Supporting information

for

Efficient Synthesis of 2,5-Disubstituted Tetrazoles *via* the Cu₂O-Catalyzed Aerobic Oxidative Direct Cross-coupling of N-H Free Tetrazoles with Boronic Acids

Yu Li,^{a,b} Lian-Xun Gao,^a and Fu-She Han^{*a,c}

^a Changchun Institute of applied Chemistry, Chinese Academy of Sciences, 5625
Renmin Street, Changchun 130022, China
^b Graduate School of Chinese Academy of Sciences, Beijing 100864, China

^c State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

Table of Contents

General information	. S2
General procedure for the synthesis of disubstituted tetrazoles	S2
Characterization of couplings products	S3
XPS Analysis of recovered catalysts	.S11
¹ H- and ¹³ C-NMR Spectra of coupling products	S13

General information

All the solvents were used without further purification. The ¹H-NMR spectra were recorded at 600 MHz in CDCl₃ or DMSO-d₆, and the ¹³C-NMR spectra were recorded at 150MHz in CDCl₃ or DMSO-d₆ with TMS as internal standard. All shifts were given in ppm. All coupling constants (*J* values) were reported in Hertz (Hz). Column chromatography was performed on silica gel 100-200 mesh, 200-300 mesh.

General procedure for the synthesis of 2,5-disubstituted tetrazoles (taking coupling of 5-phenyl tetrazole and 4-methylphenylboronic acid as a representative)

Into a 40 mL Schlenck tube was added 5-phenyl tetrazole **1a** (0.5mmol, 0.0731g), 4-methylphenylboronic acid **2a** (1mmol, 0.1360 g), Cu₂O (5mol%, 0.025mmol, 0.0036g) and DMSO (4mL). The reaction mixture was stirred under oxygen atmosphere at 100°C until tetrazole had disappeared as monitored by TLC. The reaction mixture was then cooled to room temperature and diluted with 40mL ethyl acetate, washed consecutively with 5mL of 1M aqueous HCl, 5mL of brine (four times). The organic layer was separated and dried over MgSO₄, then concentrated under reduced pressure and purified by chromatography on silica column or purified using preparative TLC to afford the product **3a**.

Characterization of coupling products

5-Phenyl-2-(p-tolyl)-2H-tetrazole (3a)

¹H-NMR (600 MHz, CDCl₃) δ : 8.25 (dd, J = 7.9, 1.4 Hz, 2H), 8.08 (d, J = 8.4 Hz, 2H), 7.55–7.48 (m, 3H), 7.37 (d, J = 8.3 Hz, 2H), 2.46 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ : 165.0, 139.8, 134.7, 130.4, 130.1, 128.9, 127.2, 127.0, 119.7, 21.1. HRMS: Calcd. for C₁₄H₁₃N₄ [M+H]⁺: 237.1140; found: 237.1135.

5-Phenyl-2-(*o*-tolyl)-2H-tetrazole (3b)

¹H-NMR (600 MHz, CDCl₃) δ : 8.25 (dd, J = 7.9, 1.5 Hz, 2H), 7.67 (d, J = 7.9 Hz, 1H), 7.55–7.49 (m, 3H), 7.46 (dd, J = 11.3, 4.5 Hz, 1H), 7.44–7.38 (m, 2H), 2.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ : 164.9, 136.5, 133.0, 131.9, 130.4, 130.3, 128.9, 127.2, 127.0, 126.8, 125.2, 18.7. HRMS: Calcd. for C₁₄H₁₃N₄ [M+H]⁺: 237.1140; found: 237.1136.

2-(2,4,6-Trimethylphenyl)-5-phenyl-2*H*-tetrazole (3c)

¹H NMR (600 MHz, CDCl₃) δ : 8.25 (dd, J = 7.9, 1.4 Hz, 2H), 7.55–7.48 (m, 3H), 7.04 (s, 2H), 2.39 (s, 3H), 2.02 (s, 6H). ¹³C-NMR (151 MHz, CDCl₃) δ 165.0, 140.8, 135.0, 133.8, 130.4, 129.2, 128.9, 127.3, 126.9, 21.2, 17.3. HRMS: Calcd. for C₁₆H₁₇N₄ [M+H]⁺: 265.1453; found: 265.1446.

