Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic supporting information

A novel C-5' substituted cinchona alkaloid-derived catalyst promotes additions of alkyl thiols to nitroolefins with excellent enantioselectivity

Carole Palacio^a and Stephen J. Connon^{*a}

^a Centre for Synthesis and Chemical Biology, School of Chemistry, University of Dublin,

Trinity College, Dublin 2, Ireland; E-mail: connons@tcd.ie

Table of Contents

1.0	General	S2
2.0	Catalyst synthesis	S 3
3.0	Asymmetric Michael addition procedures	S 5
4.0	Characterisation data	S6
5.0	NMR spectra	S15
6.0	HPLC conditions and chromatograms associated with the Michael adduct	S29
7.0	Crystal structure	S41
8.0	References	S42

> Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

1.0 General

Proton Nuclear Magnetic Resonance spectra were recorded on a 400 MHz spectrometer in CDCl₃ (unless otherwise stated) referenced relative to residual CHCl₃ ($\delta = 7.26$ ppm). Chemical shifts are reported in ppm and coupling constants in Hertz. Carbon NMR spectra were recorded on the same instrument (100 MHz) with total proton decoupling. Fluorine NMR spectra were recorded at 350 MHz. HSQC, TOCSY and NOE NMR experiments were used to aid assignment of NMR resonances when required. Mass spectra were recorded by electron impact ionization, chemical ionisation, in ES positive or ES negative modes for electron spray mass spectroscopy. All melting points were determined using a standard melting point apparatus and are uncorrected. $[\alpha]_D$ values are given in 10⁻¹ deg cm²g⁻¹. Flash chromatography was carried out using silica gel, particle size 0.04-0.063 mm. TLC analysis was performed on precoated 60F₂₅₄ slides, and visualized by UV irradiation, KMnO₄ staining. Tert-butyl benzylmercaptan, para-methoxybenzylmercaptan, trans-β-nitrostyrene, 2-((E)-2nitrovinyl)thiophene. 2-nitrobenzaldehyde and hydrocinnamaldehyde were sourced commercially. All reactions were carried out under a protective argon atmosphere. The starting material used in the synthesis of the cinchona alkaloid derivative 12 was prepared according to the literature.¹

> Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

2.0 Synthesis of catalyst

2.1 4-((*R*)-((2*S*,4*S*,8*R*)-8-Ethylquinuclidin-2-yl)(tertbutyldiphenylsilyloxy)methyl)-6methoxyquinolin-5-amine

5'-aminoquinine¹ (1.50 g, 4.40 mmol) was dissolved in freshly distilled DMF (8.0 mL). DMAP (55.10 mg, 0.44 mmol) was added and triethylamine (3.1 mL, 22.20 mmol) was injected via syringe. The obtained mixture was cooled to 0 °C and tertbutylchlorodiphenylsilane (1.4 mL, 5.28 mmol) was finally added dropwise via syringe. The reaction was then allowed to warm to room temperature and was stirred for 18 h. Diethyl ether (30 mL) was added and the resulting solution was washed with water (4×100 mL). The organic layer was separated, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified by column chromatography (100% EtOAc -> 8:2 EtOAc:methanol) to give the expected silvl protected amino derivative (1.82 g, 71%) as a yellow solid. mp 179 °C-180 °C (decomposition 131 °C). $[\alpha]_D^{22}$ -114 (c 0.4 in CHCl₃). v_{max}/cm^{-1} : 3325, 2933, 1798, 1551, 1454, 1378, 1277, 1182, 1124, 1042, 999, 842, 700. δ_H (400 MHz, CDCl₃): 8.41 (d, J 3.8, 1H), 7.79 (m, 2H), 7.58-7.43 (m, 5H), 7.36-7.30 (m, 1H), 7.25 (d, J 7.6, 2H), 7.11 (app. t, 2H), 6.56 (d, J 3.8, 1H), 5.99 (s, NH₂), 4.69 (d, J 10.0, 1H), 4.06 (s, 3H), 3.99 (app q, 1H), 2.79 (dd, J 9.2, 13.2, 1H), 2.31 (app t, 2H), 2.11-2.03 (m, 1H), 2.00-1.89 (m, 1H), 1.89 (br. s, 1H), 1.45-1.13 (m, 6H), 1.00 (s, 9H), 0.83 (t, J 7.2, 3H). δ_C (100 MHz, CDCl₃): 147.1, 145.7 (g), 142.8 (g), 135.9, 135.7, 132.2 (g), 131.6 (g), 131.4 (g), 129.9, 129.5, 127.5, 126.9, 126.8 (g), 122.0, 118.5, 116.9 (g), 114.4, 79.5, 59.4, 57.1, 56.1, 40.8, 37.2, 27.9, 27.2, 26.7, 24.9, 24.8, 18.9 (q), 11.9. HRMS (m/z -ES): Found: 580.3340 (M^+ + H. C₃₆H₄₆N₃O₂Si Requires: 580.3359)

> Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

2.2 1-(3,5-*Bis*(trifluoromethyl)phenyl)-3-(4-((*R*)-((2*S*,4*S*,8*R*)-8-ethylquinuclidin-2-yl)(tertbutyldiphenylsilyloxy)methyl)-6-methoxyquinolin-5-yl)urea (12)

The amino derivative described above (1 g, 1.72 mmol) was dissolved in freshly distilled CH₂Cl₂ (5.0 mL) under an Ar atmosphere. The obtained solution was cooled to 0 °C and 3,5bis(trifluoromethyl)phenyl isocyanate (350 µL, 2.00 mmol) was added dropwise over 10 min via syringe. The reaction was stirred for 18 h at 0 °C. Finally, the crude mixture was charged directly onto a flash chromatography column for purification (100% EtOAc -> 10/0.4 EtOAcmethanol) to give 12 as a cream solid (848 mg, 59%). mp 98-103 °C. $[\alpha]_D^{22}$ -55 (c 0.3 in CHCl₃). v_{max}/cm⁻¹: 3264, 2932, 2861, 1686, 1542, 1471, 1429, 1384, 1276, 1175, 1129, 1110, 1026, 863, 701. $\delta_{\rm H}$ (600 MHz, CDCl₃): 0.46 (t, J 6.9, 3H), 0.91-1.23 (m, 15H), 1.58 (app. br s, 1H), 1.93 (app. d, 1H), 2.18 (m, 1H), 2.31 (app. dd, 1H), 2.39-2.48 (m, 1H), 2.71 (dd, J 13.2, 9.6, 1H), 3.48 (app. dd, 1H), 4.02 (s, 3H), 4.85 (d, J 10.8, 1H), 6.73 (d, J 4.6, 1H), 6.88 (br s, NH), 7.09 (app. t, 2H), 7.15 (d, J 6.6, 2H), 7.30 (t, J 7.2, 1H), 7.48 (app. t, 2H), 7.50-7.55 (m, 2H), 7.65 (d, J 9.3, 1H), 7.78 (d, J 6.6, 2H), 7.97 (s, 2H), 8.15 (d, J 9.3, 1H), 8.53 (d, J 4.6, 1H), 9.31 (br s, NH). δ_{C} (100 MHz, CDCl₃): 171.4 (q), 153.1 (q), 152.7 (q), 147.9, 146.0 (q), 140.7 (q), 136.3, 135.8, 132.1 (q, J 33.0), 131.9 (q), 131.6 (q), 131.2, 130.4, 130.1, 127.9, 127.3, 125.1, 124.2 (q), 123.0 (q, J 275), 118.7 (q), 118.4, 117.0, 115.8, 81.07, 60.7, 57.9, 57.1, 41.0, 37.5, 28.4, 27.4, 27.0, 26.1, 25.1, 19.2 (q), 11.4. δ_F (350 MHz, CDCl₃): -63.4. HRMS (m/z-MALDI): Found: 835.3334 (M^+ + H. C₄₅H₄₉F₆N₄O₃Si. Requires: 835.3400)

3. Asymmetric Michael addition procedures

3.1 Procedure A

A reaction vessel containing a stirring bar was flushed with argon, charged with the quininebased cinchona alkaloid catalyst **12** (16.7 mg, 0.02 mmol) and trans- β -nitrostyrene (30 mg, 0.20 mmol). Anhydrous CH₂Cl₂ (10.0 mL, 0.02 M) was added *via* syringe followed by styrene (23 µL, 0.20 mmol) used as an internal standard. The vial was then cooled to -78 °C. After stirring for 20 min at this temperature, *tert*-butylbenzylmercaptan (37 µL, 0.20 mmol) was added dropwise to the reaction medium *via* syringe. The resulting solution was stirred at -78 °C for 20 h. The obtained solution was analysed by ¹H-NMR spectroscopy. The product was then directly purified by flash chromatography.

