Calix[2]phenol[2]pyrrole and a fused pyrrolidine-containing derivative

Kang Bok Jung,^a Sung Kuk Kim,^b Vincent M. Lynch,^b Dong-Gyu Cho^{*a} and Jonathan L. Sessler^{*bc}

^aDepartment of Chemistry, Inha University, 253 Yonghyundong Namgu, Inchon 402-751, Korea. Fax:82 32 867 5664; Tel: 82 32 860 7686; E-mail: dgcho@inha.ac.kr ^bDepartment of Chemistry and Biochemistry University of Texas at Austin, Austin TX 78712, USA. E-mail: sessler@mail.utexas.edu; Fax: +1 512 471 7550; Tel: +1 512 471 5009 ^cDepartment of Chemistry, Yonsei University, Seoul 120-749, Korea

Contents

General experimental and synthetic details	S2
NMR spectroscopic studies	S 4
Experiments for anion binding	S 7
X-ray data for macrocycles 4 and 9	S 9
NMR Spectra	S16

General and Synthetic details

Proton and ¹³C-NMR spectra were measured at 25 °C using Varian Unity Innova 400 instruments at 400 MHz. Chemicals and solvents were purchased commercially and used without further purification.

2,2'-(5-Hydroxy-1,3-phenylene)dipropan-2-ol (**2**). Dimethyl 5-hydroxyisophthalate (1.0 g, 4.75 mmol) were dissolved in 25 mL of dry THF under argon at 0 °C. MeMgBr (26.2 mL, 26.16 mmol in THF) was added and the reaction mixture was stirred at room tempearture overnight. After the reaction was carefully quenched with water, the solvent was removed under reduced pressure. The residue was diluted with ethyl acetate and then washed with 1N aqueous HCl. The organic layer was separated, dried over Na₂SO₄, and subjected to filtration. After the organic solvent was removed under reduced pressure, the resulting residue was purified via column chromatography over silica gel (eluent: hexane/ethyl acetate 1:1). This yielded **2** as a white solid (0.73 g, 3.46 mmol, 73%).¹H-NMR (500 MHz, DMSO-*d*₆) [ppm] 1.35 (s, 12H), 4.83 (s, 2H), 6.67 (d, *J* = 2.0 Hz, 2H), 6.94 (d, *J* = 2.5 Hz, 1H), 9.01 (s, 1H), ¹³C-NMR (125 MHz, DMSO-*d*₆) [ppm] 32.4, 71.1, 109.8, 112.0, 151.7, 156.8. HRMS–ESI: m/z [M + Na]⁺ calcd for C₁₂H₁₈O₃: 233.1154; found: 233.1148.

3,5-Bis(2-(1H-pyrrol-2-yl)propan-2-yl)phenol (3). Precursor **2** (1.0 g, 4.75 mmol) and pyrrole (1.59 g, 5 equiv.) were dissolved in (20 mL) under argon at room temperature. *p*-TsOH (20 mg, 0.017 mol) was added and the reaction mixture was stirred for 5 h. After the addition of triethylamine (1 mL) to neutralized the reaction mixture, the solvent was removed under reduced pressure. The crude product was purified via column chromatography over silica gel (eluent: hexane/ethyl acetate 4:1). This yielded **3** as a yellow foam (0.623 g, 2.02 mmol, 43%). ¹H-NMR (500 MHz, CD₃CN) [ppm] 1.58 (s, 12H), 5.95 (m, 2H), 6.00 (dd, J = 3.5, 3.5 Hz, 2H), 6.43 (dd, J = 3.5, 3.5 Hz, 2H), 6.59 (s, 1H), 6.62 (dd, J = 3.5, 3.5 Hz, 2H), 6.73 (t, J = 3.5, Hz, 2H), 8.69 (bs, 2H), ¹³C-NMR (125 MHz, CD₃CN) [ppm] 29.4, 39.2, 104.2, 107.2, 111.1, 115.7, 116.8, 140.3, 151.2, 156.5. HRMS–ESI: m/z [M + Na]⁺ calcd for C₂₀H₂₅N₂O: 309.1967; found: 309.1960.