2-(4-Methoxyphenyl)-5-phenyl-2*H*-tetrazole(3d)

¹H-NMR (600 MHz, CDCl₃) δ : 8.25 (d, J = 6.8 Hz, 2H), 8.11 (d, J = 9.0 Hz, 2H), 7.55–7.47 (m, 3H), 7.07 (d, J = 9.0 Hz, 2H), 3.90 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ : 165.0, 160.5, 130.5, 130.4, 128.9, 127.3, 127.0, 121.4, 114.6, 55.6. HRMS: Calcd. for C₁₄H₁₃N₄O [M+H]⁺: 253.1089; found: 253.1084.

4-(5-Phenyl-tetrazol-2-yl)phenol (Table 2, 3e)

¹H-NMR (600 MHz, DMSO) δ 10.22 (s, 1H), 8.16 (d, J = 6.7 Hz, 2H), 7.96 (d, J = 8.8 Hz, 2H), 7.64–7.56 (m, 3H), 7.03 (d, J = 8.8 Hz, 2H). ¹³C-NMR (151 MHz, DMSO) δ: 164.1, 159.0, 130.7, 129.2, 128.4, 126.7, 126.5, 121.7, 116.2. HRMS: Calcd. for C₁₃H₁₁N₄O [M+H]⁺: 239.0933; found: 239.0928.

3-(5-Phenyl-2H-tetrazol-2-yl)aniline (3f)

¹H-NMR (600 MHz, DMSO) δ: 8.16 (d, J = 6.6 Hz, 2H), 7.64–7.57 (m, 3H), 7.37 (t, J = 1.9 Hz, 1H), 7.29 (t, J = 7.9 Hz, 1H), 7.25 (d, J = 8.1 Hz, 1H), 6.76 (d, J = 7.9 Hz, 1H), 5.71 (s, 2H). ¹³C-NMR (151 MHz, DMSO) δ: 164.2, 150.2, 137.0, 130.8, 130.3, 129.3, 126.6, 126.5, 115.2, 106.4, 104.2. HRMS: Calcd. for C₁₃H₁₂N₅ [M+H]⁺: 238.1093; found: 238.1088.

2-(4-Chlorophenyl)-5-phenyl-2*H*-tetrazole (3g)

¹H-NMR (600 MHz, CDCl₃) δ : 8.25 (dd, J = 7.7, 1.8 Hz, 2H), 8.18–8.15 (m, 2H), 7.58–7.49 (m, 5H). ¹³C-NMR (151 MHz, CDCl₃) δ : 165.3, 135.4, 135.3, 130.6, 129.8, 128.9, 127.0, 126.9, 121.0. HRMS: Calcd. for C₁₃H₁₀ClN₄ [M+H]⁺: 257.0594; found: 257.0589. 1-(4-(5-Phenyl-2*H*-tetrazol-2-yl)phenyl)ethanone (3h)

¹H-NMR (600 MHz, CDCl₃) δ : 8.34 (d, *J* = 8.7 Hz, 2H), 8.29–8.25 (m, 2H), 8.18 (d, *J* = 8.7 Hz, 2H), 7.54 (m, 3H), 2.69 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ : 196.5, 165.5, 139.6, 137.5, 130.8, 129.9, 129.0, 127.1, 126.7, 119.6, 26.6. HRMS: Calcd. for C₁₅H₁₃N₄O [M+H]⁺: 265.1089; found: 265.1084.

