Supporting information

Efficient Synthesis of Isochromanones and Isoquinolines via Yb(OTf)₃-Catalyzed Tandem Oxirane/Aziridine Ring Opening/ Friedel-Crafts Cyclization.

Lai Wei,¹ and Junliang Zhang*^{1,2}

¹Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062 Fax:(+86)-021-6223-5039; e-mail : jlzhang@chem.ecnu.edu.cn

Contents

SI-Table 1	S3
General information	S3
Experimental Procedures and Characterization Data	
General Procedure for Synthesis of Synthesis of Oxiranyl carboxylate (1a-1m)	S4-12
General Procedure for the formation of Aziridines (1n-1r)	S13-16
Cyclizations of oxiranes (1a-1m)	S15-21
Cyclizations of aziridines (1n-1r)	S21-23
General Procedure for Synthesis of 3-methyl-4-oxo-1-phenylisochroman-3- c (3a-3m/3m')	arboxylate S23-30
General Procedure for Synthesis of 3-eythyl-4-oxo-1-phenylisochroman-3-c 4a	arboxylate S30
Synthesis of ethyl 6,7,8-trimethoxy-1-phenyl-4-(trifluoromethylsulfonyloxy)-1H-	
isochromene-3-carboxylate(5a)	S31
Synthesis of isoquinoline-3-carboxylate(6a-6e)	S31-34
References	
Crystal Structure of 4a	
¹ H and ¹³ C NMR Spectra for New Compounds	S36

SI-Table 1. Screening reaction conditions^[a].

[a] Reaction conditions: **1a** (racemic, 0.2 mmol), 10 mol % of catalyst, and 70 mg of activated 4 Å MS in 3 mL of solvent at room temperature. [b] Determined by ¹H NMR (CH₂Br₂ as a standard). [c] 5 mol % of catalyst was added. [d] No 4 Å MS was added.

10

sluggish

CH₂Cl₂

General information

Yb(OTf)₃

 $14^{\lfloor a \rfloor}$

Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. ¹H NMR spectra, ¹³C NMR spectra were recorded on a Bruker 400 MHz spectrometer in chloroform-d₃. All signals are reported in ppm with the internal TMS signal at 0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad signal, coupling constant(s) in Hz, integration). All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring. ClCH₂CH₂Cl (DCE), CH₂Cl₂ (DCM) were freshly distilled from CaH₂; toluene was freshly distilled from sodium metal prior to use. Solid aldehydes were used directly without purification. Lewis-acid purchased from Alfa or Aldrich were used directly. 4 Å molecular sieves purchased from Sinopharm Chemical Reagent Co., Ltd were powdered and dried at 300 °C in muffle furnace for 8-10 hours prior to use. α , β -Unsaturated-1,3-carboxylates¹

and oxiranyl carboxylates **1a-11** and **1a'-1k'**² were prepared according to the literatures. The procedure of methylation of the compounds **2a-21** and ethylation of the intermediate **2a** is same as the reference 3. Ethyl 2-bromo-3-oxo-3-(3,4,5-trimethoxyphenyl)propanoate⁵ and aziridines $(1n-1r)^6$ were also prepared according to literatures.

Experimental Procedures and Characterization Data

Synthesis of substrates 1.

General Procedure for expoxidation of α -arylidene β -keto esters.

In a flame dried flask, a solution of the α -arylidene β -keto ester in DCM was slowly added to a solution of *t*-BuOOH (2 equiv, 65% aqueous), DBU (1.2 equiv.) in DCM at 0 ° under N₂ atmosphere. And then the reaction temperature was then allowed to room temperature. After the reaction was complete which was determined by TLC analysis, the reaction mixture was treated with saturated aqueous solution of Na₂S₂O₃•5H₂O (5 mL) and stirred for another 5 mins. The reaction mixtire was extracted three times with DCM. The combined organic phase was washed with brine and then dried with Na₂SO₄. After filteration and evaporated, the residue was purified by column chromatography on silica gel.

1. Ethyl 3-phenyl-2-(3,4,5-trimethoxybenzoyl)oxirane-2-carboxylate(1a/1a').

Yield 49%, dr = 4.6 : 1.

The major isomer, **1a** as white solid , m.p. 78-80 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.2 Hz, 2 H), 7.45- 7.30 (m, 5 H), 4.61 (s, 1 H), 4.10-3.90 (m, 11 H), 0.91 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.8, 164.8, 153.1, 143.4, 131.8, 129.0, 128.7, 128.0, 126.4, 106.5, 67.7, 62.0, 61.7, 60.8, 56.1, 13.6. MS (EI): m/z (%) = 386 (M⁺, 14.64), 195 (100). HRMS calcd for C₂₁H₂₂O₇: 386.1366, found: 386.1364. IR (neat) *v*/cm⁻¹ 2975, 2909, 2841, 2657, 2251, 1957, 1744, 1679, 1582, 1503, 1452, 1246, 998, 825, 700, 614.

The minor isomer, **1a'** as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.21 (m, 5 H), 7.16 (s, 2 H), 4.69 (s, 1 H), 4.29 (q, J = 7.2 Hz, 2 H), 3.92 (s, 3 H), 3.87 (s, 6 H), 1.24 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.5, 166.5, 153.0, 143.4, 132.3, 130.4, 129.1, 128.5, 126.3, 106.4, 65.9, 63.1, 62.9, 60.9, 56.2, 13.9. MS (EI): m/z (%) = 386 (M⁺, 38.54), 195 (100). HRMS calcd for C₂₁H₂₂O₇: 386.1366, found: 386.1368. IR (neat) *v*/cm⁻¹ 2998, 2942, 2839, 2255, 1746, 1683, 1584, 1502, 1458, 1339, 1249, 1123, 1000, 858, 700, 612.

2. tert-butyl 3-phenyl-2-(3,4,5-trimethoxybenzoyl)oxirane-2-carboxylate (1b/1b').

Yield 55%, dr = 1 : 1,

1b as white solid, m.p. 99-101 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 6.8 Hz, 2 H), 7.45-7.30 (m, 5 H), 4.62 (s, 1 H), 3.95-3.94 (m, 9 H), 1.12 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃) δ 189.2, 163.9, 153.0, 143.2, 132.1, 129.3, 128.5, 127.9, 126.5, 106.4, 83.5, 67.4, 61.3, 60.8, 56.1, 27.3. MS (EI): m/z (%) = 414 (M⁺, 9.07), 195 (100). HRMS calcd for C₂₃H₂₆O₇: 414.1679, found: 414.1681. IR (neat) *v*/cm⁻¹ 3037, 2939, 2841, 2655, 1958, 1747, 1686, 1583, 1504, 1460, 1340, 1251, 1127, 996, 861, 714, 613.

1b' as white solid, m.p. 61-64 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.24 (m, 5 H), 7.10 (s, 2 H), 4.67 (s, 1 H), 3.90 (s, 3 H), 3.86 (s, 6 H), 1.39 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.6, 165.1, 152.7, 142.8, 132.2, 130.4, 128.7, 128.2, 126.0, 105.7, 84.1, 66.4, 62.5, 60.6, 55.9, 27.4. MS (EI): m/z (%) = 414 (M⁺, 4.63), 57 (100). HRMS calcd for C₂₃H₂₆O₇: 414.1679, found: 414.1680. IR (neat) *v*/cm⁻¹ 2982, 2939, 2842, 2639, 1972, 1729, 1683,1585, 1502, 1458, 1340, 1236, 1127, 995, 862, 711.

3. Ethyl 3-(4-cyanophenyl)-2-(3,4,5-trimethoxybenzoyl)oxirane-2-carboxylate (1c/1c').

Yield 43%, dr = 3.9:1,

1c as white solid, m.p. 115-118 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.0 Hz, 2 H), 7.66 (d, J = 8.0 Hz, 2H), 7.36 (s, 2 H), 4.66 (s, 1 H), 4.06-3.91 (m, 11 H), 0.93 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 187.9, 164.3, 153.1, 143.7, 137.1, 131.8, 128.6, 127.4, 118.1, 112.6, 106.5, 67.6, 62.3, 60.8, 60.8, 56.1, 13.6. MS (EI): m/z (%) = 411 (M⁺, 12.21), 195 (100). HRMS calcd for C₂₂H₂₁NO₇: 411.1318, found: 400.1319. IR (neat) ν/cm^{-1} 3097, 2925, 2853, 2649, 2231, 1949, 1745, 1685, 1582, 1460, 1414, 1343, 1250, 1124, 1000, 806, 771.

1c' as yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.0 Hz, 2 H), 7.33 (d, J = 8.0 Hz, 2 H), 7.17 (s, 2 H), 4.70 (s, 1 H), 4.31 (q, J = 7.2 Hz, 2 H), 3.94 (s, 3 H), 3.89 (s, 6 H), 1.25 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 187.7, 166.0, 153.2, 144.0, 137.8, 132.2, 129.8, 127.1, 118.2, 112.9, 106.5, 65.9, 63.3, 61.9, 61.0, 56.3, 13.9. MS (EI): m/z (%) = 411 (M⁺, 1.70), 84 (100). HRMS calcd for C₂₂H₂₁NO₇: 411.1318, found: 400.1317. IR (neat) ν /cm⁻¹ 3097, 2941, 2840, 2651, 2230, 1939, 1747, 1684, 1583, 1503, 1461, 1416, 1340, 1251, 999, 855, 730.

4. Ethyl 2-(3,4,5-trimethoxybenzoyl)-3-(4-fluorophenyl)oxirane-2-carboxylate (1d/1d').

Yield 55%, dr = 4.3 : 1,

1d as white solid, m.p. 100-103 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.50 (m, 2 H), 7.38 (s, 2 H), 7.08 (t, J = 8.0 Hz, 2 H), 4.59 (s, 1 H), 4.04-3.99 (m, 2 H), 3.95 (s, 9 H), 0.94 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.6, 162.9 (d, $J_{C,F} = 246$ Hz), 161.7, 153.2, 143.6, 129.0, 128.4 (d, $J_{C,F} = 8$ Hz), 127.7, 115.2 (d, $J_{C,F} = 22$ Hz), 106.6, 67.7, 62.2, 61.2, 60.9, 56.2, 13.7. ¹⁹F NMR (376 MHz, CDCl₃): -112.4 ppm. MS (EI): m/z (%) = 404 (M⁺, 22.51), 195 (100). HRMS calcd for C₂₁H₂₁O₇F: 404.1271, found: 404.1275. IR (neat) ν /cm⁻¹ 2986, 2841, 2256, 1746, 1680, 1585, 1505, 1460, 1419, 1332, 1235, 998, 829, 698, 629.

1d' as yellow solid, m.p. 73-75 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.17 (m, 4 H), 6.95 (t, J = 7.6 Hz, 2 H), 4.67 (s, 1 H), 4.29 (q, J = 6.8 Hz, 2 H), 3.93 (s, 3 H), 3.88 (s, 6 H), 1.24 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.3, 166.4, 163.0 (d, $J_{C,F} = 247$

Hz), 161.8, 153.0, 143.6, 130.2, 128.2, 128.1, 115.7, 115.6 (d, $J_{C,F} = 21$), 106.4, 65.9, 62.9, 62.4, 60.9, 56.3, 13.9. ¹⁹F NMR (376 MHz, CDCl₃): -111.9 ppm. MS (EI): m/z (%) = 404 (M⁺, 7.91), 107 (100). HRMS calcd for C₂₁H₂₁O₇F: 404.1271, found: 404.1270. IR (neat) ν /cm⁻¹ 3080, 2989, 2942, 2840, 2258, 1742, 1684, 1584, 1509, 1464, 1417, 1340, 1226, 1000, 841, 715, 676.

5. Ethyl 3-(4-chlorophenyl)-2-(3,4,5-dimethoxybenzoyl)oxirane-2-carboxylate (1e/1e').

Yield 43%, dr = 3.1 :1

1e as white solid, m.p. 85-87 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.0 Hz, 2 H), 7.40-7.30 (m, 4 H), 4.59 (s, 2 H), 4.08-3.98 (m, 2 H), 3.95 (s, 3 H), 3.93 (s, 6 H), 0.94 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.3, 164.5, 153.0, 143.4, 134.6, 130.3, 128.7, 128.2, 127.9, 106.4, 67.5, 62.1, 61.0, 60.7, 56.0, 13.5. MS (EI): m/z (%) = 422 (M+2, 4.85), 420 (M⁺, 15.28), 195 (100). HRMS calcd for C₂₁H₂₁O₇Cl: 420.0976, found: 420.0976. IR (neat) ν /cm⁻¹ 3089, 3000, 2941, 2838, 2662, 1901, 1745, 1678, 1582, 1504, 1458, 1416, 1235, 1003, 825, 742, 701.

1e' as yellow solid, m.p. 96-97 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 7.6 Hz, 2H), 7.20-7.10 (m, 4 H), 4.66 (s, 1 H), 4.29 (q, *J* = 7.2 Hz, 2 H), 3.93 (s, 3 H), 3.88 (s, 6 H), 1.24 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.2, 166.3, 153.0, 143.5, 135.0, 130.9, 130.1, 128.7, 127.6, 106.3, 65.8, 63.0, 62.3, 60.9, 56.2, 13.9. MS (EI): m/z (%) = 422 (M+2, 4.62), 420 (M⁺, 12.84), 89 (100). HRMS calcd for C₂₁H₂₁O₇Cl: 420.0976, found: 420.0979. IR (neat) v/cm-1 3095, 2999, 2980, 2937, 2838, 2838, 2656, 1934, 1741, 1680, 1586, 1503, 1464, 1420, 1250, 1131, 1006, 851, 710.

6. Ethyl 3-(4-bromophenyl)-2-(3,4,5-trimethoxybenzoyl)oxirane-2-carboxylate (1f/1f').

Yield 73%, dr = 2.8 : 1,

If as white solid, m.p. 93-94 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 6.4 Hz, 2 H), 7.42-7.34 (m, 4 H), 4.55 (s, 1 H), 4.10-3.88 (m, 11 H), 0.95 (m, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.6, 164.7, 153.2, 143.7, 131.4, 131.0, 128.9, 128.3, 123.0, 106.7, 67.7, 62.3, 61.3, 61.0, 56.3, 13.8. MS (EI): m/z (%) = 466 (M+2, 9.13), 464 (M⁺, 9.69), 195 (100). HRMS calcd for C₂₁H₂₁O₇Br: 464.0471, found: 464.0471. IR (neat) v/cm-1 3090,2941, 2843, 2656, 1915, 1752, 1691, 1582, 1503, 1446, 1418, 1335, 1237, 1124, 1011, 855, 765, 702.