3.2 Procedure B

A reaction vessel containing a stirring bar was flushed with argon, charged with the quininebased cinchona alkaloid catalyst **12** (25.06 mg, 0.03 mmol) and 1-methoxy-4-((*E*)-2nitrovinyl)benzene (26.87 mg, 0.15 mmol). Anhydrous CH_2Cl_2 (15.0 mL, 0.010 M) was added *via* syringe. The vial was then cooled to -78 °C. After stirring for 20 min at this temperature, *tert*-butylbenzylmercaptan (28 µL, 0.15 mmol) was added dropwise to the reaction medium *via* syringe. The resulting solution was stirred at -78 °C for 68 h. The product was then directly purified by flash chromatography.

3.3 Procedure C

A reaction vessel containing a stirring bar was flushed with argon, charged with the quininebased cinchona alkaloid catalyst **12** (25.06 mg, 0.03 mmol) and 1-chloro-3-((*E*)-2nitrovinyl)benzene (27.54 mg, 0.15 mmol). Anhydrous CH_2Cl_2 (22.5 mL, 0.007 M) was added *via* syringe. The vial was then cooled to -78 °C. After stirring for 20 min at this temperature, *tert*-butylbenzylmercaptan (28 µL, 0.15 mmol) was added dropwise to the reaction medium *via* syringe. The resulting solution was stirred at -78 °C for 68 h. The product was then directly purified by flash chromatography.

> Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

4. Characterisation data

4.1 (S)-(4-tert-butylbenzyl)(2-nitro-1-phenylethyl)sulfane (4a)

The Michael adduct was prepared according to procedure A using the quinine-based cinchona alkaloid catalyst **12** (16.7 mg, 0.02 mmol), trans- β -nitrostyrene (30 mg, 0.20 mmol), *tert*-butylbenzylmercaptan (37 µL, 0.20 mmol), CH₂Cl₂ (10.0 mL, 0.02 M) and styrene (23 µL, 0.20 mmol) as an internal standard. After purification of the crude material by flash chromatography (9:1 hexane:EtOAc) the product was obtained as a yellow oil (63.17 mg, 96%). mp 42-45 °C. [α]_D²² +135 (*c* 0.2 in CHCl₃). The enantiomeric excess was determined by CSP-HPLC analysis using a Chiralcel AS column (4.6 mm x 25 cm); *n*-hexane/IPA 99/1; 1 mL/min; $\lambda = 220$ nm. t_R (major) = 7.85 min; t_R (minor) = 10.85 min; 92% *ee.* The absolute configuration of (*S*)-4a was established by crystal structure. v_{max}/cm⁻¹: 2965, 1551, 1426, 1374, 1266, 1190, 905, 836, 751, 697. $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.44-7.27 (m, 7H), 7.21 (d, J 8.4, 2H), 4.77-4.66 (m, 2H), 4.47 (dd, J 9.2, 6.8, 1H), 3.70 (d, J 13.6, 1H), 3.61 (d, J 13.6, 1H), 1.36 (s, 9H). $\delta_{\rm C}$ (100 MHz, CDCl₃): 150.2 (q), 137.1 (q), 133.8 (q), 129.0, 128.6, 128.5, 127.8, 125.7, 79.1, 46.0, 35.7, 34.6 (q), 31.3. HRMS (*m*/*z* -ES): Found: 329.1442 (M⁺. [C₁₉H₂₃NO₂S]⁺ Requires: 329.1450).

4.2 (S)-(4-tert-butylbenzyl)(1-(4-bromophenyl)-2-nitroethyl)sulfane (13)