Calix[2]phenol[2]pyrrole (4). Precursors 1 (0.136 g, 0.65 mmol) and 3 (0.200 g, 0.65 mmol) were dissolved in DCM/acetonitrile (10/7, v/v; 17 mL). *p*-TsOH (40 mg, 0.023 mol) was added and the reaction mixture was stirred for 24 h. After the addition of triethylamine (0.5 mL) to neutralized the reaction mixture, the solvent was removed under reduced pressure. The crude product was purified via column chromatography over silica gel (eluent: petroleum ether/ethyl acetate 2:1). This gave 4 as a yellow foam (40 mg, 0.082 mmol, 13%). H-NMR (500 MHz, acetone-*d*₆) [ppm] 1.42 (s, 24H), 5.77 (d, *J* = 3.0 Hz, 4H), 6.27 (t, *J* = 1.5 Hz, 2H), 6.59 (d, *J* = 1.5 Hz, 4H), 7.85 (s, 2H), 8.09 (bs, 2H), ¹³C-NMR (125 MHz, acetone-*d*₆) [ppm] 30.3, 38.5, 103.2, 109.7, 119.9, 140.3, 151.7, 157.2. HRMS–CI: m/z [M + H]⁺ calcd for C₃₂H₃₉N₂O₂: 483.3012; found: 483.3009.

2,2'-(2-Hydroxy-1,3-phenylene)dipropan-2-ol (6). Dimethyl 2-hydroxyisophthalate (1.6 g, 6.72 mmol) was dissolved in 40 mL dry THF under an argon atmosphere at 0 °C. MeMgBr (37.0 mL, 37.0 mmol in THF) was added and the reaction mixture was stirred for 3 h. After the reaction was quenched via the careful addition of water, the solvent was removed under reduced pressure. The residue was diluted with ethyl acetate and then washed with 1N aqueous HCl. The organic layer was separated off, dried over Na₂SO₄, and subject to filtration. After the organic solvent was removed under reduced pressure, the resulting residue was purified via column chromatography over silica gel (eluent: hexane/ethyl acetate 3:1), yielding **6** as a white solid (1.0 g, 4.74 mmol, 62%).¹H-NMR (400 MHz, CD₃CN) [ppm] 1.59 (s, 12H), 4.47 (s, 2H), 6.80 (t, J = 8.0 Hz, 1H), 7.16 (d, J = 8.0 Hz, 2H), 10.41 (s, 1H), ¹³C-NMR (125 MHz, DMSO- d_6) [ppm] 30.7, 75.3, 120.4, 126.0, 135.1, 154.8. HRMS–ESI: m/z [M + Na]⁺ calcd for C₁₂H₁₈O₃: 233.1154; found: 233.1150.

2-(2-(1H-Pyrrol-2-yl)propan-2-yl)-6-(2-hydroxypropan-2-yl)phenol diphenylsilane (7). Precursor **5** (1.0 g, 4.75 mmol) and pyrrole (1.59 g, 5 equiv.) were dissolved in acetonitrile (40 mL) under an argon atmosphere at room temperature. *p*-TsOH (110 mg, 0.64 mol) was added and the reaction mixture was stirred overnight. After triethylamine (1 mL) was added to neutralize the reaction mixture, the solvent was removed under reduced pressure. The crude product was purified via column chromatography over silica gel (eluent: hexane/ethyl acetate 4:1), yielding **7** as a yellow foam (0.84 g, 3.23 mmol, 68%). ¹H-NMR (500 MHz, CD₃CN) [ppm] 1.17 (s, 6H), 1.24 (s, 6H), 1.72 (s, 6H), 1.80 (s, 2H), 2.41 (d, *J* = 8.5 Hz, 2H), 2.66 (d, *J* = 7.5 Hz, 2H), 3.40 (bs, 1H), 5.75(s. 2H), 5.89 (m, 1H), 6,76 (t, *J* = 7.0 Hz, 2H), 6.88 (d, *J* = 7.5 Hz, 2H), 10.0 (bs, 1H), ¹³C-NMR (125 MHz, CD₃CN) [ppm] 27.9, 29.9, 38.8, 54.6, 75.6, 103.6, 107.2, 116.4, 118.8, 124.4, 126.7, 132.4, 135.8, 140.7, 154.8. HRMS–ESI: m/z [M + Na]⁺ calcd for C₁₆H₂₁NO₂Na:282.1470; found:282.1464.