1f^{*} as white solid, m.p. 132-134 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.0 Hz, 2 H), 7.17 (s, 2 H), 7.08 (d, J = 8.0 Hz, 2 H), 4.64 (s, 1 H), 4.29 (q, J = 7.2 Hz, 2 H), 3.93 (s, 3 H), 3.88 (s, 6 H), 1.24 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.2, 166.3, 153.1, 143.7, 131.7, 131.4, 130.1, 127.9, 123.2, 106.4, 65.8, 63.0, 62.4, 60.9, 56.3, 13.9. MS (EI): m/z (%) = 466 (M+2, 6.10), 464 (M⁺, 7.13), 195 (100). HRMS calcd for C₂₁H₂₁O₇Br: 464.0471, found: 464.0472. IR (neat) *v*/cm-1 3093, 2938, 2839, 2661, 1934, 1739, 1678, 1586, 1503, 1463, 1419, 1342, 1252, 1131, 1010, 848, 764, 709.

7. Ethyl 2-(3,4,5-trimethoxybenzoyl)-3-p-tolyloxirane-2-carboxylate (1g/1g').

Yield 32%, dr = 7.5 : 1,

1g as white solid, m.p. 99-101 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.34 (m, 4 H), 7.18-7.17 (d, J = 7.6 Hz, 2 H), 4.56 (s, 1 H), 4.05- 3.96 (m, 2 H), 3.95 (s, 3H), 3.94 (s, 9 H), 2.36 (s, 3 H), 0.94 (t, J = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 189.1, 165.0, 153.2, 143.6, 138.7, 129.2, 129.0, 128.9, 128.4 , 126.5, 106.8, 67.9, 62.1, 62.0, 61.0, 56.3, 21.2, 13.7. MS (EI): m/z (%) = 400 (M⁺, 29.92), 43 (100). HRMS calcd for C₂₂H₂₄O₇: 400.1522, found: 400.1524. IR (neat) ν /cm⁻¹ 3103, 3014, 2944, 2841, 2662, 1988, 1722, 1675, 1580, 1504, 1457, 1416, 1332, 1233, 1125, 1000, 861, 773.

1g' as white solid, m.p. 92-95 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.17 (s, 2 H), 7.09 (d, J = 6.8 Hz, 2 H), 7.05 (d, J = 6.8 Hz, 2H), 4.67 (s, 1 H), 4.28 (q, J = 6.8 Hz, 2 H), 3.92 (s, 3 H), 3.87 (s, 6 H), 2.26 (s, 3 H), 1.23 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.6, 166.5, 152.9, 143.2, 138.9, 130.3, 129.1, 129.1, 126.1, 106.2, 65.8, 63.1, 62.7, 60.8, 56.1,

21.1, 13.8. MS (EI): m/z (%) = 400 (M⁺, 0.57), 195 (100). HRMS calcd for C₂₂H₂₄O₇: 400.1522, found: 400.1523. IR (neat) ν /cm⁻¹ 2979, 2841, 2647, 1937, 1741, 1683, 1587, 1503, 1464, 1419, 1340, 1248, 1007, 830, 707.

8. Ethyl 2-(3,4,5-trimethoxybenzoyl)-3-(4-methoxyphenyl)oxirane-2-carboxylate (1h/1h').

Yield 52%, dr = 2.3 : 1,

1h as white solid, m.p. 112-114 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.6 Hz, 2 H), 7.39 (s, 2 H), 6.90 (d, J = 7.6 Hz, 2 H), 4.54 (s, 1 H), 4.04-4.00 (m, 2 H), 3.95 (s, 3 H), 3.94 (s, 6 H), 3.82 (s, 3 H), 0.96 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 189.1, 165.0, 160.1, 153.2, 143.5, 129.2, 127.9, 123.9, 113.7, 106.7, 68.0, 62.1, 61.9, 61.0, 56.3, 55.3, 13.8. MS (EI): m/z (%) = 416 (M⁺, 11.79), 195 (100). HRMS calcd for C₂₂H₂₄O₈: 416.1471, found: 416.1470. IR (neat) ν/cm^{-1} 3101, 3035, 2941, 2839, 2669, 1721, 1672, 1611, 1580, 1503, 1414, 1336, 1246, 1129, 996, 834, 758, 664.

1h' as yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.16 (s, 2 H), 7.12 (d, J = 8.0 Hz, 2 H), 6.76 (d, J = 8.0 Hz, 2 H), 4.64 (s, 1H), 4.26 (q, J = 7.2 Hz, 2 H), 3.92 (s, 3H), 3.87 (s, 6 H), 3.74 (s, 3 H), 1.23 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.8, 166.6, 160.1, 153.0, 143.4, 130.4, 127.6, 124.1, 114.0, 106.4, 66.0, 63.1, 62.8, 60.9, 56.2, 55.2, 13.9. MS (EI): m/z (%) = 416 (M⁺, 7.49), 195 (100). HRMS calcd for C₂₂H₂₄O₈: 416.1471, found: 416.1475. IR (neat) ν /cm⁻¹ 3076, 2940, 2840, 2647, 1996, 1741, 1685, 1582, 1506, 1461, 1416, 1332, 1124, 1001, 833, 763.

9. Ethyl 3-(naphthalen-1-yl)-2-(3,4,5-trimethoxybenzoyl)oxirane-2-carboxylate (1i/1i').

Yield 61%, dr= 3.3 :1,

1i as white solid, m.p. 106-108 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.4 Hz, 1 H), 7.85 (t, *J* = 9.6 Hz, 2 H), 7.69 (d, *J* = 6.4 Hz, 1 H), 7.60 (t, *J* = 6.8 Hz, 1 H), 7.53-7.44 (m, 2 H), 7.44 (s, 2 H), 5.12 (s, 1 H), 3.95 (m, 3 H), 3.94 (s, 6 H), 3.83-3.72 (m, 2 H), 0.53 (t, *J* = 6.0 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 164.9, 153.2, 143.6, 132.8, 130.6, 129.0, 128.8, 128.4, 127.8, 126.6, 126.0, 124.8, 124.3, 123.1, 106.5, 66.7, 61.8, 60.83, 60.79, 56.1, 13.2. MS (EI): m/z (%) = 436 (M⁺, 10.15), 195 (100). HRMS calcd for C₂₅H₂₄O₇: 436.1522, found: 436.1523. IR (neat) *v*/cm⁻¹ 3052, 2941, 2581, 1948, 1745, 1670, 1584, 1503, 1461, 1417, 1335, 1248, 1127, 999, 784, 674.

1i' as white solid, m.p. 114-116 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.0 Hz, 1 H), 7.83 (d, J = 8.0 Hz, 1 H), 7.73 (d, J = 7.2 Hz, 1 H), 7.59 (t, J = 7.2 Hz, 1 H), 7.51 (t, J = 7.2 Hz, 1 H), 7.29 (t, J = 8.4 Hz, 1 H), 7.31-7.27 (m, 2 H), 7.05 (s, 2 H), 5.36 (s, 1 H), 4.35 (q, J = 6.8 Hz, 2 H), 3.83 (s, 3 H), 3.74 (s, 6 H), 1.27 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.2, 166.6, 152.7, 143.0, 133.1, 130.9, 130.2, 129.1, 128.8, 127.6, 126.6, 125.9, 125.0, 123.2, 122.3, 106.1, 66.3, 62.8, 61.0, 60.7, 56.0, 13.8. MS (EI): m/z (%) = 436 (M⁺, 11.40), 139 (100). HRMS calcd for C₂₅H₂₄O₇: 436.1522, found: 436.1529. IR (neat) ν/cm^{-1} 3047, 2943, 2838, 2639, 1970, 1747, 1674, 1584, 1503, 1455, 1416, 1337, 1238, 1125, 996, 775, 709.

10. Ethyl 2-(3,5-dimethoxybenzoyl)-3-phenyloxirane-2-carboxylate (1j/1j').

Yield 50%, dr= 6.9 : 1.

1j as white solid, m.p. 88-91 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 6.8 Hz, 2 H), 7.39-7.34 (m, 3 H), 7.24 (s, 2 H), 6.71 (s, 1 H), 4.60 (s, 1 H), 4.05- 3.90 (m, 2 H), 3.85 (s, 6 H), 0.90 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 190.1, 164.7, 161.0, 136.0, 131.9, 128.8, 128.2, 126.6, 107.1, 106.7, 67.6, 62.1, 61.9, 55.6, 13.7. MS (EI): m/z (%) = 356 (M⁺, 17.58), 165 (100). HRMS calcd for C₂₀H₂₀O₆: 356.1260, found: 356.1258. IR (neat) ν /cm⁻¹ 2998, 2915, 2661, 1968, 1754, 1684, 1592, 1455, 1359, 1242, 1211, 1175, 1043, 858, 777, 669.

1j' as yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.22 (s, 5 H), 6.99 (s, 2 H), 6.61 (s, 1 H), 4.72 (s, 1 H), 4.26 (q, J = 6.8 Hz, 2 H), 3.76 (s, 6 H), 1.20 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) 189.5, 166.4, 160.7, 137.0, 132.1, 129.0, 128.4, 126.3, 106.5, 106.4, 66.0, 63.0, 62.8, 55.5, 13.8. MS (EI): m/z (%) = 356 (M⁺, 13.88), 165 (100). HRMS calcd for C₂₀H₂₀O₆: 356.1260, found: 356.1261. IR (neat) ν /cm⁻¹ 3092, 2940, 2841, 2651, 1964, 1746, 1692, 1593, 1457, 1353, 1252, 1205, 1157, 1015, 853, 788, 699.

11. Ethyl 2-(1-methyl-1H-indole-2-carbonyl)-3-phenyloxirane-2-carboxylate (1k/1k').

Yield 59%, dr= 4.1 : 1,

1k red oil, ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.70 (m, 2 H), 7.53 (d, J = 7.2 Hz, 2 H), 7.45-7.38 (m, 5 H), 7.19 (t, J = 6.8 Hz, 1 H), 4.67 (s, 1 H), 4.10 (s, 3 H), 4.09-3.95 (m, 2 H), 0.94 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 182.7, 164.9, 140.6, 132.0, 131.8, 128.7, 128.1, 127.1, 126.4, 125.9, 123.6, 121.0, 114.9, 110.3, 68.4, 62.0, 61.9, 32.0, 13.6. MS (EI): m/z (%) = 436 (M⁺, 10.15), 195 (100). HRMS calcd for C₂₁H₁₉NO₄: 349.1314, found: 349.1312. IR (neat) ν /cm⁻¹ 3063, 2523, 1523, 1750, 1615, 1464, 1426, 1392, 1295, 1014, 845, 621.

1k' red oil, ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.6 Hz, 1 H), 7.50 (s, 1 H), 7.35-7.13 (m, 8 H), 4.70 (s, 1 H), 4.27-4.25 (m, 2 H), 3.85 (s, 3 H), 1.22 (t, J = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 182.1, 166.6, 140.2, 133.3, 132.5, 128.8, 128.2, 126.6, 126.2, 125.9, 123.4, 120.8, 114.2, 110.3, 66.1, 62.8, 62.7, 31.6, 13.8. MS (EI): m/z (%) = 349 (M⁺, 5.94), 89 (100). HRMS calcd for C₂₁H₁₉NO₄: 349.1314, found: 349.1311. IR (neat) ν /cm⁻¹ 2986, 2551, 1742, 1659, 1615, 1513, 1464, 1395, 1255, 1050, 875, 738, 627.

12. Ethyl 2-(1-methyl-1H-indole-3-carbonyl)-3-phenyloxirane-2-carboxylate (11).

Yield 19%, **11** as yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 1.6 Hz, 1 H), 8.23 (s, 1 H), 7.45-7.30 (m, 8 H), 4.51 (s, 1 H), 4.12-4.04 (m, 1 H), 4.04-3.90 (m, 1 H), 3.81 (s, 3 H), 0.90 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 184.4, 165.0, 137.8, 137.0, 132.7, 128.7, 128.1, 126.8, 126.1, 123.8, 123.1, 122.5, 112.6, 109.7, 69.6, 62.2, 61.8, 33.6, 13.6. MS (EI): m/z (%) = 349 (M⁺, 0.57), 89 (100). HRMS calcd for C₂₁H₁₉NO₄: 349.1314, found: 349.1314. IR (neat) ν /cm⁻¹ 3125, 3060, 2982, 2937, 2910, 2678, 1959, 1742, 1629, 1520, 1463, 1368, 1239, 1311, 1239, 1124, 1090, 1024, 937, 863, 746, 698, 623.

13. Methyl 2-(3,4-dihydro-2H-pyran-6-carbonyl)-3-phenyloxirane-2-carboxylate (1m)^[3].

To a solution of 3,4-dihydro-2*H*-pyran (1.2 equiv.) in THF was added *t*-BuLi (1.3 M in hexane, 1.2 equiv.) at -78 °C. After it was stirred for 10 min at-78 °C, the reaction mixture was allowed to warm to 0 °C and stirred for 50 mins at 0 °C. The resulting 2-lithiodihydropyran solution was then cooled to -78 °C and treated rapidly dropwise with dimethyl 3-phenyloxirane-2, 2-dicarboxylate in THF. The mixture was stirred at -78 °C overnight. The reaction was quenched by water. The mixture was extracted with CH₂Cl₂ (2X) and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel.

Yield 43%, as white solid, m.p. 154-157 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 6.8 Hz, 2 H), 7.38-7.28 (m, 3 H), 6.25 (s, 1 H), 4.58 (s, 1 H), 4.19-4.10 (m, 1 H), 4.10-4.04 (m, 1 H), 3.55 (s, 3 H), 2.29-2.28 (m, 2 H), 1.92-1.90 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 185.8, 165.1, 149.4, 131.7, 128.7, 128.0, 126.6, 114.9, 66.5, 65.8, 61.6, 52.5, 21.4, 20.8. MS (EI): m/z (%) = 288 (M⁺, 23.51), 55 (100). HRMS calcd for C₁₆H₁₆O₅: 288.0998, found: 288.0997. IR (neat) *v*/cm⁻¹ 2990, 2959, 2876, 1768, 1708, 1626, 1438, 1403, 1333, 1265, 1132, 1045, 989, 863, 718.

Synthesis of aziridines 1n-1r^[7].