The Michael adduct was prepared according to procedure A using the quinine-based cinchona alkaloid catalyst **12** (12.53 mg, 0.015 mmol), 1-bromo-4-((*E*)-2-nitrovinyl)benzene (34.20 mg, 0.15 mmol), *tert*-butylbenzylmercaptan (28 μ L, 0.15 mmol) and CH₂Cl₂ (7.5 mL, 0.02 M). After purification of the crude material by flash chromatography (CH₂Cl₂), the product was obtained as a yellow oil (58.30 mg, 96%). [α]_D²² +152 (*c* 0.4 in CHCl₃). The enantiomeric excess was determined by CSP-HPLC analysis using a Chiralcel AD-H column (4.6 mm x 25 cm); *n*-hexane/IPA 95/5; 1 mL/min; λ = 220 nm. t_R (minor) = 7.36 min; t_R (major) = 8.49 min; 90% *ee*. The absolute configuration of (*S*)-13 was established by analogy with (*S*)-4a. v_{max}/cm⁻¹: 2961, 1552, 1488, 1373, 1268, 1107, 1073, 1010, 825, 713. δ _H (400 MHz, CDCl₃): 7.46 (d, J 8.4, 2H), 7.33 (d, J 8.4, 2H), 7.20-7.10 (m, 4H), 4.64 (app. d, 2H), 4.38 (app. t, 1H), 3.67 (d, J 13.6, 1H), 3.57 (d, J 13.6, 1H), 1.32 (s, 9H). δ _C (100 MHz, CDCl₃): 150.7 (q), 136.4 (q), 133.5 (q), 132.2, 129.5, 128.6, 125.7, 122.4 (q), 78.8, 45.4, 35.8, 34.6 (q), 31.3.

4.3 (S)-(4-tert-butylbenzyl)(2-nitro-1-(4-nitrophenyl)ethyl)sulfane (14)

The Michael adduct was prepared according to procedure B using the quinine-based cinchona alkaloid catalyst **12** (12.53 mg, 0.015 mmol), 1-nitro-4-((*E*)-2-nitrovinyl)benzene (12.5 mg, 0.06 mmol), *tert*-butylbenzylmercaptan (12 μ L, 0.06 mmol) and CH₂Cl₂ (6.4 mL, 0.01 M). After purification of the crude material by flash chromatography (CH₂Cl₂), the product was obtained as a yellow oil (23.62 mg, 98%). [α]_D²² +175 (*c* 0.3 in CHCl₃). The enantiomeric excess was determined by CSP-HPLC analysis using a Chiralcel AD-H column (4.6 mm x 25 cm); *n*-hexane/IPA 90/10; 1 mL/min; λ = 220 nm. t_R (minor) = 13.12 min; t_R (minor) = 16.73 min; 85% *ee*. The absolute configuration of (*S*)-14 was established by analogy with (*S*)-4a. v_{max} (film)/cm⁻¹: 2962, 2867, 1553, 1519, 1344, 1268, 1108, 857, 832, 696. δ _H (400 MHz, CDCl₃): 8.20 (d, J 8.4, 2H), 7.44 (d, J 8.4, 2H), 7.36 (d, J 8.0, 2H), 7.18 (d, J 8.0, 2H), 4.73

(app. d, 2H), 4.52 (app. t, 1H), 3.75 (d, J 13.6, 1H), 3.65 (d, J 13.6, 1H), 1.35 (s, 9H); δ_C (100 MHz, CDCl₃): 150.5 (q), 147.3 (q), 144.4 (q), 132.6 (q), 128.4, 128.1, 125.3, 123.7, 77.9, 44.7, 35.6, 34.1 (q), 30.9.

4.4 (S)-(4-tert-butylbenzyl)(1-(3-chlorophenyl)-2-nitroethyl)sulfane (15)

The Michael adduct was prepared according to procedure C using the quinine-based cinchona alkaloid catalyst **12** (25.06 mg, 0.03 mmol), 1-chloro-3-((*E*)-2-nitrovinyl)benzene (27.54 mg, 0.15 mmol), *tert*-butylbenzylmercaptan (28 µL, 0.15 mmol) and CH₂Cl₂ (22.5 mL, 0.007 M). After purification of the crude material by flash chromatography (9:1 hexane:CH₂Cl₂), the product was obtained as a white solid (45.74 mg, 84%). mp 62-64 °C. $[\alpha]_D^{22}$ +158 (*c* 0.4 in CHCl₃). The enantiomeric excess was determined by CSP-HPLC analysis using a Chiralcel OD-H column (4.6 mm x 25 cm); *n*-hexane/IPA 90/10; 1 mL/min; λ = 220 nm. t_R (minor) = 10.08 min; t_R (major) = 15.43 min; 91% *ee*. The absolute configuration of (*S*)-15 was established by analogy with (*S*)-4a. v_{max}/cm⁻¹: 2965, 2911, 1556, 1474, 1429, 1376, 1235, 1194, 1083, 831, 786, 693. $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.37 (d, J 8.0, 2H), 7.33-7.26 (m, 3H), 7.23-7.15 (m, 3H), 4.68 (m, 2H), 4.41 (dd, J 8.8, 6.8, 1H), 3.71 (d, J 13.6, 1H), 3.62 (d, J 13.6, 1H), 1.36 (s, 9H). $\delta_{\rm C}$ (100 MHz, CDCl₃): 150.2 (q), 138.9 (q), 134.4 (q), 133.0 (q), 129.9, 128.2, 128.1, 127.6, 125.5, 125.3, 78.3, 44.9, 35.4, 34.1 (q), 30.9. HRMS (*m*/*z* -ES): Found: 363.1069 (M⁺. [C₁₉H₂₂NO₂SCI]^{+.} Requires: 363.1060).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