Fused calix 9. Precursor 7 (0.800 g, 1.43 mmol, 2 equiv.) was dissolved in dry acetonitrile (50 mL) under an argon atmosphere. Methansulfonic acid (80 mg, 0.83 mmol) was added and the reaction mixture was stirred for 24 h. After the addition of triethylamine (1 mL) to neutralize the reaction mixture, the solvent was removed under reduced pressure. The crude product was purified via column chromatography over silica gel (eluent: hexanes/ethyl acetate 10:1). This yielded **9** as a white solid (74 mg, 0.15 mmol, 10%). ¹H-NMR (500 MHz, CD₂Cl₃ [ppm] 0.85 (t, J = 6.8 Hz, 3H), 1.17 (s, 9H), 1.28 (m, 6H), 1.51 (m, 2H), 3.21 (td, J = 7.2, 7.2 Hz, 2H), 4.53 (t, J = 4.8 Hz, 1H), 6.54 (d, J = 9.2 Hz, 1H), 6.94 (bs, 1H), 7.00 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H), 7.37 (m, 5H), 7.47 (m, 3H), 7.71 (m, 4H), 7.81 (dd, J = 8.8, 2.8 Hz, 1H), 8.20 (d, J = 8.8 Hz, 1H), 8.36 (d, J = 2.8 Hz, 1H), ¹³C-NMR (125 MHz, CD₂Cl₃) [ppm] 21.1, 28.5, 28.6, 28.8, 29.7, 37.1, 45.1, 102.5, 112.2, 120.5, 120.9, 125.2, 131.1, 137.8, 139.8, 154.0, HRMS–CI: m/z [M + H]⁺ calcd for C₃₂H₃₉N₂O₂: 483.3012; found: 483.3009.

NMR spectroscopic studies

Figure S1. C-H Correlation Spectrum of 9 recorded in CD₂Cl₂ at 25°C

Figure S2. ¹H NMR spectra of 9 recorded in CD_2Cl_2 before and after the addition of MeOH- d_4

	pyrrolic	phenolic	phenolic	pyrrolic	1
(f) 10.52 equiv	INHS	<u>а-сня</u>	<i>р</i> -СПS	<u>сн</u> з	
(e) 7.20 equiv					
(d) 4.44 equiv				r	
(c) 1.16 equiv			Λ		
(b) 0.39 equiv		l	Λ		
(a) Free			Λ		
7.6	7.1	6.6 (ppm)	6.1	5.6	

Experiments for anion binding

Figure S3. Proton NMR spectra of 4 recorded in $CD_2Cl_2/DMSO-d_6$ (20/1, v/v) upon the addition of TBACl (tetrabutylammonium chloride).

Figure S4. Proton NMR spectra of **4** recorded in $CD_2Cl_2/DMSO-d_6$ (20/1, v/v) before and after adding increasing quantities of TBACl (tetrabutylammonium chloride). The titration was ceased when no further spectral changes were observed.

Figure S5. ¹H

NMR

spectroscopic titration curve for the addition of chloride anion (in the form of its tetrabutylammonium salt, TBACl) to compound **4** in CD₂Cl₂/DMSO- d_6 (20/1, v/v) at 25 °C. The curve shows the fit of the experimental data to a 1:1 binding profile.

X-ray data for macrocycles 4 and 9

Table 1. Crystal data and structure refinement for	9 (CCDC 858002).		
Empirical formula	C66 H79N5 O4		
Formula weight	1005.61		
Temperature	153(2) K		
Wavelength	0.71075 Å		
Crystal system	Orthorhombic		
Space group	Pna21		
Unit cell dimensions	a = 24.3554(10) Å α = 90°.		
	$b = 11.3368(3) \text{ Å} \qquad \beta = 90^{\circ}.$		
	$c = 20.2929(4) \text{ Å}$ $\gamma = 90^{\circ}.$		
Volume	5603.1(3) Å ³		
Z	4		
Density (calculated)	1.179 Mg/m ³		
Absorption coefficient	0.073 mm ⁻¹		
F(000)	2120		
Crystal size	0.20 x 0.16 x 0.11 mm ³		
Theta range for data collection	3.35 to 27.48°.		
Index ranges	-31<=h<=31, -14<=k<=14, -26<=l<=26		
Reflections collected	12374		
Independent reflections	6597 [R(int) = 0.0527]		
Completeness to theta = 27.48°	99.7 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.00 and 0.961		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6597 / 1872 / 849		
Goodness-of-fit on F ²	1.036		
Final R indices [I>2sigma(I)]	R1 = 0.0519, $wR2 = 0.1218$		
R indices (all data)	R1 = 0.0972, wR2 = 0.1394		
Absolute structure parameter	-3.0(17)		
Extinction coefficient	0.0019(4)		
Largest diff. peak and hole	0.261 and -0.201 e.Å ⁻³		

Figure S6. View of molecule 1 of **9** showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level.