14. Ethyl 3-phenyl-1-tosyl-2-(3,4,5-trimethoxybenzoyl)aziridine-2-carboxylate(1n).

White solid, unstable, crude dr = 3.3 : 1.0, ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.2 Hz, 2.11 H), 7.84 (d, *J* = 7.6 Hz, 2.30 H), 7.32-7.31 (m, 7.96 H), 7.28 (s, 4.91 H), 7.22 (s, 2.32 H), 7.22 (s, 2.32 H), 7.19 (s, 3.30 H), 7.10 (s, 2.22 H), 5.01 (s, 1.00 H), 4.83 (s, 1.05 H), 4.42 -4.38 (m, 1.07), 4.34-4.29 (m, 1.19 H), 3.95 (s, 3,26 H), 3.91 (s, 3.63 H), 3.86 (s, 7.33 H), 3.83 (s, 7.26 H), 2.43 (s, 6.69 H), 1.28 (t, *J* = 6.8 Hz, 3.88 H), 0.71 (t, *J* = 7.2 Hz, 3.18 H). ¹³C NMR (100 MHz, CDCl₃) δ 185.6, 164.1, 163.9, 152.9, 145.2, 144.7, 143.3, 143.0, 136.9, 134.8, 131.4, 130.8, 130.1, 129.9, 129.7, 129.7, 128.8, 128.6, 128.5, 128.4, 128.2, 127.4, 127.1, 126.8, 107.0, 106.6, 63.5, 62.4, 61.9, 60.9, 56.3, 56.0, 51.5, 47.4, 21.6, 13.8, 13.5. MS (ESI): m/z (%) = 562.2 [(M+Na)⁺], HRMS-ESI calcd for C₂₈H₂₉NO₈SNa [(M+Na)⁺]: 562.1523, found: 562.1506. IR (neat) *v*/cm⁻¹ 3659, 3476, 3379, 3056, 2987, 2943, 2844, 2507, 1928, 1748, 1696, 1585, 1461, 1333, 1161, 927, 865, 764, 682.

15. Ethyl 3-(4-chlorophenyl)-1-tosyl-2-(3,4,5-trimethoxybenzoyl) aziridine-2-carboxylate (10).

White solid, dr = 2.3 : 1, ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.6 Hz, 2.12 H), 7.81 (d, *J* = 7.2 Hz, 1.82 H), 7.33-7.26 (m, 10.00 H), 7.15 (d, *J* = 6.8 Hz, 2.37 H), 7.02 (d, *J* = 7.6 Hz, 2.04 H), 4.96 (s, 1.00 H), 4.78 (s, 0.82 H), 4.42-4.37 (m, 1.07 H), 4.34-4.26 (m, 1.13 H), 3.95-3.93 (m, 5.92 H), 3.88-3.86 (m, 7.74 H), 3.82 (s, 5.98 H), 2.42 (s, 6.10 H), 1.28 (t, *J* = 6.8 Hz, 3.26 H), 0.76 (t, *J* = 6.8 Hz, 2.54 H). ¹³C NMR (100 MHz, CDCl₃) δ 187.2, 185.2, 163.8, 163.6, 152.91, 152.85, 145.4, 144.8, 143.3, 143.1, 136.5, 134.7, 134.6, 134.5, 130.0, 129.7, 129.7, 129.6, 129.3, 128.7, 128.5, 128.4, 128.3, 128.1, 127.4, 127.3, 126.7, 106.8, 106.6, 63.5, 62.5, 61.9, 60.9, 60.7, 56.3, 55.9, 50.6, 46.6, 21.5, 13.7, 13.5. MS (ESI): m/z (%) = 598.1 [(M+2+Na)⁺], 596.1 [(M+Na)⁺], HRMS-ESI calcd for C₂₈H₂₈NO₈SCINa [(M+Na)⁺]: 596.1119, found: 596.1116. IR (neat) *v*/cm⁻¹ 3670, 2987, 2906, 2371, 2309, 1733, 1685, 1582, 1334, 1162, 1123, 929, 858, 774, 677.

16. Ethyl 3-(4-bromophenyl)-1-tosyl-2-(3,4,5-trimethoxybenzoyl)aziridine-2-carboxylate (1p).

White solid, dr = 2 :1, ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.6 Hz, 2.07 H), 7.82 (d, *J* = 6.8 Hz, 0.99 H), 7.42 (d, *J* = 7.2 Hz, 0.95 H), 7.31-7.29 (m, 6.18 H), 7.22 (d, *J* = 7.6 Hz, 0.99 H), 6.97 (d, *J* = 7.6 Hz, 2.03 H), 4.95 (s, 1.00 H), 4.77 (s, 0.43 H), 4.43-4.37 (m, 1.05 H), 4.32-4.27 (m, 1.14 H), 3.94-3.93 (m, 4.73 H), 3.88 (s, 6.71 H), 3.83 (s, 3.47 H), 2.41 (s, 4.36 H), 1.28 (t, *J* = 6.4 Hz, 3.16 H), 0.77 (t, *J* = 6.0 Hz, 1.31 H). ¹³C NMR (100 MHz, CDCl₃) δ 187.3, 185.3, 163.9, 163.7, 153.0, 152.9, 145.4, 144.9, 143.4, 143.3, 136.2, 134.6, 131.7, 131.5, 130.6, 130.0, 129.8, 129.8, 129.7, 128.9, 128.5, 128.3, 128.3, 127.5, 127.3, 123.0, 122.9, 106.9, 106.7, 63.6, 62.6, 62.0, 60.9, 60.7, 56.4, 56.2, 56.0, 50.7, 46.8, 21.6, 13.7, 13.5. MS (ESI): m/z (%) = 642.1 [(M+2+Na)⁺], 640.1 [(M+Na)⁺], HRMS-ESI calcd for C₂₈H₂₈NO₈SBrNa [(M+Na)⁺]: 640.0622, found: 640.0611. IR (neat) *v*/cm⁻¹ 3667, 2977, 2902, 2252, 1920, 1741, 1691, 1586, 1332, 1164, 1126, 1005, 927, 833, 758, 680.

17. Ethyl 3-(4-nitrophenyl)-1-tosyl-2-(3,4,5-trimethoxybenzoyl)aziridine-2-carboxylate(1q).

White solid, dr about 3: 1, ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 7.6 Hz, 1.45 H), 8.04 (d, J = 7.6 Hz, 1.04H), 7.86 (d, J = 7.6 Hz, 1.07 H), 7.82 (d, J = 6.8 Hz, 1.81 H), 7.53 (d, J = 8.0 Hz, 1.46 H), 7.34-7.24 (m, 6.83 H), 5.02 (s, 0.51 H), 4.87 (s, 1.00 H), 4.48 -4.40 (m, 0.52 H), 4.37-4.29 (m, 0.56 H), 3.95-3.94 (m, 3.75 H), 3.89 (s, 3.10 H), 3.85-3.82 (m, 6.06 H), 2.44 (s, 4.13 H), 1.30 (t, J = 6.8 Hz, 1.58 H), 0.75 (t, J = 6.8 Hz, 2.22 H). ¹³C NMR (100 MHz, CDCl₃) δ 186.9, 184.7, 163.6, 163.4, 153.1, 153.0, 148.1, 145.8, 145.2, 143.6, 138.9, 138.1, 136.4, 134.3, 130.0, 129.9, 129.7, 129.5, 129.4, 128.4, 128.3, 127.9, 127.4, 126.4, 123.7, 123.5, 106.9, 106.8, 63.9, 62.8, 62.3, 61.0, 60.8, 56.4, 56.0, 50.2, 46.4, 21.7, 13.8, 13.6. MS (ESI): m/z (%) = 607.1 [(M+Na)⁺], HRMS-ESI calcd for C₂₈H₂₈N₂O₁₀SNa

 $[(M+Na)^{+}]$: 607.1367, found: 607.1357. IR (neat) v/cm^{-1} 3662, 2988, 2969, 2901, 2460, 2264, 1935, 1754, 1688, 1583, 1524, 1336, 1241, 1163, 1123, 931, 857, 815, 765, 679.

18. Ethyl 3-(4-isopropylphenyl)-1- tosyl-2- (3, 4, 5-trimethoxybenzoyl)aziridine-2- carboxylate (1r).

White solid, dr =5: 1, 1H NMR (400 MHz, CDCl3) δ 7.89 (d, *J* = 7.6 Hz, 2.08 H), 7.83 (d, *J* = 7.6 Hz, 3.96 H), 7.54 (d, *J* = 7.2 Hz, 3.31 H), 7.30-7.21 (m, 13.16 H), 7.18 (s, 3.26 H), 7.14-7.12 (m, 0.56 H), 7.04-6.99 (m, 4.16 H), 6.81 (s, 1.65 H), 4.99 (s, 1.00 H), 4.81 (s, 0.21 H), 4.41-4.21 (m, 5.95 H), 3.97-3.91 (m, 7.19 H), 3.85-3.83 (m, 22.86 H), 2.94-2.87 (m, 1.72 H), 2.80-2.76 (m, 1.09 H), 2.41 (s, 3.82 H), 2.38 (s, 4.87 H), 1.35 (t, J = 6.8 Hz, 5.02 H), 1.28-1.23 (m, 14.45 H), 1.18 (d, J = 6.8 Hz, 1.81 H), 1.13 (d, J = 6.8 Hz, 6.22 H). ¹³C NMR (100 MHz, CDCl₃) δ 187.8, 164.2, 162.1, 157.1, 153.1, 152.9, 152.4, 150.3, 149.5, 144.7, 144.5, 142.9, 140.9, 136.9, 133.7, 132.4, 130.2, 129.6, 129.5, 128.6, 128.3, 128.2, 128.1, 127.3, 127.0, 126.8, 126.6, 126.5, 126.3, 125.7, 121.4, 109.5, 107.4, 106.9, 106.5, 106.0, 92.9, 63.4, 61.2, 60.9, 60.8, 60.7, 56.3, 56.1, 55.9, 51.6, 33.8, 33.6, 23.8, 23.6, 21.6, 21.6, 14.1, 13.7. MS (ESI): m/z (%) = 604.2 [(M+Na)⁺], HRMS-ESI calcd for C₃₁H₃₅NO₈SNa [(M+Na)⁺]: 604.1968, found: 604.1976. IR (neat) *v*/cm⁻¹ 3670, 2962, 2940, 2874, 2594, 2254, 1920, 1704, 1579, 1503, 1354, 1294, 1168, 1126, 1101, 1047, 947, 816, 731, 678.

Geneal Procedure for Lewis acid catalyzed tandem cyclization.

The reaction was carried out at RT with 1 (0.3 mmol), 4A MS (120 mg), 10 mol % $Yb(OTf)_3$ in $CH_2Cl_2(4 ml)$ at 25 °C and completed within 15 h, the mixture was passed through a short pad of silicon gel to afford **2**.

19. Ethyl 6,7,8-trimethoxy-4-oxo-1-phenylisochroman-3-carboxylate and its isomers (2a).

2a, 99% isolated yield, ratio of ketone and enolate 1 : 2, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 10.40 (s, 0.63 H), 7.42 (s, 0.48 H), 7.35 (s, 1.50 H), 7.26-7.25 (m, 4 H), 7.09 (s, 0.72 H), 6.41 (s, 1.00 H), 4.73 (s, 0.32 H), 4.33-4.30 (m, 2.26 H), 3.94 (s, 7.26 H), 3.78 (s, 2.12 H), 3.60 (s, 1.05 H), 1.36 (t, *J* = 6.4 Hz, 2.13 H), 1.33-1.29 (m, 1.33 H). ¹³C NMR (100 MHz, CDCl₃) δ 188.15, 168.12, 166.27, 153.64, 151.54, 149.11, 148.78, 147.85, 143.96, 139.06, 136.88, 129.68, 128.95, 128.79, 128.64, 128.52, 128.38, 128.24, 128.10, 127.97, 127.18, 124.18, 121.85, 120.64, 120.31, 104.62, 101.73, 75.92, 73.12, 72.50, 61.87, 61.12, 60.87, 60.44, 56.05, 14.24, 14.00. MS (EI): m/z (%) = 386 (M⁺, 9.36), 84 (100). HRMS calcd for C₂₁H₂₂O₇: 386.1366, found: 386.1366. IR (neat) *v*/cm⁻¹ 2981, 2941, 2840, 2255, 1749, 1694, 1657, 1621, 1592, 1572, 1491, 1460, 1410, 1382, 1339, 1299, 1243, 1182, 1118, 998, 699.

20. Ethyl 1-(4-cyanophenyl)-6,7,8-trimethoxy-4-oxoisochroman-3-carboxylate (2c).

2c, 89% isolated yield, ratio of ketone and enolate 1 : 3, yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 10.38 (s, 0.73 H), 7.68 (d, J = 7.6 Hz, 1.11 H), 7.59 (d, J = 7.6 Hz, 1.93 H), 7.50-7.45 (m, 0.57 H), 7.42- 7.40 (m, 0.74 H), 7.39-7.37 (m, 1.99 H), 7.30-7.28 (m, 0.28 H), 7.09 (s, 0.87 H), 6.38 (s, 1 H), 4.66 (s, 0.24 H), 4.37-4.36 (m, 1.85 H), 4.31-4.29 (m, 0.60 H), 3.96-3.92 (s, 8.96 H), 3.87-3.85 (s, 3.40 H), 3.64 (s, 0.66 H), 1.39 (t, J = 6.0 Hz, 2.59 H), 1.33-1.26 (m, 1.27 H). ¹³C NMR (400 MHz, CDCl₃) δ 187.14, 167.71, 165,87, 154.03, 151.45, 148.95, 148.70, 148.60, 147.72, 144.63, 143.92, 142.72, 141.19, 132.27, 132.01, 131.82, 129.43, 129.28, 129.16, 127.85, 127.61, 127.42, 123.90, 121.49, 120.19, 119.18, 118.47, 118.17, 112.58, 111.76, 110.25, 105.44, 104.69, 101.90, 100.47, 93.22, 76.18, 72.45, 71.70, 62.00, 61.28, 60.95, 60.87, 60.63, 60.38, 59.26, 56.04, 14.21, 13.92. MS (EI): m/z (%) = 411 (M⁺, 32.41), 43 (100). HRMS calcd for C₂₂H₂₁NO₇: 411.1318, found: 411.1321. IR (neat) *v*/cm⁻¹.3424, 2981, 2942, 2842, 2254, 2230, 1748, 1699, 1658, 1592, 1572, 1238, 1117, 1009, 775, 730.