3-(5-Phenyl-2H-tetrazol-2-yl)benzaldehyde (3i)

¹H-NMR (600 MHz, CDCl₃) δ : 10.16 (s, 1H), 8.73 (s, 1H), 8.51 (d, J = 8.1 Hz, 1H), 8.30–8.25 (m, 2H), 8.04 (d, J = 7.6 Hz, 1H), 7.79 (t, J = 7.8 Hz, 1H), 7.58–7.50 (m, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ : 190.6, 165.5, 137.7, 137.5, 130.8, 130.6, 130.2, 129.0, 127.1, 126.8, 125.0, 120.5. HRMS: Calcd. for C₁₄H₁₁N₄O [M+H]⁺: 251.0933; found: 251.0932.

Methyl 4-(5-phenyl-2H-tetrazol-2-yl)benzoate (3j)

¹H-NMR (600 MHz, CDCl₃) δ : 8.31 (d, J = 8.7 Hz, 2H), 8.28–8.25 (m, 4H), 7.56–7.51 (m, 3H), 3.98 (s, 3H). HRMS: Calcd. for C₁₅H₁₃N₄O₂ [M+H]⁺: 281.1039; found: 281.1034.

4-(5-Phenyl-2*H*-tetrazol-2-yl)benzonitrile (3k)

¹H-NMR (600 MHz, CDCl₃) δ : 8.38 (d, J = 8.8 Hz, 2H), 8.28–8.24 (m, 2H), 7.90 (d, J = 8.8 Hz, 2H), 7.57–7.52 (m, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ : 165.8, 139.3,

133.8, 131.0, 129.0, 127.2, 126.5, 120.2, 117.6, 113.3. HRMS: Calcd. for $C_{14}H_{10}N_5$ $[M+H]^+$: 248.0936; found: 248.0931.

2-(3-Nitrophenyl)-5-phenyl-2H-tetrazole (3l)

¹H-NMR (600 MHz, CDCl₃) δ : 9.09 (t, J = 1.9 Hz, 1H), 8.62–8.58 (m, 1H), 8.38 (dd, J = 8.2, 2.0 Hz, 1H), 8.28 (dd, J = 7.3, 2.0 Hz, 2H), 7.81 (t, J = 8.2 Hz, 1H), 7.56–7.53 (m, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ : 165.8, 149.0, 137.4, 131.0, 130.9, 129.0, 127.2, 126.4, 125.1, 124.0, 115.0. HRMS: Calcd. for C₁₃H₁₀N₅O₂ [M+H]⁺: 268.0834; found: 268.0830.

5-(5-phenyl-2*H*-tetrazol-2-yl)-1H-indole (3m)

¹H-NMR (600 MHz, CDCl₃) δ 8.45 (s, 1H), 8.40 (b, 1H), 8.28 (d, *J* = 7.1 Hz, 2H), 8.05 (dd, *J* = 8.8, 1.7 Hz, 1H), 7.57–7.47 (m, 4H), 7.36 (t, *J* = 2.6 Hz, 1H), 6.72 (s, 1H). ¹³C-NMR (151 MHz, CDCl₃) δ 164.9, 136.0, 130.6, 130.3, 128.9, 128.0, 127.6, 127.0, 126.4, 114.8, 112.7, 111.8, 103.9. HRMS: Calcd. for C₁₅H₁₂N₅ [M+H]⁺: 262.1093; found: 262.1092.

5-phenyl-2-(thiophen-3-yl)-2*H*-tetrazole (3n)

¹H-NMR (600 MHz, CDCl₃) δ 8.24 (d, *J* = 7.4 Hz, 2H), 7.96 (d, *J* = 3.1 Hz, 1H), 7.78 (d, *J* = 5.2 Hz, 1H), 7.54–7.48 (m, 4H). ¹³C-NMR (151 MHz, CDCl₃) δ 164.8 (s, 1C), 135.6 (s, 1C), 130.5 (s, 1C), 128.9 (s, 2C), 127.2(s, 1C), 127.0 (s, 3C), 120.4 (s, 1C), 115.5 (s, 1C). HRMS: Calcd. for C₁₁H₉N₄S [M+H]⁺: 229.0548; found: 229.0545.