4.5 (S)-(4-tert-butylbenzyl)(1-(4-methoxyphenyl)-2-nitroethyl)sulfane (16)

The Michael adduct was prepared according to procedure B using the quinine-based cinchona alkaloid catalyst **12** (25.06 mg, 0.03 mmol), 1-methoxy-4-((*E*)-2-nitrovinyl)benzene (26.87 mg, 0.15 mmol), *tert*-butylbenzylmercaptan (28 μ L, 0.15 mmol) and CH₂Cl₂ (15.0 mL, 0.01 M). After purification of the crude material by flash chromatography (CH₂Cl₂), the product was obtained as a yellow oil (52.06 mg, 97%). [α]_D²² +187 (*c* 0.2 in CHCl₃). The enantiomeric excess was determined by CSP-HPLC analysis using a Chiralcel AD-H column (4.6 mm x 25 cm); *n*-hexane/IPA 99/1; 0.8 mL/min; λ = 220 nm. t_R (minor) = 26.72 min; t_R (major) = 31.32 min; 90% *ee*. The absolute configuration of **(S)-16** was established by analogy with **(S)-4a**. ν_{max} /cm⁻¹: 2960, 1610, 1552, 1511, 1374, 1249, 1177, 1111, 1032, 832, 675. $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.36 (d, J 8.4, 2H), 7.27-7.17 (m, 4H), 6.89 (d, J 8.8, 2H), 4.74-4.61 (m, 2H), 4.43 (dd, J 8.8, 6.8, 1H), 3.83 (s, 3H), 3.67 (d, J 13.6, 1H), 3.59 (d, J 13.6, 1H), 1.35 (s, 9H). $\delta_{\rm C}$ (100 MHz, CDCl₃): 159.1 (q), 150.0 (q), 140.0 (q), 133.4 (q), 128.5, 128.1, 125.2, 113.9, 78.8, 54.8, 45.2, 35.1, 34.1 (q), 30.9.

4.6 (*R*)-2-(1-(4-*tert*-butylbenzylthio)-2-nitroethyl)thiophene (17)

The Michael adduct was prepared according to procedure A using the quinine-based cinchona alkaloid catalyst **12** (12.53 mg, 0.015 mmol), 2-((E)-2-nitrovinyl)thiophene (23.28 mg, 0.15

mmol), *tert*-butylbenzylmercaptan (28 μL, 0.15 mmol) and CH₂Cl₂ (7.5 mL, 0.02 M). After purification of the crude material by flash chromatography (CH₂Cl₂), the product was obtained as a yellow solid (46.77 mg, 93%). mp 60-62 °C. [α]_D²² +164 (*c* 0.4 in CHCl₃). The enantiomeric excess was determined by CSP-HPLC analysis using a Chiralcel AD-H column (4.6 mm x 25 cm); *n*-hexane/IPA 99/1; 1 mL/min; λ = 220 nm. t_R (min) = 14.89 min; t_R (major) = 16.55 min; 92% *ee*. The absolute configuration of (*R*)-17 was established by analogy with (*S*)-4a. v_{max}/cm⁻¹: 2965, 1551, 1425, 1374, 1268, 1107, 1044, 838, 712, 663. δ_H (400 MHz, CDCl₃): 7.43-7.31 (m, 3H), 7.21 (d, J 8.0, 2H), 6.97 (app. s, 2H), 4.84-4.64 (m, 3H), 3.76 (d, J 13.4, 1H), 3.69 (d, J 13.4, 1H), 1.34 (s, 9H). δ_C (100 MHz, CDCl₃): 150.2 (q), 140.6 (q), 133.1 (q), 128.2, 126.5, 126.3, 125.7, 125.2, 79.2, 40.8, 35.2, 34.1 (q), 30.9.