21. Ethyl 1-(4-fluorophenyl)-6,7,8-trimethoxy-4-oxoisochroman-3-carboxylate (2d).

2d, 99% isolated yield, ratio of ketone and enolate 1 : 2, yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 10.41 (s, 0.56 H), 7.42 (s, 0.42 H), 7.29-7.21 (m, 1.56 H), 7.10 (s, 0.68 H), 7.05 (t, J = 8.0 Hz, 0.95 H), 6.96 (t, J = 8.0 Hz, 1.39 H), 6.37 (s, 1.00 H), 4.70 (s, 0.35 H), 4.34-4.30 (m, 2.19 H), 3.95 (s, 6.80 H), 3.79 (s, 1.96 H), 3.63 (s, 1.28 H), 1.36 (t, J = 6.8 Hz, 2.12 H), 1.32-1.30 (m, 1.23 H). ¹³C NMR (400 MHz, CDCl₃) δ 187.89, 168.04, 166.17, 163.68, 161.57, 161.23, 153.76, 151.51, 148.99, 148.69, 147.85, 143.98, 134.82, 132.91, 130.45, 130.37, 129.33, 129.06, 128.97, 124.06, 121.73, 120.38, 120.03, 115.59, 115.38, 114.99, 114.78, 104.64, 101.76, 75.82, 72.44, 71.88, 61.95, 61.18, 60.87, 60.47, 56.06, 14.23, 13.99. MS (EI): m/z (%) = 404 (M⁺, 58.40), 157 (100). HRMS calcd for C₂₁H₂₁O₇F: 404.1271, found: 404.1268. IR (neat) *v*/cm⁻¹ 3673, 2986, 2942, 2902, 2256, 1750, 1694, 1656, 1408, 1232, 1117, 1072, 922, 848, 822, 774, 733.

22. Ethyl 1-(4-bromophenyl)-6,7,8-trimethoxy-4-oxoisochroman-3-carboxylate (2f).

2f, 99% isolated yield, ratio of ketone and enolate 1 : 2, yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 10.39 (s, 0.63 H), 7.49 (d, J = 7.6 Hz, 0.76 H), 7.40 (d, J = 8.0 Hz, 1.97 H), 7.12-7.09 (m, 2.89 H), 6.34 (s, 1.00 H), 4.68 (s, 0.28 H), 4.34-4.29 (m, 2.20 H), 3.95 (s, 6.88 H), 3.81 (s, 2.15 H), 3.64 (s, 0.88 H), 1.37 (t, J = 6.8 Hz, 2.21 H), 1.32 (t, J = 6.8 Hz, 1.12 H). ¹³C NMR (400 MHz, CDCl₃) δ 187.74, 167.97, 166.11, 153.82, 151.51, 149.01, 148.70, 147.80, 143.96, 138.20, 136.15, 131.71, 131.38, 131.29, 131.23, 131.14, 130.55, 130.26, 128.94, 128.28, 127.86, 124.07, 122.98, 122.13, 121.70, 120.13, 120.01, 104.67, 104.22, 101.81, 75.89, 72.52, 71.90, 61.95, 61.22, 60.93, 60.89, 60.51, 60.27, 56.19, 56.08, 14.26, 14.01. MS (EI): m/z (%) = 466 (M+2, 8.20), 464 (M⁺, 7.58), 84 (100). HRMS calcd

for C₂₁H₂₁O₇Br: 464.0471, found: 464.0471. IR (neat) *v*/cm⁻¹ 2982, 2942, 2840, 2255, 1749, 1695, 1591, 1572, 1140, 1237, 1118, 1071, 920, 859, 804, 775, 732.

23. Ethyl 1-(4-methylphenyl)-6,7,8-trimethoxy-4-oxoisochroman-3-carboxylate (2g).

2g, 99% isolated yield, ratio of ketone and enolate 1 : 1, yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 10.40 (s, 0.49 H), 7.41 (s, 0.51 H), 7.17-7.07 (m, 5.48 H), 6.38 (s, 1.00 H), 4.73 (s, 0.41 H), 4.34-4.29 (m, 2.26 H), 3.94 (s, 7.33 H), 3.77 (s, 1.93 H), 3.61 (s, 1.28 H), 2.34 (s, 1.73 H), 2.30 (s, 2.10 H), 1.36 (t, *J* = 6.8 Hz, 1.92 H), 1.33-1.29 (m, 1.66 H). ¹³C NMR (400 MHz, CDCl₃) δ 188.32, 168.19, 166.34, 153.59, 151.54, 149.09, 148.78, 147.87, 143.98, 138.71, 137.78, 136.09, 133.74, 129.99, 129.22, 128.93, 128.71, 128.63, 128.48, 127.24, 124.22, 121.89, 120.84, 120.28, 104.63, 101.71, 75.82, 72.98, 72.44, 61.85, 61.11, 60.87, 60.52, 59.33, 56.08, 21.08, 21.02, 14.26, 14.03. MS (EI): m/z (%) = 400 (M⁺, 2.99), 84 (100). HRMS calcd for C₂₂H₂₄O₇: 400.1522, found: 400.1523. IR (neat) *v*/cm⁻¹ 2982, 2942, 2255, 1911, 1750, 1694, 1592, 1572, 1461, 1243, 1116, 1073, 1020, 993, 922, 860, 803, 774, 733.

24. Ethyl 6,7,8-trimethoxy-1-(naphthalen-1-yl)-4-oxoisochroman-3-carboxylate (2i).

2i, 99% isolated yield, ratio of ketone and enolate 1 : 1, yellow solid, ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 0.60 H), 8.75 (d, J = 8.4 Hz, 0.68 H), 8.56 (d, J = 8.4 Hz, 0.90 H), 7.89 (d, J = 7.6 Hz, 1.36 H), 7.84 (d, J = 7.6 Hz, 1.95 H), 7.75 (d, J = 8.0 Hz, 0.95 H), 7.63-7.48 (m, 5.35 H), 7.28-7.21 (m, 1.80 H), 7.16 (t, J = 8.4 Hz, 2.51 H), 6.83 (d, J = 6.8 Hz, 0.89 H), 6.69 (d, J = 6.8 Hz, 0.67 H), 4.64 (s, 0.78 H), 4.28-4.17 (m, 2.00 H), 3.97-3.92 (m, 12.23 H), 3.85-3.74 (m, 2.05 H), 3.63 (s, 2.08 H), 3.61 (s, 0.63 H), 3.55 (s, 2.49 H), 3.46 (s, 0.58 H), 1.24 (t, J = 7.2 Hz, 2.98 H), 1.00 (t, J = 6.8 Hz, 2.01 H). ¹³C NMR (400 Hz, 18)

MHz, CDCl₃) δ 188.59, 168.11, 166.16, 153.72, 153.67, 151.95, 151.61, 149.14, 148.74, 147.82, 144.06, 133.98, 133.83, 132.38, 132.21, 131.92, 129.93, 129.36, 128.48, 128.17, 126.71, 126.38, 126.15, 126.11, 125.85, 125.56, 125.33, 124.64, 124.50, 124.24, 124.16, 123.79, 123.63, 122.82, 120.16, 104.57, 101.55, 76.15, 70.20, 70.14, 61.68, 60.79, 60.69, 60.58, 60.44, 56.00, 13.86, 13.61. MS (EI): m/z (%) = 436 (M⁺,22.83), 43 (100). HRMS calcd for C₂₅H₂₄O₇: 436.1522, found: 436.1526. IR (neat) *v*/cm⁻¹ 2981, 2940, 2839, 2254, 1949, 1749, 1691, 1657, 1591, 1461, 1411, 1347, 1236, 1119, 1015, 991, 921, 858, 777, 731.

25. Ethyl 6,8-dimethoxy-4-oxo-1-phenylisochroman-3-carboxylate (2j).

2j, 99% isolated yield, ratio of ketone and enolate 1 : 3, yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 10.35 (s, 0.87 H), 7.32 (s, 1.19 H), 7.28-7.18 (m, 6.70 H), 6.88 (s, 0.94 H), 6.72 (s, 0.37 H), 6.59 (s, 1.00 H), 6.44 (s, 0.89 H), 6.38 (s, 0.34 H), 4.71 (s, 0.32 H), 4.38-4.29 (m, 2.78 H), 3.87 (s, 4.38 H), 3.77 (s, 2.90 H), 3.69 (s, 1.12 H), 1.37 (t, *J* = 5.2 Hz, 2.90 H), 1.35-1.28 (m, 1.33 H). ¹³C NMR (400 MHz, CDCl₃) δ 189.17, 168.16, 166.25, 160.69, 160.51, 156.52, 156.01, 151.60, 139.12, 136.52, 130.33, 128.59, 128.50, 128.44, 128.36, 127.96, 127.90, 127.82, 127.04, 124.38, 121.17, 115.55, 105.27, 101.06, 99.98, 98.10, 76.00, 72.84, 72.10, 61.89, 61.20, 55.82, 55.60, 55.52, 14.28, 14.02 MS (EI): m/z (%) = 356 (M⁺, 2.94), 84 (100). HRMS calcd for C₂₀H₂₀O₆: 356.1260, found: 356.1261. IR (neat) *v*/cm⁻¹.3664, 2987, 2973, 2902, 2255, 1750, 1700, 1658, 1584, 1409, 1221, 1076,1025, 1050, 911, 735, 697.

26. Ethyl 5-methyl-4-oxo-1-phenyl-1,3,4,5-tetrahydropyrano[4,3-b]indole-3-carboxylate (2k)

2k, yellow oil, 99% isolated yield, dr 3:1, ¹H NMR (400 MHz, CDCl₃) δ 7.41 (S, 0.61 H), 7.32-7.26 (m, 6.45 H), 6.91-6.87 (m, 1.43 H), 6.80 (s, 0.28 H), 6.59 (s, 0.81 H), 6.56 (s, 0.11 H), 4.91 (s, 0.24 H), 4.88 (s, 0.65 H), 4.26-4.18 (m, 2.00 H), 4.04-4.02 (m, 2.94 H), 1.24 (t, *J* = 6.4 Hz, 3.00 H). ¹³C NMR (400 MHz, CDCl₃) δ 183.65, 182.60, 167.13, 166.43,

19

140.13, 140.03, 138.59, 138.31, 129.21, 129.07, 128.99, 128.80, 128.66, 127.96, 127.46, 127.26, 126.45, 122.73, 122.49, 122.08, 120.96, 120.86, 110.44, 110.38, 82.00, 78.98, 77.79, 74.54, 61.91, 61.79, 31.55, 14.10. MS (EI): m/z (%) = 349 (M⁺,5.83), 43 (100). HRMS calcd for C₂₁H₁₉NO₄: 349.1314, found: 349.1318. IR (neat) ν /cm⁻¹ 3362, 2986, 2902, 2254, 1741, 1669, 1530, 1478, 1429, 1227, 1186, 1097, 1016, 953, 900, 746, 699.

27. Ethyl 9-methyl-4-oxo-1-phenyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-3-carboxylate (21)

21, crude yield 96% in 1.54 : 1 dr, isolated yield 80% in 2.64 : 1 dr, yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.34 (m, 7.00 H), 6.96-6.94 (m, 1.43 H), 6.91-6.88 (m, 0.28 H), 6.67 (s, 0.84 H), 6.64 (s, 0.15 H), 6.09 (s, 0.27 H), 5.00 (s, 0.25 H), 4.96 (s, 0.66 H), 4.34-4.26 (m, 2 H), 4.13 (s, 2.11 H), 4.11 (s, 0.81 H), 1.33 (t, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 183.66, 182.60, 167.14, 166.45, 140.11, 140.02, 138.55, 138.26, 129.24, 129.09, 129.00, 128.80, 128.67, 127.96, 127.48, 127.28, 127.21, 126.43, 122.71, 122.47, 122.08, 120.97, 120.87, 110.45, 110.39, 81.99, 78.95, 77.81, 74.52, 61.96, 61.84, 31.57, 31.46, 14.11, 14.07. MS (EI): m/z (%) = 349 (M⁺, 2.83), 77 (100). HRMS calcd for C₂₁H₁₉ NO₄: 349.1314, found: 349.1316. IR (neat) *v*/cm⁻¹ 3466, 3064, 2983, 2254, 1740, 1668, 1528, 1477, 1268, 1225, 1127, 1015, 902, 772, 698.

28. Methyl 8-oxo-5-phenyl-2,3,4,5,7,8-hexahydropyrano[4,3-b]pyran-7-carboxylate (2m).

2m, crude yield 82% in 2 : 1 dr, isolated yield 60% in 5 : 4 dr, yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 6.95 H), 5.80 (s, 1.00 H), 5.32 (s, 0.39 H), 4.90 (s, 0.38 H), 4.87 (s, 0.84 H), 4.32-4.29 (m, 0.46 H), 4.25-4.23 (m, 1.07 H), 4.00-3.98 (m, 1.10 H), 3.87-3.78 (m, 4.29 H), 2.01-1.96 (m, 1.25 H), 1.88-1.75 (m, 5.78 H). ¹³C NMR (100 MHz, CDCl₃) δ 183.61, 183.01, 166.94, 166.00, 143.99, 143.04, 137.50, 137.05, 131.21, 131.09, 129.20, 129.13, 128.85, 128.76, 128.33, 128.17, 80.56, 79.83, 78.10, 77.49, 77.32, 66.00, 65.87,

52.78, 52.68, 22.71, 22.63, 21.30, 21.17. MS (EI): m/z (%) = 288 (M⁺, 1.38), 43 (100). HRMS calcd for $C_{16}H_{16}O_5$: 288.0998, found: 288.0999. IR (neat) v/cm⁻¹ 3660, 3466, 2970, 2901, 2254, 1746, 1693, 1635, 1494, 1453, 1270, 1133, 1039, 917, 732, 701, 642.

29. Ethyl 4-hydroxy-6,7,8-trimethoxy-1-phenyl-2-tosyl-1,2-dihydroisoquinoline-3-carboxylate (2n).

The reaction of substrate **1n** with dr 1.1 : 1 afforded **2n** 80% yield, while **1n** with dr 3 :1 yielded 2n 83%, white solid, m.p. 111-113 °C, ¹H NMR (400 MHz, CDCl₃) δ 11.94 (s, 1 H), 7.48 (d, J = 7.6 Hz, 2 H), 7.22 (s, 2 H), 6.99 (d, J = 7.6 Hz, 4 H), 6.72 (s, 1 H), 6.36 (s, 1 H), 4.29 (q, J = 6.8 Hz, 2 H), 3.87 (s, 3 H), 3.82 (s, 3 H), 3.78 (s, 3 H), 2.26 (s, 3 H), 1.33 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 162.9, 153.2, 149.3, 144.5, 143.1, 137.7, 134.1, 128.8, 127.9, 127.8, 127.7, 127.5, 123.3, 122.1, 103.1, 101.3, 61.3, 60.8, 60.6, 56.1, 55.1, 21.3, 14.1. MS (ESI): m/z (%) = 562.2 [(M+Na)⁺], HRMS-ESI calcd for C₂₈H₂₉NO₈SNa [(M+Na)⁺]: 562.1518, found: 562.1506. IR (neat) ν/cm^{-1} 3062, 3032, 2982, 2944, 2916, 2842, 2816, 2587, 1920, 1646, 1620, 1592, 1564, 1492, 1454, 1408, 1383, 1344, 1248, 1201, 1163, 1119, 1021, 990, 810, 766, 673.