Figure S7. View of the disorder in molecule 2 of **9** showing a partial atom labeling scheme. Displacement ellipsoids are scaled to the 30% probability level.

ruoto 2. Orystar auta and structure refinement for	.(eebe 050005)	
Empirical formula	C32 H38 N2O2	
Formula weight	482.64	
Temperature	153(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/n	
Unit cell dimensions	a = 7.3075(2) Å	α= 90°.
	b = 17.5050(4) Å	β= 91.307(1)°.
	c = 9.9498(3) Å	$\gamma = 90^{\circ}$.
Volume	1272.43(6) Å ³	
Ζ	2	
Density (calculated)	1.260 Mg/m ³	
Absorption coefficient	0.078 mm ⁻¹	
F(000)	520	
Crystal size	0.30 x 0.20 x 0.18 mm ³	
Theta range for data collection	2.35 to 27.43°.	
Index ranges	-9<=h<=9, -22<=k<=22, -12<=	=l<=12
Reflections collected	5334	
Independent reflections	2892 [R(int) = 0.0184]	
Completeness to theta = 27.43°	99.5 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	2892 / 0 / 240	
Goodness-of-fit on F ²	0.986	
Final R indices [I>2sigma(I)]	R1 = 0.0417, wR2 = 0.1076	
R indices (all data)	R1 = 0.0555, wR2 = 0.1164	
Extinction coefficient	1.3(3)x10 ⁻⁵	
Largest diff. peak and hole	0.253 and -0.211 e.Å ⁻³	

Figure S8. Unit cell packing diagram for **4**. The view is approximately down the **a** axis. The molecules stack in H-bound columns parallel to **a**. Dashed lines are indicative of H-bonding interactions. The geometry of these interactions is: N1-H12N^{...}O1, N^{...}O 3.276(2)Å, H^{...}O 2.36(2)Å, N-H^{...}O 165(1)°; O1-H1O^{...}N1, O^{...}N 3.326(2)Å, H^{...}N 2.58(3)Å, O-H^{...}N 144(2)°.

Figure S9. A molecular column of 4 in solid state. Thermal ellipsoids are scaled to the 50% probability level.

Table 3. Crystal data and structure refinement for	4•TBAF (CCDC 858004)		
Empirical formula	C99 H155 Cl6 F N6O5		
Formula weight	1740.99		
Temperature	153(2) K		
Wavelength	0.71075 Å		
Crystal system	Monoclinic		
Space group	I2/a		
Unit cell dimensions	a = 29.8044(8) Å	α= 90°.	
	b = 10.3800(5) Å	β= 95.290(2)°.	
	c = 31.855(2) Å	$\gamma = 90^{\circ}$.	
Volume	9813.1(8) Å ³		
Ζ	4		
Density (calculated)	1.178 Mg/m ³		
Absorption coefficient	0.230 mm ⁻¹		
F(000)	3768		
Crystal size	0.38 x 0.24 x 0.02 mm		
Theta range for data collection	2.06 to 27.50°.		
Index ranges	-38<=h<=38, -12<=k<=13, -41<=l<=41		
Reflections collected	18633		
Independent reflections	10914 [R(int) = 0.0493]		
Completeness to theta = 27.50°	96.8 %		
Max. and min. transmission	0.9954 and 0.9178		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	10914 / 68 / 562		
Goodness-of-fit on F ²	1.366		
Final R indices [I>2sigma(I)]	R1 = 0.0831, wR2 = 0.2221		
R indices (all data)	R1 = 0.1623, WR2 = 0.2553		
Largest diff. peak and hole	0.995 and -1.248 e.Å ⁻³		

Figure S10. View of **4** showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level. Fluoride ions, TBA cations, and the disordered molecules have been omitted for clarity.

NMR Spectra

¹H NMR spectrum of **2** recorded in DMSO- d_6

¹³C NMR spectrum of **2** recorded in DMSO- d_6

¹H NMR spectrum of **3** recorded in CD₃CN

 ^{13}C NMR spectrum of **3** recorded in CD₃CN

¹H NMR spectrum of **4** recorded in acetone- d_6

 13 C NMR spectrum of **4** recorded in acetone- d_6

 ^{13}C NMR spectrum of **6** recorded in CD₃CN

 1 H NMR spectrum of 7 recorded in CD₃CN

¹³C NMR spectrum of 7 recorded in CD₃CN

¹H NMR spectrum of **9** recorded in CD₂Cl₂

 ^{13}C NMR spectrum of 9 recorded in CD_2Cl_2