4.7 (R)-2-(1-(4-tert-butylbenzylthio)-2-nitroethyl)furan (18)

The Michael adduct was prepared according to procedure B using the quinine-based cinchona alkaloid catalyst **12** (25.06 mg, 0.03 mmol), 2-((*E*)-nitrovinyl)furan (20.87 mg, 0.15 mmol), *tert*-butylbenzylmercaptan (28 μ L, 0.15 mmol) and CH₂Cl₂ (15.0 mL, 0.01 M). After purification of the crude material by flash chromatography (CH₂Cl₂), the product was obtained as a clear yellow solid (47.62 mg, 99%). mp 64-66 °C. [α]_D²² +139 (*c* 0.4 in CHCl₃). The enantiomeric excess was determined by CSP-HPLC analysis using a Chiralcel AD-H column (4.6 mm x 25 cm); *n*-hexane/IPA 99/1; 1 mL/min; λ = 220 nm. t_R (minor) = 15.15 min; t_R (major) = 17.33 min; 90% *ee*. The absolute configuration of (*R*)-18 was established by analogy with (*S*)-4a. v_{max}/cm⁻¹: 2966, 1552, 1427, 1373, 1185, 1150, 1015, 965, 838, 808, 751, 695. $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.43 (dd, J 1.8, 0.6, 1H), 7.38 (d, J 8.4, 2H), 7.25 (d, J 8.4, 2H), 6.36 (dd, J 3.2, 1.8, 1H), 6.28 (d, J 3.2, 1H), 4.82 (dd, J 15.2, 11.2, 1H), 4.68-4.58 (m, 2H), 3.78 (d, J 13.6, 1H), 3.72 (d, J 13.6, 1H), 1.35 (s, 9H). $\delta_{\rm C}$ (100 MHz, CDCl₃): 150.2 (q), 149.1 (q), 142.6 (q), 133.2, 128.1, 125.3, 110.2, 108.1, 76.2, 38.8, 35.1, 34.1 (q), 30.9.

> Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

4.8 (R)-3-(1-(4-tert-butylbenzylthio)-2-nitroethyl)pyridine (19)

The Michael adduct was prepared according to procedure A using the quinine-based cinchona alkaloid catalyst **12** (12.53 mg, 0.015 mmol), 3-((*E*)-2-nitrovinyl)pyridine (22.51 mg, 0.15 mmol), *tert*-butylbenzylmercaptan (28 μ L, 0.15 mmol) and CH₂Cl₂ (7.5 mL, 0.02 M). After purification of the crude material by flash chromatography (8:2 -> 5:5 Hexane:CH₂Cl₂) the product was obtained as a dark yellow oil (44.97 mg, 91%). [α]_D²² -15 (*c* 0.2 in CHCl₃). The enantiomeric excess was determined by CSP-HPLC analysis using a Chiralcel OD-H column (4.6 mm x 25 cm); *n*-hexane/IPA 99/1; 0.8 mL/min; λ = 220 nm. t_R (major) = 29.97 min; t_R (minor) = 39.81 min; 96% *ee*. The absolute configuration of (*R*)-19 was established by analogy with (*S*)-4a. v_{max}/cm⁻¹: 2959, 1686, 1553, 1470, 1386, 1277, 1176, 1132, 1110, 1027, 864, 731, 702, 681. δ_{H} (400 MHz, CDCl₃): 8.54 (d, J 4.4, 1H), 7.65 (dt, J 7.6, 1.6, 1H), 7.36 (d, J 8.4, 2H), 7.27-7.17 (m, 4H), 5.28 (dd, J 13.6, 9.2, 1H), 4.75 (dd, J 13.6, 5.6, 1H), 4.59 (dd, J 9.2, 5.6, 1H), 3.78 (d, J 13.2, 1H), 3.68 (d, J 13.2, 1H), 1.34 (s, 9H). δ_{C} (100 MHz, CDCl₃): 156.5 (q), 150.1 (q), 148.8, 136.5, 133.5 (q), 128.2, 125.2, 123.0, 122.3, 76.2, 45.6, 34.8, 34.1 (q), 30.9.

