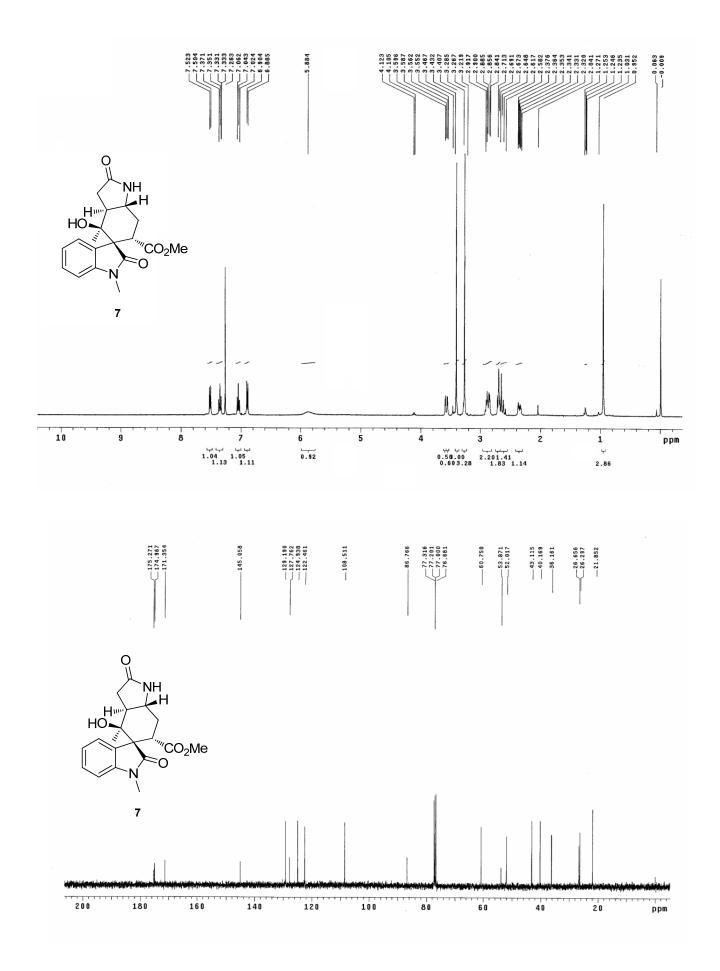

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

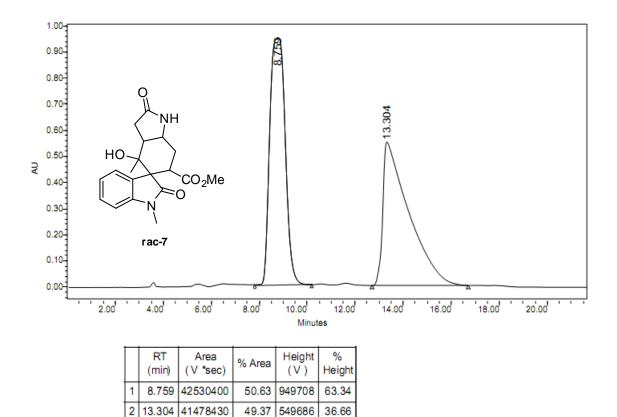


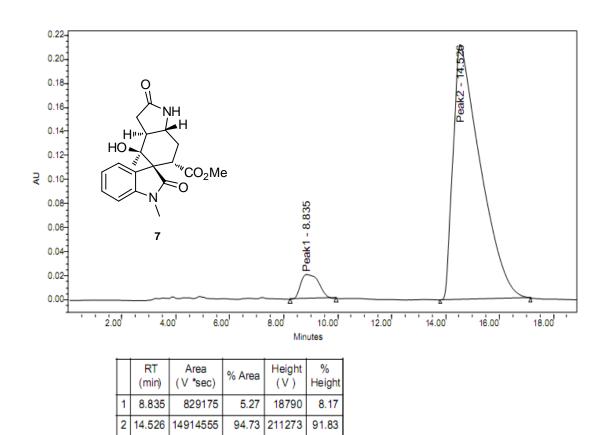

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	14.294	13922676	50.34	401200	72.60
2	16.874	13734645	49.66	151398	27.40



Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012







3242247	95.04	25695	92.92	

2 26.963