31. Ethyl 1-(4-chlorophenyl)-4-hydroxy-6,7,8-trimethoxy-2-tosyl-1,2-dihydroisoquinoline-3carboxylate (20).

The reaction of substrate **10** with dr 4.6 :1 afforded **20** in 85 % yield as white solid, m.p. 113-115 °C, ¹H NMR (400 MHz, CDCl₃) δ 11.93 (s, 1 H), 7.46 (d, J = 7.6 Hz, 2 H), 7.17 (dd, J = 8.4 Hz and 23.2 Hz, 4 H), 6.98 (d, J = 7.2 Hz, 2 H), 6.71 (s, 1 H), 6.31 (s, 1 H), 4.31-4.30 (m, 2 H), 3.86 (s, 3 H), 3.81 (s, 3 H), 3.79 (s, 3 H), 2.25 (s, 3 H), 1.34 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 162.7, 153.3, 149.1, 144.3, 143.2, 136.3,

133.7, 133.6, 128.8, 128.7, 128.1, 127.5, 122.4, 121.8, 103.1, 101.0, 61.4, 60.8, 60.6, 56.0, 54.4, 21.2, 14.1. MS (ESI): m/z (%) = 596.1 [(M+Na)⁺], HRMS-ESI calcd for $C_{28}H_{28}NO_8SCINa$ [(M+Na)⁺]: 596.1135, found: 596.1116. IR (neat) v/cm^{-1} 2998, 2943, 2849, 2580, 1974, 1745, 1643, 1564, 1490, 1459, 1411, 1344, 1241, 1168, 1121, 1016, 989, 914, 842, 784, 676.

32. Ethyl 1-(4-bromophenyl)-4-hydroxy-6, 7, 8-trimethoxy-2-tosyl-1,2-dihydroisoquinoline-3carboxylate (2p).

The reaction of substrate **1p** with dr 2.4 : 1 afforded **2p** in 89% yield as white solid, m.p. 124-126 °C, ¹H NMR (400 MHz, CDCl₃) δ 11.92 (s, 1H), 7.47 (d, *J* = 7.6 Hz, 2 H), 7.35 (d, *J* = 7.2 Hz, 2 H), 7.08 (d, *J* = 7.6 Hz, 2 H), 6.98 (d, *J* = 7.6 Hz, 2 H), 6.71 (s, 1 H), 6.28 (s, 1 H), 4.35-4.26 (m, 2 H), 3.86 (s, 3 H), 3.81 (s, 3 H), 3.79 (s, 3 H), 2.26 (s, 3 H), 1.35 (t, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 162.7, 153.3, 149.2, 144.4, 143.2, 136.9, 133.8, 131.1, 129.3, 128.8, 127.6, 122.5, 121.9, 121.9, 103.1, 101.1, 61.5, 60.8, 60.7, 56.1, 54.5, 21.3, 14.2. MS (ESI): m/z (%) = 640.1 [(M+Na)⁺], HRMS-ESI calcd for C₂₈H₂₈NO₈SBrNa [(M+Na)⁺]: 640.0593, found: 640.0611. IR (neat) *v*/cm⁻¹ 3093, 3057, 3001, 2959, 2939, 2858, 2583, 1930, 1643, 1595, 1562, 1489, 1457, 1409, 1345, 1255, 1203, 1167, 1119, 1074, 1055, 1020, 990, 929, 803, 751, 676.

33. Ethyl 4-hydroxy-1-(4-isopropylphenyl)-6,7,8-trimethoxy-2-tosyl-1,2-dihydroisoquinoline-3-carboxylate (2q).

The reaction of substrate 1q with dr 5 : 1 afforded 2q 71% yield as white solid, m.p. 136-137 °C, ¹H NMR (400 MHz, CDCl₃) δ 11.92 (s, 1 H), 7.48 (d, J = 7.6 Hz, 2 H),

7.11-7.05 (m, 4 H), 6.99 (d, J = 8.0 Hz, 2 H), 6.71 (s, 1 H), 6.32 (s, 1 H), 4.32-4.29 (m, 2 H), 3.87 (s, 3 H), 3.81 (s, 3 H), 3.80 (s, 3 H), 2.85-2.80 (m, 1 H), 2.26 (s, 3 H), 1.32 (t, J = 6.8 Hz, 3 H), 1.19 (d, J = 6.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 162.9, 153.1, 149.3, 148.3, 144.4, 143.0, 134.8, 134.2, 128.7, 127.7, 127.3, 126.0, 123.6, 122.0, 103.1, 101.3, 61.3, 60.8, 60.6, 56.1, 54.9, 33.6, 23.8, 21.3, 14.1. MS (ESI): m/z (%) = 604.2 [(M+Na)⁺], HRMS-ESI calcd for C₃₁H₃₅NO₈SNa [(M+Na)⁺]: 604.1986, found: 604.1976. IR (neat) v/cm⁻¹ 3428, 3171, 2960, 2925, 2854, 2737, 2589, 1907, 1649, 1584, 1489, 1463, 1320, 1207, 1177, 1124, 1070, 1017, 989, 931, 842, 813, 797, 698.

34. ethyl 4-hydroxy-6,7,8-trimethoxy-1-(4-nitrophenyl)-2-tosyl-1,2-dihydroisoquinoline-3carboxylate(2r).

The reaction of substrate **1r** with dr 2.7 : 1 afforded **2r** 55% yield , as white solid, m.p 164-165 °C, ¹H NMR (400 MHz, CDCl₃) δ 11.91 (s, 1 H), 8.09 (d, J = 7.6 Hz, 2 H), 7.46 (d, J = 7.2 Hz, 4 H), 7.42 (d, J = 8.0 Hz, 2 H), 7.01 (d, J = 7.6 Hz, 2 H), 6.72 (s, 1 H), 6.38 (s, 1 H), 4.34-4.31 (m, 2 H), 3.88 (s, 3 H), 3.86 (s, 3 H), 3.83 (s, 3 H), 2.27 (s, 3 H), 1.37 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 162.7, 153.6, 149.1, 147.5, 145.4, 144.4, 143.5, 133.5, 128.9, 128.4, 127.6, 123.1, 121.7, 121.5, 103.2, 101.1, 61.6, 60.8, 60.7, 56.1, 54.6, 21.3, 14.2. MS (ESI): m/z (%) = 607.1 [(M+Na)⁺], HRMS-ESI calcd for C₂₈H₂₈N₂O₁₀SNa [(M+Na)⁺]: 607.1364, found: 607.1357. IR (neat) v/cm⁻¹ 3111, 3077, 2961, 2928, 2851, 2633, 1939, 1707, 1580, 1523, 1502, 1459, 1413, 1346, 1293, 1168, 1124, 1045, 1015, 914, 855, 815, 743, 702.

'One -Pot' synthesis of 3-methyl-4-oxo-1-phenylisochroman-3-carboxylate (3a-3j).

The reaction was carried out at RT with **1** (0.3 mmol), 4 Å MS (120 mg), 10 mol % Yb(OTf)3 in CH₂Cl₂ at 25 °C for 15 h , and after filtration to remove catalyst, the crude product 2 was reacted with 5 eq.CH₃I with t-BuOK (1.2 eq.) and t-BuOH (a drop) in THF at RT for 15 h . Flash chlomataghraghy to afford **3**.

35. Ethyl 6,7,8-trimethoxy-3-methyl-4-oxo-1-phenylisochroman-3-carboxylate(3a).

3a, 86% total yield from **1a**, 74% total yield from **1a**', dr > 50 : 1; yellow solid, m.p. 86-88 ^oC, ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1 H), 7.30-7.29 (m, 3 H), 7.24-7.22 (m, 2 H), 6.21 (s, 1H), 3.97 (s, 3 H), 3.92 (s, 3 H), 3.59-3.53 (m, 1 H), 3,44 (s, 3 H), 3.39-3.35 (m, 1 H), 1.66 (s, 3 H), 0.98 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 170.0, 153.6, 148.6, 147.6, 138.9, 129.3, 129.2, 128.4, 127.9, 123.6, 104.7, 80.1, 72.6, 61.3, 60.7, 60.1, 56.1, 22.8, 13.4. MS (EI): m/z (%) = 400 (M⁺, 5.47), 43 (100). HRMS calcd for C₂₂H₂₄ O₇: 400.1522, found: 400.1522. IR (neat) *v*/cm⁻¹ 3089, 3066, 3002, 2963, 2934, 2895, 2839, 2665, 1952, 1747, 1686, 1591, 1488, 1416, 1355, 1331, 1257, 1121, 1085, 1018, 950, 919, 803, 766, 697.

36. tert-butyl 6,7,8-trimethoxy-3-methyl-4-oxo-1-phenylisochroman-3-carboxylate (3b).

3b, 69% total yield, dr > 50 :1, white solid, m.p. 78-80 °C, ¹H NMR (400 MHz, CDCl₃) 7.47 (s, 1 H), 7.32-7.26 (m, 5 H), 6.12 (s, 1 H), 3.95 (s, 3 H), 3.89 (s, 3 H), 3.28 (s, 3 H), 1.64 (s, 3 H), 1.19 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃) δ 191.7, 168.7, 153.6, 148.8, 147.8, 140.4, 129.9, 129.4, 128.3, 128.2, 123.6, 106.8, 104.6, 82.1, 81.4, 72.5, 60.8, 59.9, 56.2, 56.1, 27.5, 22.3. MS (EI): m/z (%) = 428 (M⁺, 0.61), 57 (100). HRMS calcd for C₂₄H₂₈ O₇: 428.1835, found: 428.1834. IR (neat) *v*/cm⁻¹ 3091, 3060, 2986, 2932, 2851, 2667, 1944, 1738, 1687, 1590, 1486, 1462, 1350, 1320, 1257, 1189, 1123, 1020, 950, 864, 743, 698, 653.

37. Ethyl 1-(4-cyanophenyl)-6,7,8-trimethoxy-3-methyl-4-oxoisochroman-3-carboxylate(3c).

3c, 75% total yield ,dr > 50 : 1, yellow solid, m.p. 160-161 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.63(d, J = 7.6 Hz, 2 H), 7.49 (s, 1 H), 7.38 (d, J = 7.2 Hz, 2 H), 6.16 (s, 1 H), 3.66 (s, 3 H), 3.64 (s, 3 H), 3.63-3.61 (m, 1 H), 3.54-3.49 (m, 1 H), 3.49 (s, 3H), 1.67 (s, 3 H), 1.04 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 190.7, 169.5, 154.1, 148.5, 147.5, 144.5, 131.7, 129.8, 127.4, 123.5, 118.4, 112.1, 104.9, 80.5, 71.9, 61.5, 60.9, 60.2, 56.1, 22.0, 13.5. MS (EI): m/z (%) = 425 (M⁺, 3.11), 43 (100). HRMS calcd for C₂₃H₂₃NO₇: 425.1475, found: 425.1474. IR (neat) ν /cm⁻¹ 3102, 2995, 2944, 2834, 2669, 2227, 1935, 1748, 1686, 1594, 1488, 1463, 1361, 1332, 1227, 1119, 1022.

38. Ethyl 1-(4-fluorophenyl)-6,7,8-trimethoxy-3-methyl-4-oxoisochroman-3-carboxylate(3d).

3d, 74% total yield, dr >50 :1, yellow solid, m.p. 111-112 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1 H), 7.24-7.22 (m, 2 H), 6.99 (t, J = 8.0 Hz, 2 H), 6.18 (s, 1 H), 3.97 (s, 3 H), 3.92 (s, 3 H), 3.84 -3.60 (m, 1 H), 3.52-3.40 (m, 4 H), 1.66 (s, 3 H), 1.03 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 170.0, 162.6 (d, $J_{C,F} = 246$ Hz), 153.8, 148.6, 147.6, 135.0, 131.0 (d, $J_{C,F} = 8$ Hz), 128.9, 123.6, 114.8 (d, $J_{C,F} = 21$ Hz), 104.8, 80.1, 71.8, 61.4, 60.8, 60.2, 56.1, 22.7, 13.5. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -113.2$ ppm. MS (EI): m/z (%) = 418 (M⁺, 1.61), 43 (100). HRMS calcd for C₂₂H₂₃O₇F: 418.1428, found: 400.1429. IR (neat) ν /cm⁻¹ 3084, 2975, 2952, 2845, 2666, 1918, 1730, 1693, 1593, 1489, 1467, 1411, 1360, 1330, 1245, 1216, 1120, 1086, 1016, 920, 854, 795, 763, 667, 615.

39. Ethyl 1-(4-chlorophenyl)-6,7,8-trimethoxy-3-methyl-4-oxoisochroman-3-carboxylate(3e).

3e, 78% total yield, dr >50 :1, yellow solid, m.p. 122-124 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1 H), 7.28 (d, *J* = 8.0 Hz, 2 H), 7.17 (d, *J* = 8.0 Hz, 2 H), 6.15 (s, 1 H), 3.97 (s, 3 H), 3.92 (s, 3 H), 3.68-3.57 (m, 1 H), 3.49 (s, 3 H), 3.49-3.44 (m, 1 H), 1.65 (s, 3 H) 1.02 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 169.9, 153.8, 148.6, 147.6, 137.7, 134.2, 130.6, 128.6, 128.1, 123.6, 104.8, 80.2, 71.9, 61.5, 60.8, 60.3, 56.1, 22.6, 13.5. MS (EI): m/z (%) = 436 (M+2, 1.00), 434 (M⁺, 2.43), 43 (100). HRMS calcd for C₂₂H₂₃O₇Cl: 434.1132, found: 434.1134 IR (neat) *v*/cm⁻¹ 3096, 3063, 2974, 2952, 2845, 2665, 1922, 1728, 1694, 1591, 1488, 1466, 1405, 1359, 1329, 1245, 1119, 1086, 1014, 954, 919, 854, 806, 765, 665.

40. Ethyl 1-(4-bromophenyl)-6,7,8-trimethoxy-3-methyl-4-oxoisochroman-3-carboxylate(3f).

3f, 79% total yield ,dr >50 :1, yellow solid, m.p. 100-102 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1 H), 7.43 (d, *J* = 7.2 Hz, 2 H), 7.12 (d, *J* = 7.2 Hz, 2 H), 6.14 (s, 1 H), 3.97 (s, 3 H), 3.92 (s, 3 H), 3.65-3.59 (m, 1 H), 3.50 (s, 3 H), 3.50-3.45 (m, 1 H), 1.65 (s, 3 H), 1.03 (t, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 169.8, 153.8, 148.5, 147.5, 138.1, 131.0, 130.9, 128.4, 123.5, 122.4, 104.7, 80.2, 71.9, 61.4, 60.8, 60.2, 56.1, 22.6, 13.5. MS (EI): m/z (%) = 480 (M+2, 3.00), 478 (M⁺, 3.46), 43 (100). HRMS calcd for C₂₂H₂₃O₇Br: 478.0627, found: 478.0633. IR (neat) *v*/cm⁻¹ 3093, 3058, 2947, 2842, 2660, 1921, 1728, 1694, 1590, 1487, 1330, 1244, 1119, 1011, 919, 853, 803, 765, 665.