5-(2-Chlorophenyl)-2-(p-tolyl)-2H-tetrazole (4a)

¹H-NMR (600 MHz, CDCl₃) δ : 8.09 (d, J = 8.4 Hz, 2H), 8.05 (dd, J = 7.1, 2.3 Hz, 1H), 7.59–7.56 (m, 1H), 7.46–7.40 (m, 2H), 7.37 (d, J = 8.3 Hz, 2H), 2.46 (s, 3H). ¹³C-NMR (151 MHz, cdcl₃) δ : 163.2, 140.0, 134.6, 133.2, 131.4, 131.1, 130.9, 130.1, 126.9, 126.4, 119.8, 21.2. HRMS: Calcd. for C₁₄H₁₂ClN₄ [M+H]⁺: 271.0750; found: 271.0746.

5-(2-Chlorophenyl)-2-(4-methoxyphenyl)-2*H*-tetrazole (4b)

¹H-NMR (600 MHz, CDCl₃) δ : 8.13 (d, *J* = 9.0 Hz, 2H), 8.05 (dd, *J* = 7.2, 2.2 Hz, 1H), 7.59–7.55 (m, 1H), 7.46–7.40 (m, 2H), 7.07 (d, *J* = 9.0 Hz, 2H), 3.90 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ : 163.2, 160.6, 133.2, 131.4, 131.1, 130.9, 130.4, 126.9, 126.4, 121.5, 114.7, 55.6. HRMS: Calcd. for C₁₄H₁₂ClN₄O [M+H]⁺: 287.0700; found: 287.0695.

1-(4-(5-(2-Chlorophenyl)-2*H*-tetrazol-2-yl)phenyl)ethanone (4c)

¹H-NMR (600 MHz, CDCl₃) δ : 8.35 (d, J = 8.7 Hz, 2H), 8.19 (d, J = 8.7 Hz, 2H), 8.08 (dd, J = 7.4, 2.0 Hz, 1H), 7.60 (dd, J = 7.8, 1.4 Hz, 1H), 7.49–7.43 (m, 2H), 2.69 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ : 196.5, 163.8, 139.6, 137.7, 133.3, 131.5, 131.4, 131.0, 130.0, 127.0, 125.8, 119.8, 26.7. HRMS: Calcd. for C₁₅H₁₂ClN₄O [M+H]⁺: 299.0700; found: 299.0700.

5-(2-Bromophenyl)-2-(p-tolyl)-2H-tetrazole (5a)

¹H-NMR (600 MHz, CDCl₃) δ : 8.09 (d, J = 8.4 Hz, 2H), 7.97 (dd, J = 7.7, 1.6 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.36 (ddd, J = 9.4, 6.5, 2.3 Hz, 3H), 2.46 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ : 164.1, 140.0, 134.6, 134.2, 131.7,

131.3, 130.2, 128.4, 127.5, 122.2, 119.8, 21.2. HRMS: Calcd. for C₁₄H₁₂BrN₄ [M+H]⁺:

315.0245; found: 315.0240.

5-(2-Bromophenyl)-2-(4-methoxyphenyl)-2*H*-tetrazole (5b)

¹H-NMR (600 MHz, CDCl₃) δ : 8.13 (d, *J* = 9.0 Hz, 2H), 7.96 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.36 (td, *J* = 7.8, 1.5 Hz, 1H), 7.07 (d, *J* = 9.0 Hz, 2H), 3.90 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ : 164.0, 160.6, 134.2, 131.7, 131.3, 130.4, 128.4, 127.4, 122.1, 121.5, 114.7, 55.6. HRMS: Calcd. for C₁₄H₁₂BrN₄O [M+H]⁺: 331.0194; found: 331.0190.

1-(4-(5-(2-Bromophenyl)-2*H*-tetrazol-2-yl)phenyl)ethanone (5c)

¹H-NMR (600 MHz, CDCl₃) δ : 8.35 (d, J = 8.7 Hz, 2H), 8.19 (d, J = 8.7 Hz, 2H), 8.00 (dd, J = 7.7, 1.5 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.39 (td, J = 7.8, 1.5 Hz, 1H), 2.69 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ : 196.5, 164.6, 139.6, 137.7, 134.3, 131.7, 131.6, 130.0, 127.9, 127.5, 122.1, 119.8, 26.7. HRMS: Calcd. for C₁₅H₁₂BrN₄O [M+H]⁺: 343.0194; found: 343.0191.