41. Ethyl 1-(4-methylphenyl)-6,7,8-trimethoxy-3-methyl-4-oxoisochroman-3-carboxylate(3g).

3g, 68% total yield, dr > 50 :1, yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.08 (s, 4 H), 6.17 (s, 1 H), 3.95 (s, 3 H), 3.90 (s, 3 H), 3.58-3.50 (m, 1 H), 3.44 (s, 3 H), 3.38-3.30 (m, 1 H), 2.29 (s, 3 H), 1.63 (s, 3 H), 0.97 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 170.1, 153.6, 148.7, 147.6, 138.1, 135.9, 129.6, 129.2, 128.5, 123.7, 104.7, 80.0, 72.4, 61.3, 60.8, 60.3, 56.1, 23.0, 21.1, 13.4. MS (EI): m/z (%) = 414 (M⁺, 1.92), 43 (100). HRMS calcd for C₂₃H₂₆O₇: 414.1679, found: 414.1680. IR (neat) *v*/cm⁻¹ 2974, 2940, 2890, 2485, 1929, 1746, 1687, 1590, 1456, 1414, 1356, 1328, 1306, 1247, 1120, 1087, 1049, 1017, 1004, 951, 879, 800, 764, 679.

42. Ethyl 6, 7, 8-trimethoxy-1-(4-methoxyphenyl)-3-methyl-4-oxoisochroman-3-carboxylate (3h).

3h, 40% total yield, dr > 50 : 1, yellow solid, m.p. 65-66 °C, 1H NMR (400 MHz, CDCl3) δ 7.50 (s, 1 H), 7.13 (d, J = 8.0 Hz, 2 H), 6.81 (d, J = 7.6 Hz, 2 H), 6.18 (s, 1 H), 3.97 (s, 3 H), 3.92 (s, 3 H), 3.77 (s, 3 H), 3.65 -3.58 (m, 1 H), 3.47 (s, 3 H), 3.45-3.40 (m, 1 H), 1.65 (s, 3 H), 1.01 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 170.2, 159.6, 153.6, 148.6, 147.7, 131.1, 130.7, 130.2, 129.7, 123.7, 114.2, 113.2, 104.8, 80.0, 72.1, 61.4, 60.8, 60.3, 56.2, 56.1, 55.2, 23.2, 13.5. MS (EI): m/z (%) = 430 (M⁺, 2.91), 43 (100). HRMS calcd for C₂₃H₂₆O₈: 430.1628, found: 430.1627. IR (neat) *v*/cm⁻¹ 3102, 2939, 2840, 2660, 1920, 1726, 1693, 1590, 1510, 1463, 1304, 1246, 1119, 1011, 818, 771, 673, 617.

43. Ethyl 6,7,8-trimethoxy-3-methyl-1-(naphthalen-1-yl)-4-oxoisochroman-3-carboxylate(3i).

3i, 66% total yield, dr> 50 : 1, white solid, m.p. 164-167 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 7.6 Hz, 1 H), 7.88 (d, J = 7.6 Hz, 1 H), 7.77 (d, J = 7.6 Hz, 1 H), 7.68 (t, J = 7.2 Hz, 1H), 7.58 -7.56 (m, 2 H), 7.21 (t, J = 7.2 Hz, 1 H), 6.99 (s, 1H), 6.76 (d, J = 6.4 Hz, 1 H), 3.99 (s, 3 H), 3.92 (s, 3 H), 3.47 (s, 3H), 3.30-3.20 (m, 1 H), 2.46-2.36 (m, 1 H), 1.62 (s, 3 H), 0.39 (t, J = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 191.4, 170.1, 153.7, 148.7, 147.5, 134.0, 133.7, 132.9, 129.7, 129.5, 128.3, 127.1, 126.5, 125.8, 125.0, 124.2, 104.9, 80.2, 69.4, 60.8, 60.4, 56.1, 23.8, 12.6. MS (EI): m/z (%) = 450 (M⁺, 8.93), 43 (100). HRMS calcd for C₂₆H₂₆O₇: 450.1679, found: 450.1681. IR (neat) v/cm⁻¹ 3074, 3006, 2980, 2943, 2870, 2843, 2652, 1956, 1734, 1683, 1589, 1463, 1352, 1271, 1250, 1117, 1088, 1005, 925, 859, 778, 660.

44. Ethyl 6,8-dimethoxy-3-methyl-4-oxo-1-phenylisochroman-3-carboxylate(3j).

3j, 85% total yield, dr > 50 : 1, white solid, m.p. 93-95 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.25 (m, 4 H), 7.19-7.17 (m, 2 H), 6.70 (s, 1 H), 6.21 (s, 1 H), 3.90 (s, 3 H), 3.63 (s, 3 H), 3.50-3.38 (m, 1 H), 3.30-3.20 (m, 1 H), 1.65 (s, 3 H), 0.95 (t, *J* = 7.2 Hz, 3 H) ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 170.1, 160.4, 156.4, 138.2, 129.7, 129.1, 128.1, 127.7, 123.8, 105.1, 100.0, 79.9, 72.3, 61.2, 55.7, 55.6, 23.2, 13.4. MS (EI): m/z (%) = 370 (M⁺, 1.31), 43 (100). HRMS calcd for C₂₁H₂₂O₆: 370.1416, found: 370.1419. IR (neat) *v*/cm⁻¹ 3092, 3058, 2999, 2978, 2941, 2902, 2843, 2675, 1964, 1723, 1693, 1608, 1451, 1372, 1307, 1266, 1208, 1121, 1058, 847, 747, 698, 663.

45. ethyl 3,5-dimethyl-4-oxo-1-phenyl-1,3,4,5-tetrahydropyrano[4,3-b]indole-3-carboxylate (3k/3k')

88% total yield, dr 3 : 1,

3k, major isomer, white solid, m.p. 140-142 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.45 (m, 2 H), 7.44-7.31 (m, 5 H), 7.00-6.90 (m, 1 H), 6.85 (d, *J* = 8.0 Hz, 1 H), 6.26 (s, 1 H), 4.14 (s, 3 H), 4.10-3.96 (m, 2 H), 1.81 (s, 3 H), 1.20 (t, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 187.2, 169.3, 140.2, 139.1, 129.0, 128.9, 128.5, 127.3, 127.2, 125.8, 122.5, 122.0, 120.8, 110.4, 83.7, 73.2, 61.7, 31.6, 18.9, 13.8. MS (EI): m/z (%) = 363 (M⁺, 37.09), 218 (100). HRMS calcd for C₂₂H₂₁NO₄: 363.1471, found: 363.1471. IR (neat) *v*/cm⁻¹ 2988, 2901, 1920, 1744, 1662, 1613, 1533, 1475, 1419, 1291, 1261, 1137, 1117, 1050, 980, 772, 713, 697.

3k', minor isomer, white solid, m.p. 104-106 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.45 (m, 2 H), 7.45-7.36 (m, 3 H), 7.35-7.30 (m, 2 H), 6.95-6.85 (m, 1 H), 6.72 (d, *J* = 8.0 Hz, 1 H), 6.44 (s, 1 H), 4.35-4.25 (m, 1 H), 4.35-4.15 (m, 1 H), 4.14 (s, 3 H), 1.79 (s, 3 H), 1.29 (t, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 185.6, 169.7, 140.3, 139.8, 129.04, 128.96, 128.7, 128.2, 127.0, 126.7, 122.6, 122.2, 120.7, 110.4, 83.8, 74.8, 61.8, 31.5, 22.0, 14.2. MS (EI): m/z (%) = 363 (M⁺, 4.49), 43 (100). HRMS calcd for C₂₂H₂₁NO₄: 363.1471, found: 363.1471. IR (neat) *v*/cm⁻¹2988, 2923, 2851, 1961, 1726, 1681, 1536, 1480, 1447, 1345, 1258, 1129, 1058, 1018, 976, 895, 780, 742, 700.

46. ethyl 3,9-dimethyl-4-oxo-1-phenyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-3carboxylate (3l/3l').

31/31', 63 % total yield, dr 3 : 1, white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.45 (m, 3,17 H), 7.44-7.35 (m, 7.15 H), 7.00-6.90 (m, 2.68 H), 6.74 (d, *J* = 8.4 Hz, 0.38 H), 6.47 (s, 0.37 H), 6.28 (s, 1.00 H), 4.35-4.20 (m, 0.74 H), 4.19-4.12 (m, 4.11 H), 4.12-4.00 (m, 1.98 H), 1.85-1.78 (m, 4.11 H), 1.30 (t, *J* = 7.2 Hz, 1.11 H), 1.21 (t, *J* = 7.2 Hz, 3.00 H). ¹³C NMR

29

(100 MHz, CDCl₃) δ 187.2, 185.5, 169.6, 169.3, 140.2, 139.6, 139.0, 129.0, 128.94, 128.90, 128.7, 128.5, 128.1, 127.8, 127.3, 127.2, 127.0, 126.6, 125.8, 122.49, 122.45, 122.1, 122.0, 120.8, 120.6, 110.41, 110.35, 83.73, 83.68, 74.7, 73.2, 61.9, 61.8, 31.6, 31.4, 21.9, 18.9, 14.1, 13.8. MS (EI): m/z (%) = 363 (M⁺, 20.08), 290 (100). HRMS calcd for C₂₂H₂₁NO₄: 363.1471, found: 363.1470. IR (neat) ν /cm⁻¹ 3675, 2988, 2901, 2883, 2828, 1942, 1908, 1743, 1727, 1681, 1662, 1613, 1476, 1420, 1260, 1117, 1052, 979, 909, 742, 713, 613.

47. methyl 7-methyl-8-oxo-5-phenyl-2,3,4,5,7,8-hexahydropyrano[4,3-b]pyran-7carboxylate (3m/3m').

66% total yield, dr 6:1,

3m, major isomer, white solid, m.p.96-99 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.35 (m, 5 H), 5.38 (s, 1 H), 4.30-4.20 (m, 1 H), 4.00-3.90 (m, 1 H), 3.58 (s, 3 H), 2.00-1.82 (m, 3 H), 1.80-1.72 (m, 1 H), 1.71 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 187.3, 169.1, 142.3, 137.5, 129.8, 129.0, 128.7, 128.4, 82.8, 75.9, 65.9, 52.7, 22.6, 21.1, 19.3. MS (EI): m/z (%) = 302 (M⁺, 14.23), 115 (100). HRMS calcd for C₁₇H₁₈O₅: 302.1154, found: 302.1157. IR (neat) *v*/cm⁻¹ 2988, 2970, 2884, 2833, 1990, 1922, 1910, 1744, 1687, 1664, 1639, 1476, 1457, 1378, 1289, 1260, 1109, 1065, 978, 931, 741, 700, 619.

3m', minor isomer, colorless oil, ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.35 (m, 5 H), 5.63 (s, 1 H), 4.32-4.29 (m, 1 H), 3.85-3.75 (m, 4 H), 1.90-1.75 (m, 3 H), 1.68 (s, 3 H), 1.66-1.60 (m, 1 H). ¹³C NMR (100 MHz, CDCl₃) δ 185.6, 169.7, 142.5, 138.7, 130.3, 129.0, 128.8, 128.1, 82.4, 77.1, 65.9, 52.8, 22.5, 22.0, 21.3. MS (EI): m/z (%) = 302 (M⁺, 0.38), 243(100). HRMS calcd for C₁₇H₁₈O₅: 302.1154, found: 302.1152. IR (neat) *v*/cm⁻¹ 2987, 2971, 2901, 2252, 1959, 1743, 1698, 1637, 1445, 1386, 1251, 1108, 1071, 910, 764, 729, 700, 612.

48. Sythesis ethyl 3-ethyl-6,7,8-trimethoxy-4-oxo-1-phenylisochroman-3-carboxylate(4a)^[6].

yield 64%, yellow solid,dr > 50 :1, m.p. 98-100 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1 H), 7.35-7.15 (m, 5 H), 6.23 (s, 1 H), 3.97 (s, 3 H), 3.92 (s, 3 H), 3.62-3.55 (m, 1 H), 3.42 (s, 3 H), 3.40-3.33 (m, 1 H), 2.20-2.10 (m, 1 H), 2.08-1.97 (m, 1 H), 1.05-0.95 (m, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 169.8, 153.6, 148.6, 147.7, 139.3, 129.5, 129.3, 128.4, 128.0, 124.5, 104.5, 83.8, 72.6, 61.2, 60.8, 60.2, 56.1, 30.0, 13.6, 8.0. MS (EI): m/z (%) = 414 (M⁺, 1.31), 57 (100). HRMS calcd for C₂₃H₂₆O₇: 414.1679, found: 414.1678. IR (neat) *v*/cm⁻¹ 3094, 2991, 2978, 2938, 2880, 2835, 2649, 1991, 1748, 1686, 1591, 1487, 1460, 1346, 1220, 1122, 1025, 966, 924, 864, 707.

49. Ethyl 6, 7, 8-trimethoxy -1- phenyl -4- (trifluoromethylsulfonyloxy)- 1H -isochromene-3- carboxylate (5a).

66% yield, red solid, m.p.75-77 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.30 (s, 3 H), 7.26 (s, 2 H), 6.82 (s, 1 H), 6.60 (s, 1 H), 4.35-4.30 (m, 2 H), 3.63-3.91 (m, 6 H), 3.77 (s, 3 H), 1.34 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 154.1, 149.4, 143.9, 137.6, 137.0, 136.1, 128.8, 128.2, 127.4, 121.3, 118.4 (q, $J_{C,F}$ = 319 Hz), 117.7, 100.4, 74.4, 62.2, 61.0, 56.0, 13.9. ¹⁹F NMR (376 MHz, CDCl₃): δ = -73.1 ppm. MS (EI): m/z (%) = 518 (M⁺, 4.80), 69 (100). HRMS calcd for C₂₂H₂₁O₉SF₃: 518.0858, found: 518.0860. IR (neat) v/cm⁻¹ 3013, 2984, 2944, 2850, 1726, 1630, 1597, 1573, 1495, 1461, 1414, 1362, 1307, 1203, 1133, 1054, 985, 825, 753, 696, 614.

Synthesis of isoquinoline-3-carboxylate 6a-6e.