5-(4-Nitrophenyl)-2-(*p*-tolyl)-2*H*-tetrazole (6a)

¹H-NMR (600 MHz, CDCl₃) δ: 8.45 (d, J = 8.8 Hz, 2H), 8.39 (d, J = 8.8 Hz, 2H), 8.08 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 2.47 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ 163.2, 149.0, 140.5, 134.4, 133.2, 130.3, 127.8, 124.2, 119.8, 21.2. HRMS: Calcd. for C₁₄H₁₂N₅O₂ [M+H]⁺: 282.0991; found: 282.0986.

2-(4-Methoxyphenyl)-5-(4-nitrophenyl)-2*H*-tetrazole (6b)

¹H-NMR (600 MHz, CDCl₃) δ: 8.44 (d, J = 8.8 Hz, 2H), 8.39 (d, J = 8.8 Hz, 2H), 8.13 (d, J = 9.1 Hz, 2H), 7.09 (d, J = 9.1 Hz, 2H), 3.92 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ: 163.1, 160.9, 149.0, 133.2, 130.1, 127.8, 124.2, 121.5, 114.8, 55.7. HRMS: Calcd. for C₁₄H₁₂N₅O₃ [M+H]⁺: 298.0940; found: 298.0925.

1-(4-(5-(4-Nitrophenyl)-2*H*-tetrazol-2-yl)phenyl)ethanone (6c)

¹H-NMR (600 MHz, CDCl₃) δ: 8.47 (d, J = 8.8 Hz, 2H), 8.41 (d, J = 8.8 Hz, 2H), 8.35 (d, J = 8.6 Hz, 2H), 8.21 (d, J = 8.6 Hz, 2H), 2.70 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ: 196.4, 163.7, 149.2, 139.3, 138.0, 132.6, 130.0, 128.0, 124.3, 119.9, 26.7. HRMS: Calcd. for C₁₅H₁₂N₅O₃ [M+H]⁺: 310.0940; found: 310.0933.

5-(4-Methoxyphenyl)-2-(p-tolyl)-2H-tetrazole (7a)

¹H-NMR (600 MHz, CDCl₃) δ : 8.18 (d, J = 8.8 Hz, 2H), 8.06 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 7.04 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H), 2.45 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ : 164.9, 161.4, 139.7, 134.7, 130.1, 128.5, 119.8, 119.6, 114.3, 55.3, 21.2. HRMS: Calcd. for C₁₅H₁₅N₄O [M+H]⁺: 267.1246; found: 267.1239.

2,5-Bis(4-methoxyphenyl)-2*H*-tetrazole (7b)

¹H-NMR (600 MHz, CDCl₃) δ : 8.18 (d, *J* = 8.8 Hz, 2H), 8.09 (d, *J* = 9.0 Hz, 2H), 7.05 (dd, *J* = 13.7, 8.9 Hz, 4H), 3.89 (d, *J* = 4.6 Hz, 6H). ¹³C-NMR (151 MHz, CDCl₃) δ: 164.8, 161.3, 160.4, 130.5, 128.5, 121.3, 119.9, 114.6, 114.3, 55.6, 55.3. HRMS: Calcd. for C₁₅H₁₅N₄O₂ [M+H]⁺: 283.1195; found: 283.1188.

1-(4-(5-(4-Methoxyphenyl)-2*H*-tetrazol-2-yl)phenyl)ethanone (7c)

¹H-NMR (600 MHz, CDCl₃) δ : 8.32 (d, J = 8.6 Hz, 2H), 8.20 (d, J = 8.7 Hz, 2H), 8.17 (d, J = 8.6 Hz, 2H), 7.05 (d, J = 8.7 Hz, 2H), 3.90 (s, 3H), 2.68 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ : 196.5, 165.4, 161.6, 139.6, 137.4, 129.9, 128.6, 119.5, 119.2, 114.4, 55.4, 26.6. HRMS: Calcd. for C₁₆H₁₅N₄O₂ [M+H]⁺: 295.1195; found: 295.1189.