The reaction was carried out at RT with **1** (0.3 mmol), 4 Å MS (120 mg), 10 mol % $Yb(OTf)_3$ in CH₂Cl₂ at 25 °C for 15 h , then the mixture of unpurified **2** was carried out with 1.05 eq. of K₂CO₃ at 40 °C overnight. Flash chlomataghraghy to afford **6**.

50. Ethyl 4-hydroxy-6,7,8-trimethoxy-1-phenylisoquinoline-3-carboxylate (6a).

The reaction of substrate **1n** with dr 1.1 :1 afforded **6a** in 78% total yield as white solid, m.p. 183-185 °C, ¹H NMR (400 MHz, CDCl₃) δ 11.91 (s, 1 H), 7.60 (s, 1 H), 7.48 (d, J = 6.4 Hz, 2 H), 7.42-7.31 (m, 3 H), 4.53 (q, J = 6.8 Hz, 2 H), 4.07 (s, 3 H), 3.94 (s, 3 H), 3.27 (s, 3 H), 1.46 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 156.0, 154.5, 149.9, 149.2, 145.2, 142.8, 128.9, 127.1, 127.0, 126.4, 121.2, 119.5, 98.4, 62.1, 61.1, 60.9, 56.1, 14.2. MS (EI): m/z (%) = 383 (M⁺, 49.72), 43 (100). HRMS calcd for C₂₁H₂₁NO₆: 383.1369, found: 383.1367. IR (neat) ν /cm⁻¹ 3304, 3107, 2994, 2939, 2855, 2496, 1958, 1650, 1565, 1490, 1465, 1407, 1319, 1206, 1122, 1074, 1024, 983, 813, 714.

51. Ethyl 1-(4-chlorophenyl)-4-hydroxy-6,7,8-trimethoxyisoquinoline-3-carboxylate (6b)

The reaction of substrate **10** with dr 4.6 :1 afforded **6b** in 84% yield as white solid, m.p. 221-223 °C, ¹H NMR (400 MHz, CDCl₃) δ 11.92 (s, 1 H), 7.59 (s, 1 H), 7.44 (d, *J* = 7.6 Hz, 2 H), 7.37 (d, *J* = 8.0 Hz, 2 H), 4.53 (q, *J* = 6.8 Hz, 2H), 4.07 (s, 3H), 3.96 (s, 3 H), 3.31 (s, 3 H), 1.47 (t, 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 156.1, 154.6, 149.6, 147.7, 145.3, 141.2, 133.1, 130.4, 127.2, 126.4, 121.0, 119.6, 98.5, 62.2, 61.2, 61.0, 56.2, 14.3. MS (EI): m/z (%) = 417 (M⁺, 6.63), 45 (100). HRMS calcd for C₂₁H₂₀NO₆Cl: 417.0979, found: 417.0979 IR (neat) *v*/cm⁻¹ 3435, 3110, 3088, 3020, 2979, 2937, 2863, 2824, 2584, 1914, 1650, 1566, 1491, 1461, 1406, 1317, 1206, 1181, 1124, 1074, 1012, 984, 843, 731, 688, 619.

52. Ethyl 1-(4-bromophenyl)-4-hydroxy-6,7,8-trimethoxyisoquinoline-3-carboxylate(6c)

The reaction of substrate **1p** with dr 2.4 : 1 afford **6c** in 89% yield as white solid, m.p. 228-230 °C, ¹H NMR (400 MHz, CDCl₃) δ 11.92 (s, 1 H), 7.59 (s, 1 H), 7.53 (d, J = 7.2 Hz, 2 H), 7.37 (d, J = 7.2 Hz, 2 H), 4.53 (q, J = 6.4 Hz, 2 H), 4.07 (s, 3 H), 3.95 (s, 3 H), 3.31 (s, 3 H), 1.46 (t, J = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 156.1, 154.7, 149.6, 147.7, 145.3, 141.7, 130.8, 130.2, 126.4, 121.4, 120.9, 119.6, 98.5, 62.2, 61.2, 61.0, 56.2, 14.3. MS (ESI): m/z (%) = 464 [(M+2+H)⁺], 462 [(M+H)⁺]. HRMS-ESI calcd for C₂₁H₂₁NO₆BrNa [(M+H)⁺]: 462.0542, found: 462.0547. IR (neat) ν/cm^{-1} 3327, 3271, 3106, 3087, 2980, 2936, 2853, 2579, 1914, 1649, 1607, 1583, 1567, 1490, 1465, 1407, 1317, 1206, 1181, 1125, 1074, 1010, 983, 853, 841, 794, 730, 685, 613.

53. Ethyl 4-hydroxy-1-(4-isopropylphenyl)-6,7,8-trimethoxyisoquinoline-3-carboxylate(6d).

The reaction of substrate **1q** with dr 5 : 1 afforded **6d** in 70% yiled, as white solid, m.p. 173-175 °C, ¹H NMR (400 MHz, CDCl₃) δ 11.89 (s, 1 H), 7.59 (s, 1 H), 7.40 (d, *J* = 7.2 Hz, 2 H), 7.25 (d, *J* = 7.6 Hz, 2 H), 4.53 (q, *J* = 6.4 Hz, 2 H), 4.07 (s, 3 H), 3.94 (s, 3 H), 3.26 (s, 3 H), 3.00-2.90 (m, 2 H), 1.46 (t, *J* = 6.8 Hz, 3 H), 1.29 (d, *J* = 6.4 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 156.0, 154.4, 150.0, 149.4, 147.8, 145.3, 140.3, 129.0, 126.5, 125.2, 121.3, 119.6, 98.4, 62.2, 61.2, 61.1, 56.2, 34.0, 24.1, 14.3. MS (EI): m/z (%) =425 (M⁺, 43.28), 308 (100). HRMS calcd for C₂₁H₂₀NO₆Cl: 425.1838, found: 425.1836. IR (neat) v/cm⁻¹ 3470, 3202, 3181, 3042, 3011, 2961, 2595, 1908, 1650, 1584, 1488, 1453, 1319, 1207, 1154, 932, 842, 796, 696.

54. Ethyl 4-hydroxy-6,7,8-trimethoxy-1-(4-nitrophenyl)isoquinoline-3-carboxylate(6e).

The reaction of substrate **1r** with dr 2.7 : 1 afforded **6e** 42% yield as white solid, m.p. 225-226 °C, ¹H NMR (400 MHz, CDCl₃) δ 11.99 (s, 1 H), 8.28 (d, J = 7.6 Hz, 2 H), 7.65 (d, J = 7.6 Hz, 2 H), 7.61 (s, 1 H), 4.54 (q, J = 6.8 Hz, 2 H), 4.09 (s, 3 H), 3.96 (s, 3 H), 3.31 (s, 3 H), 1.47 (t, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 156.4, 155.1, 149.4, 149.1, 146.9, 146.4, 145.3, 130.0, 126.4, 122.4, 120.8, 119.8, 98.7, 62.4, 61.2, 60.9, 56.3, 14.3. MS (EI): m/z (%) = 428 (M⁺, 90.16), 356 (100). HRMS calcd for C₂₁H₂₀N₂O₈: 428.1220, found: 428.1220. IR (neat) ν/cm^{-1} 3297, 3108, 3058, 2988, 2926, 2851, 2595, 1946, 1661, 1594, 1563, 1511, 1448, 1412, 1344, 1229, 1129, 1080, 973, 851, 728, 693, 612.

References:

- 1. Antonioletti, R.; Bovicelli, P.; Malancona, S. Tetrahedron 2002, 58, 589.
- 2. Yadav, V.K.; Kapoor, K. K. Tetrahedron 1995, 51, 8573
- 3. Hiroaki, K.; Hiromichi, S.; Yuko. O.; Tomohiko, O. J. Am. Chem. Soc. 2010, 132(2), 807.
- 4. Ochiai, M.; Nakanishi, A.; Suefuji, T. Org. Lett. 2000, 2, 2923.
- 5. Hiroaki, K.; Hiromichi, S.; Yuko. O.; Tomohiko, O. J. Am. Chem. Soc. 2010, 132(2), 807.
- 6. Renhua Fan, Yang Ye, Adv. Synth. Catal. 2008, 350, 1526-1530.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2012

Crystal Structure of 4a

¹H and ¹³C NMR Spectra for New Compounds

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

		1			
				L .	

1 1 2 2 2 1 3 2 2 3 1 3 2 3 3 1 3 3 3 3	0 0 0 7 0 7 0 0 7 0 0 0 0 0 0 0 0 0 0 0	L 8 5 4
100	S C C C C C C C C C C C C C C C C C C C	
\sim	4 444400	
$\langle \rangle \rangle$		

0.000

ц	00	\sim	\vdash	00000	L-	
\vdash	00	0	\sim	0 0 7 7 0 7	\sim	4000 M H Ø U
•	•	•	•		•	UMOQ 4 MPO
0	\sim	\sim	\sim	0 1 8 0 5	9	
00	9	Ъ	4	$\square \square \square \square \square \square$	0	00H 7 0770
\leftarrow	\leftarrow	\leftarrow		$\neg \neg \neg \neg \neg \neg \neg$	\leftarrow	2000 7778

27.27

							1,							I						
	I																			
 200	190	180	170	 160	150	140	130	120	110	100	90	-	70	 50	40	30	20	10	0	ppm

 150 140 130 120 110 100	90 80 70 60 50 40	30 20 10 0 ppm

-27.37


								~~~ \			
9	8 500 8	7 () ()	6	5	4 29:02	3	2	<b>1</b>	0	-1	ppm

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

				1				
1		I	1					
	L							



-13.59

06	27	13	73	0 0 0 0 0 0 0 0 0 0 0	13	60	49
•	•	•	•		•	•	•
	4	$\sim$	$\sim$	7 8 7 7	$\infty$	$\sim$	9
00	9	Ь	4	N N M M	$\neg$	Η	0
$\leftarrow$	$\vdash$	$\vdash$	-	$\neg \neg $	$\vdash$	$\neg$	-
				$  \langle \rangle \rangle$			

. 32 68 68	56 34 75 12
77 77 76	60 60 560 560
$\bigvee$	$ \langle \rangle \rangle / \rangle$









210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

2.03

2.04





3.08



2.10 9.42

1.00

$\neg$	002		$\vdash$	0 0 0 0 U	$\circ \infty$	00	
9	レコレ	-	9	0440	мо	Ь	000000000000000000000000000000000000000
•		•	•		• •	•	18010
00	744	$\sim$	$\sim$	$\sim \infty \infty \infty$	വവ	9	
00	000	ß	4	0000	-	0	00107 077
-	$\neg$ $\neg$ $\neg$	$\neg$	$\neg$	$\neg \neg \neg \neg \neg \neg$	-	$\neg$	L 00000 777
	$\langle \rangle /$				$\bigvee$		




-112.361





000HH	0 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 L 4	0
8 L L 10 8	レンの80Tノ	БWИ	0
	$\circ \circ \circ \circ \circ \circ$	$\circ$	0
• • • • •	• • • • • • •	• • •	•
00017	すすすすろろ		0





4	742	4	$\leftarrow$	00	00	$\sim$	
$\sim$	-1 5 M	0	9	0 1 1	4 7	4	0 T D T D D D D D D D D D D D D D D D D
•		•	•		• •	•	MOQ 80400
00	140	$\sim$	$\sim$	$\bigcirc \infty \infty$	വവ	9	
00	000	Ъ	4	N N N	$\neg$	0	20552 277
$\leftarrow$	$\neg$ $\neg$ $\neg$		$\vdash$	$\neg$ $\neg$ $\neg$	$\neg$ $\neg$	$\leftarrow$	20000 111
	$\langle   \rangle$			$\langle V \rangle$	$\bigvee$		



13.91

210	200	190	180	170	160	150	140	130	120	110	100	9(	) 80	70	60	50	40	30	20	10	0	ppm

-111.894









										1	
 				 	liy an della y carteri	 		<b></b>	 		







210 200 190 18	 150 140 130	120 110 100	90 80 70	 40 30	20 1	0 0	ppm







$\begin{array}{c} HeO \leftarrow G \leftarrow $	 	143.53 134.96 130.85 130.85 130.05 128.71 128.71	 77.32 77.00 76.68 65.81 62.98 62.31 60.91 56.22	— 13.89
				MeO MeO Php-Cl H
				OMe













210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

MNUNO	0	$\infty \cup \omega \cup \omega$	Ъ	-1 M O	0
0 F 9 0 F	СI L	21943	ы	570	0
$\square$	С	$\circ \circ \circ \circ \circ$	$\sim$	ののの	0
• • • • •	•	• • • • •	•	• • •	•
ファファ	4	44000	$\sim$	000	0











Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012	

∞ ∞ ∩ ∩ ∞

143. 138. 130. 129. 126.

 $\langle \rangle \rangle$ 

106.23

ம

ώ.

152.

66.47

÷-

188.58

1







Μ4 W	М 4	M O N 4 O P P	40 0	0
$\infty \mapsto \infty$	<b>Ч</b> О	4 4 0 0 U M H	407	0
4 7 M	0 00	N O O O O O O O	ରରର	0
• • •	• •		• • •	•
$\square$	00	すすすろろろ	000	0
	$\bigvee$			



8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	ppm
		기도	JU					八							JU			
		୍ବର୍ଷ	(8)												(2)			
		2.4	5						200 v						e.			

