5-Benzyl-2-(p-tolyl)-2H-tetrazole (8a)

¹H-NMR (600 MHz, CDCl₃) δ: 7.96 (d, J = 8.5 Hz, 2H), 7.38 (d, J = 7.4 Hz, 2H), 7.34–7.30 (m, 4H), 7.24 (t, J = 5.4 Hz, 1H), 4.33 (s, 2H), 2.42 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃) δ: 165.6, 139.7, 136.6, 134.6, 130.0, 128.8, 128.6, 126.9, 119.7, 31.9, 21.1. HRMS: Calcd. for C₁₅H₁₅N₄ [M+H]⁺: 251.1297; found: 251.1292.

4-(2-(p-Tolyl)-2H-tetrazol-5-yl)pyridine (9a)

¹H-NMR (600 MHz, DMSO) δ : 8.84 (d, J = 5.4 Hz, 2H), 8.10 (d, J = 5.3 Hz, 2H), 8.06 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.1 Hz, 2H), 2.44 (s, 3H). ¹³C-NMR (151 MHz, DMSO) δ : 162.6, 150.9, 140.5, 133.8, 133.7, 130.5, 120.6, 120.0, 20.7. HRMS: Calcd. for C₁₃H₁₂N₅ [M+H]⁺: 238.1093; found: 238.1086.

XPS Analysis of Catalysts under different atmosphere

1. Reaction was carried out under N₂ atmosphere: Into a 40mL Schlenck tube was added 5-phenyl-2*H*-tetrazole (0.5mmol, 0.0731g), 4-methylphenylboronic acid (1mmol, 0.1372g), Cu₂O (50mol%, 0.025mmol, 0.0355g), a magnetic bar, and DMSO (4mL). The tube was evacuated three times for 10 min under high vacuum and backfilled with N₂. The reaction mixture was stirred at 100°C for 24h under nitrogen atmosphere, then cooled to room temperature. Degassed ethyl acetate (40mL) was added. The precipitate was collected by filtration and used for XPS analysis. The results showed that Cu^T exist predominantly (Figure S1).

Figure S1. XPS spectroscopy of recovered catalyst under N₂

2. Reaction carried out under O₂ atmosphere: Into a 50mL round bottom flask was added 5-phenyl-2*H*-tetrazole (3mmol, 0.4360g), 4-methylphenylboronic acid (6mmol, 0.8165g), Cu₂O (5mol%, 0.15mmol, 0.0211g) and DMSO (5mL). The reaction mixture was stirred at 100°C under O₂ atmosphere until tetrazole had disappeared as monitored by TLC. The reaction mixture was cooled to room temperature and diluted with 50mL ethyl acetate and 30mL water. The precipitate was collected by filtration and used for XPS analysis. The results showed that both Cu^T and Cu^T exist in the recovered mixture (Figure S2).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Figure S2. XPS spectroscopy of recovered catalyst under O₂

¹H and ¹³C NMR Spectra of coupling products

Figure S4. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3b

Figure S5. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3c

Figure S6. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3d

Figure S8. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3f

Figure S9. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3g

Figure S10. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3h

Figure S12. ¹H-NMR spectra of compound **3j** (containing a small amount by-product formed from the homocoupling of boromic acids)

Figure S15. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound **3m**

Figure S16. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3n

Figure S17. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 4a

Figure S18. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 4b

Figure S19. 1 H- (upper) and 13 C-NMR (lower) spectra of compound 4c

Figure S21. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 5b

Figure S22. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 5c

Figure S23. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 6a

Figure S24. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 6b

Figure S25. 1 H- (upper) and 13 C-NMR (lower) spectra of compound 6c

Figure S27. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 7b

Figure S28. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 7c

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

S39

Figure S30. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 9a