دوم می اود از می و می و از می و می			الم المعالم المعالم المعالم المعالية المعالية المعالية المعالية المعالية المعالية المعالية المعالية المعالية ال	this are notice at a smaller place provide any indication of a smaller matrix in consequences of prospect spin types (the accepted spin type matrix is a smaller of the spin term).
210 200 190 180 170 160	150 140 130 120 110	100 90 80 70 60	50 40 30 20	10 0 ppm








0	0 0	н и го си	N O	
-	L 0	0 1 0 0 0	-1 F	N O O O O O N
•	• •		• •	0 8 1 2 0 0
0	40	0 0 0 0 1 0	r 9	
0	00	N $N$ $N$ $N$ $M$ $M$	00	2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
$\leftarrow$	$\leftarrow$	$\neg \neg \neg \neg \neg \neg \neg \neg$	$\dashv$ $\dashv$	2 2 2 2 1 1 1
		$\langle \langle \rangle \rangle$	$\bigvee$	



-13.65

		n dinan katu julu ana ang ang katudin Julu katu katu ang		Ald Annya Faraka Kulo A Markin bina ad ana a ba a ba	The star is the life of a second s	n. Madanah sisak di su ka di su
210 200 190 180 170 160 150 140 130	120 110	100 90 80	70 60	50 40 30	0 20 10 0	ppm

$\leftarrow$	0 U	00400C	<u>ы</u>	
Ь	0 M	0 H 0 M 0	44	NO0 000 0
•	• •		• •	WOQ ØOF 4
0	9 0	0 $0$ $0$ $0$ $0$	00	
00	0 0	N $N$ $N$ $N$ $N$	00	0 5MQ 077
$\leftarrow$	- $-$	$\vdash \vdash \vdash \vdash \vdash$	$\leftarrow$	2 2 2 1 1 1
		$  \langle \rangle \rangle $	$\bigvee$	



13.82

													I						
in medinistra state at a state of the state of the state	r de de s la si de sede ped. De se me	. Alde helde sid generale segmente per es	inger with the start	faith de state de la contra de ser estate de	ut chail a bin		anticu distanticular	a barra blegt a da med kan sliv	A Grant montable	na di kana dana dana dana dana dana dana dana	the design of the second second second		audulan di sula jada	uid alautoman	te i spisie dubie e fiere			Line of the second s	and the second secon
210 200		80 170	160	1.5.0	140	1.30	120		100			7.0		.50	4.0	 	1.0		





____ 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 0.5 4.0 1.0 0.0 ppm 2.00 0.98 **1.0** 2.05 6.01 3.01



2.04 5.21 1.01 3.07 1.00



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

0004000000000000000000000000000000000	9	ОM	0	$H \otimes D$	0
のてのらろのてろの 4 2	0	2	4	O H O	0
OO400000000000000000000000000000000000	9	$\sim \sim$	00	$\square \square \square$	0
	•	• •	•	• • •	•
	4	ケケ	$\sim$		0
		$\bigvee$			





	••••••••••••••••••••••••••••••••••••••	- <b></b>																	J.			
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

114.18	77.32 77.00 76.68	66.10 62.80 62.68		

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 7 7 6 7 2 0	25 25 25 25 25 25 25 25 25 25 25 25 25 2	
• •			
000	0 00 00 1	0 4 0 M U	
400	N N N (	H H N N N N	
$\neg$ $\neg$ $\neg$ $\neg$	- $  -$	$\neg \neg $	
$\langle \langle \cdot \rangle$			

Electronic Symplementery Material (ESI) for Chemical Commu	a ta a ti a ma
Electronic Supplementary Material (ESI) for Chemical Commu	nications
This journal is © The Royal Society of Chemistry 2012	

-182.11

-166.61

0 0 Ph H OEt 1]

-13.83

Electronic Supplementary Material (ESI) for Chemical Communications	
This journal is © The Royal Society of Chemistry 2012	

		H H





448 446 346 331	46	8 1 6 5 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000
4 4 M M	• 9	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•
			$\bigvee$ $\bigvee$	





			149.41	131.71 128.65 128.01 126.60			77.32 76.68 76.68 66.45			H H 20.81 20.81	DMe
210 200 1	.90 180	170 1	.60 150	140 130 120	) 110 10	0 90	80 70	60 50	40 3	0 20 10	mqq 0

















0 m l 0 m 0 h 0 0 h 0 0 1 m l	C W C 8 0 8 4 9 C C 4 9 M 9	0	0 C L L Q O	0
	4 7 7 0 0 0 0 0 0 4 0 0 0	0	0 1 0 0 0 4	0
				•
0077777777777	4 4 4 4 4 4 4 4 M M M M	$\sim$		0















0.63







ppm

















OEt



210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

00				
0	4 U L U M L O O	の1404474	OH O V 4 O H O M	0
$\sim$	0 7 0 0 7 P 0 H	こ 4 こ 0 の 4 ら 1	40	0
•	4 1 1 1 1 0 0 M	0 7 0 7 M M M 7	$\mathcal{D}$	0
$\bigcirc$				•
$\leftarrow$	0 1 1 1 1 1	すすすすちろろろ	$\circ\circ\circ$ $\circ\circ$	0















 7.319 7.280 7.280 7.236 6.881 6.881 6.436 6.436 6.380	4.705 4.375 4.375 4.332 4.332 4.331 4.292 3.866 3.866 3.770 3.690	1. 382 1. 365 1. 365 1. 365 1. 352 1. 352 1. 318 1. 284	-0.004
	H ₃ CO H ₃ CO OCH ₃ Ph	OEt H ₃ CO	OEt






0400000700	0	00 1400001	0 M O	0
00000000000	0	して るろうのよう	ちょこ	0
4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0	00000000	$\sim \sim $	0
	•		• • •	•
0000011111	ß	ササ ササササササ	$\vdash \vdash \vdash$	0







HOUWNO@@@@#N4P4O@@#M

44000000000000000000

sо

60

ΜN

00 00

 $\dashv$   $\dashv$ 

 $\langle \rangle$ 

. .

см

4.7

r 9

00

 $\neg$ 

 $\langle \rangle$ 



080000440

11 40 7 7 7 8 7

00 1111100

L

/

. . . . . . . . .

 $\leftarrow$ 4  $^{\circ}$  $\overline{}$ 

 $^{\circ}$ Ч.

S

S

.









183.66 182.60	167.14 166.45 140.11	7 140.02 7 138.55 7 138.26 7 129.24 7 129.09 7 128.67	127.26 127.28 127.28 127.21	L122.47 L122.47 L122.08 L120.97 L120.87 L110.45	81.99 81.99 77.81 77.81 77.32 77.00	74.52 61.96 61.84		31.57 31.46	<pre></pre>	
										Ph O O O O Et
									Ι	
lan an a	television of property and the second second	ing the set of section of the section of the set of the		an and derived in a state of the sector of the		, meter visited and the barrent state barrents	e konstantika se posis ^k a, p. 316 d. es	ng de se ingelie de seu de de seu de de seu de s	ek de setek figen en beskeren en beskeren beskeren beskeren beskeren beskeren beskeren beskeren beskeren besker	n illen sool water in paide op in soothe ge in soothe ge
210 200 190 18	30 170 16	0 150 140	130 120	110 100	90 80 7	0 60	50 40	30	20 10	0 pr



	183.61	166.94	143.99 143.09 137.50 137.50 131.21 131.21 129.13 128.35 128.35 128.33	80.56 79.83 77.49 77.49 77.20 77.00 66.00 65.87 52.68	22.71 22.63 21.17 21.17
					O O O O O O O O O O O O O O O O O O O
lan a dia dia ka Jawa Kata ang Kata ng Pangan di ka ka ka ka					ernathar y the stage and faithfur and water and an an analysis and a stage to a by a first stage of a system day a system
210 200 1	.90 180	170 160	) 150 140 130 120 110	100 90 80 70 60 50	40 30 20 10 0 ppm

0					
Ň	C \oto 4 \oto C \oto 1	00047	0	MUM	0
<b>N</b>	0010000	71080	Ь	4 N O	0
•	4 4 0 0 0 C M	-1 00 10 M	$\sim$	m $m$ $m$	0
$\leftarrow$		• • • • •	•	• • •	•
$\leftarrow$	00001111	44000	$\sim$	$\dashv$ $\dashv$ $\dashv$	0



	1	
		N

13	12	11	10	9	8	7	6	5	4	3	2	1	0	ppm
	0.97				ſ	2.03	1.00		<b>2.06</b> <b>3.09</b> <b>3.03</b>		3.07	3.07		



ppm







Q

NTS

OMe

ĊI

**OEt** 



 7.465 7.446 7.358 7.358 7.358 7.358 7.358 7.358 7.085 6.993 6.993 6.281	4.322 4.314 4.314 4.297 4.297 3.862 3.862 3.862 3.794	2.256	1.365 1.348 1.331	0.000
			MeO MeO OMe	OH O OEt NTs Br





					0
0 1 7 8 1 1 9 9 7 0	4 7 0 0 7 9	0 0 M O	0	60700	Ō
$\circ$	000 O H O	личо	ß	100H	0
4 4 H O O O O O P M	-1 00 0 M M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim$	m $m$ $m$ $m$ $m$	•
	• • • • • •	• • • •	•	• • • • •	0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	みみみ ろろろ	$\square \square \square \square$	$\sim$	$\vdash \vdash \vdash \vdash \vdash$	1















1.22 3.03 1.12 1.04 3.41 2.15 3.24 1.00 3.12

	 		140 120 120	110 100	
y, ni ka bû y, ka na dadî yekî da na ka sin kî biyî Navê New Yeşî bişî ka şi ka şî ye yî yî ka na beşî şî şî kî t					
					H ₃ CO H ₃ CO OCH ₃ Ph
		\/			



























1																		
	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	ppm
		1.02	0.87		1.00				3.82	4.10				3.17	3.16			



pp













$\infty$		ப	M M M M M M M M	Ъ	м о л	0
0	4000	L	00474666666	4	0 1 0	0
4	$\neg \neg \neg \infty \infty$	$\leftarrow$	60700004444	9	000	0
•	• • • •	•	$\cdots$	•	• • •	•
$\sim$	00 11	9	$\sigma$	$\leftarrow$	110	0
	$\langle / \rangle \langle / \rangle$					













•


0 1 1 0	Ъ	4	0 7 10 10 00 10 7 0 H	$\sim$	- 1 U	0
7 8 2	0	$\leftarrow$	$M $ $\Omega $ $0 $ $0 $ $0 $ $0 $ $0 $ $0 $ $0$	Ъ	540	0
$\square$ $\square$ $\square$ $\square$	9	$\sim$	00004444000	9	ののの	0
	•	•		•	• • •	•
ファファ	9	9	$(\alpha, \alpha, \alpha$	$\leftarrow$	000	0





												1					
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	ppm
	4.27	2.06	1.01	1.00				3.08	3.09	1.02			3.10	3.17			

			129.66 129.66 129.07 129.07 128.05 123.81		79.94 77.32 76.68 76.68 72.30 61.20 55.68	
						H ₃ CO H ₃ CO OCH ₃ Ph
un bandhar din pang bandhar pang	A falled a start of a start of the start of th					
210 200	190 180	170 160	150 140 130 120	110 100 90	) 80 70 60	

のの800000000000000000000000000000000000	の の こ の こ の い の ち の の ち の の ち の の ち の の ち の の ち の の ひ の ひ	6 C	12000	00
4 4 7 7 M M M M M M M M M M M M M M M M	H = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	ő		õ
		•	• • •	•
00000000000000000000	む d d d d d d d d d d M M	$\leftarrow$	$\vdash \vdash \vdash$	0





			I				
						1	
I	Ι	1					

0 -COOEt Ph major, 3k

$\neg$	$\circ$	σ	0	ഹ	$\sim$	Η	$\infty$	ഹ	$\circ$	$\infty$	4
•	•	•	•	•	•	•	•	•	•	•	•
0	σ	$\infty$	$\infty$	$\infty$	$\sim$	$\sim$	ப	$\sim$	$\sim$	$\circ$	$\circ$
4	$^{\circ}$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\vdash$
$\neg$	$\vdash$	$\vdash$	$\leftarrow$	$\leftarrow$	$\leftarrow$	$\leftarrow$	$\vdash$	$\leftarrow$	$\vdash$	$\leftarrow$	$\vdash$
$\langle$	$\langle$		~	$\sim$		/			/	_ ،	/

$\sim$	$\sim$	$\circ$	$\infty$	00	,	
$\sim$	$^{\circ}$	$^{\circ}$	9	$\neg$	1	<u> </u>
•	•	•	•	•		•
$^{\circ}$	$\sim$	$\sim$	9	$^{\circ}$	,	
$\infty$	$\sim$	$\sim$	$\sim$	$\sim$		9
	ζ		Ζ,	/		

-18.92 -13.79 31.55

### Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

-187.22

-169.28







			140.29 139.75 129.04 128.96 128.69 128.69 126.97 126.97 122.56 1122.56 110.37	83.76 77.32 77.00 76.68 74.81 61.84	
					Ph minor, 3k'
210 200 1	.90 180	170 160	150 140 130 120 110 100	90 80 70 60 50	40 30 20 10 0 ppm

















Electronic Supplementary	/ Material (	(ESI)	) for Chemical Communications
This journal is © The Roy	al Society	of C	hemistry 2012

10					
Ň	0	n naçõe	MNOWO O	œ	400
•	•		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	м H Ф
	0	0 2 6 6 8 8 8		•	
00	9	4 M N N N N	0 00770	$\sim$	0 1 0
$\leftarrow$	$\leftarrow$	$\neg \neg $	8 7 7 7 7 8	С	$\neg \land \land \neg$
					$\langle   \rangle$

O COOMe O Ph
major, 3m

ppm

																			I			
unitariya kapangila yingi niya	and despited as		hanna an fan staan staan st		in the second						her half and a first being	niyet et withe glass from the set		1417-141-1-181-1-18 ¹⁻¹ 81-191-191-191-	lan Latte gewing supe	والدويد وإرتباعها هار فأتواريه	altan persetan tahun pertaman			an di kana ng kang na ng kang n	le cuife af a cuir às an	halogy folget at a second
 210	200	190	 180	170	160	150	140	130	120	110	100	90	80	 70	 60	 50	40	 30	 20	 10	 0	ppm















8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm 1.03 JIL 3.14 1.00 3.21 2.94 3.09 3.16 2.13





З**.**88

τ.

1













<b>o</b>				0
$\leftarrow$	N N 1 V 1	N04400 00	725	0
0	0 7 0 0	0 N/0/M/0	4 0 0	0
•	С 4 4 M M	M BONNN	44	•
$\leftarrow$			• • •	0
$\leftarrow$		44446 M		







00					
$\leftarrow$	らての13の	00000000	$\sim$	0 M O	0
0	0000H00	0 7 0 H M U	$\leftarrow$	704	0
•	$\nabla$ $\cup$	n n n n o o	m	ヤセヤ	0
$\leftarrow$			•	• • •	•
$\leftarrow$		ササササチ	$\sim$	$\leftarrow \vdash \leftarrow \vdash$	0







		MeO MeO OMe Br

98.52

77.32 77.00 76.68

62.24 61.17 60.98 56.21

 $\mathbb{N}$ 

14.25

																	1						 
210	200	190	180	170	160	150	140	130	120	110	100	90	80	) 7	0 6	0 5	0	40	30	20	10	0	ppm

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

97

170.

hen het den trypen op het des ander det

156.11 154.65 149.57 147.74 145.30 141.68

 $\langle | / |$ 

130.75 130.16 126.39 121.35 120.94 119.62

 $|\langle \rangle \rangle$ 

<u>у</u> т

8.0	7.5 7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5 3.0	2.5 2.0	1.5	1.0 0.5		ppm
										MeO MeO	OH OMe i-Pr	OEt	
	7.259					4.535	4.069 3.940	3.259 2.983 2.967 2.950	~2.933	1.481 1.463 1.446 1.301	~1.284	-0.000	