4.9 (R)-2-(2-nitro-1-(2-nitrobenzylthio)ethyl)pyridine (20)

2-Nitrobenzyl ethanethiolate (144 mg, 0.68 mmol) was dissolved in freshly degassed methanol (3.0 ml). Acetyl chloride (153 μ l, 2.15 mmol) was added *via* syringe at room temperature under an argon atmosphere and the obtained solution was allowed to stir at room temperature for 18 h. The solvent was then evaporated *in vacuo*. The obtained thiol was used in the next step without the need of further purification.

The Michael adduct was prepared according to procedure A using the quinine-based cinchona alkaloid catalyst **12** (11.88 mg, 0.01 mmol), 3-((*E*)-2-nitrovinyl)pyridine (21.34 mg, 0.14 mmol), (2-nitrophenyl)methanethiol (24.05 mg, 0.14 mmol) and CH₂Cl₂ (7.0 mL, 0.02 M). After purification of the crude material by flash chromatography (CH₂Cl₂) the product was obtained as a clear yellow oil (36.42 mg, 82%). $[\alpha]_D^{22}$ +24 (*c* 0.2 in CHCl₃). The enantiomeric excess was determined by CSP-HPLC analysis using a Chiralcel AD-H column (4.6 mm x 25 cm); n-hexane/IPA 95/5; 1 mL/min; λ = 220 nm. t_R (minor) = 46.52 min; t_R (major) = 49.35 min; 93% ee. The absolute configuration of (*R*)-20 was established by analogy with (*S*)-4a. v_{max}/cm⁻¹: 2930, 1731, 1553, 1522, 1342, 1242, 1173, 1044, 858, 786, 751, 696. δ_H (400 MHz, CDCl₃): 8.52 (d, J 4.7, 1H), 8.00 (dd, J 8.0, 0.8, 1H), 7.67 (td, J 7.4, 1.6, 1H), 7.56 (td, J 7.4, 0.8, 1H), 7.45 (app t, 1H), 7.39 (d, J 7.4, 1H), 7.32 (d, J 7.4, 1H), 7.22 (dd, J 7.4, 4.7, 1H), 5.28 (dd, J 13.8, 8.8, 1 H), 4.79 (dd, J 13.8, 6.0, 1H), 4.66 (dd, J 8.8, 6.0, 1H), 4.12 (d, J 13.6, 1H), 4.04 (d, J 13.6, 1H). δ_C (100 MHz, CDCl₃): 155.9 (q), 148.7, 148.1 (q), 136.8, 132.9, 132.7 (q), 131.5, 128.2, 125.1, 123.1, 122.6, 76.1, 46.0, 31.7;

4.10 (S)-(4-methoxybenzyl)(2-nitro-1-phenylethyl)sulfane (21)

The Michael adduct was prepared according to procedure A using the quinine-based cinchona alkaloid catalyst **12** (16.7 mg, 0.02 mmol), nitrostyrene (30 mg, 0.2 mmol), 4-methoxy- α -toluenethiol (28 µL, 0.2 mmol) and CH₂Cl₂ (10.0 mL, 0.02 M). After purification of the crude material by flash chromatography (CH₂Cl₂), the product was obtained as a yellow oil (59.50

mg, 98%). $[\alpha]_D^{22}$ +55 (*c* 0.4 in CHCl₃). The enantiomeric excess was determined by CSP-HPLC analysis using a Chiralcel AD-H column (4.6 mm x 25 cm); n-hexane/IPA 99/1; 0.8 mL/min; $\lambda = 220$ nm. t_R (minor) = 28.65 min; t_R (minor) = 31.50 min; 90% ee. The absolute configuration of (*S*)-21 was established by analogy with (*S*)-4a. v_{max}/cm⁻¹: 2914, 2836, 1609, 1551, 1510, 1374, 1243, 1174, 1030, 830, 747, 698. δ_H (400 MHz, CDCl₃): 7.43-7.23 (m, 5H), 7.19 (d, J 8.4, 2H), 6.88 (d, J 8.4, 2H), 4.79-4.63 (m, 2H), 4.43 (dd, J 8.8, 7.2, 1H), 3.84 (s, 3H), 3.67 (d, J 13.6, 1H), 3.58 (d, J 13.6, 1H). δ_C (100 MHz, CDCl₃): 158.5 (q), 136.7 (q), 129.6, 128.6, 128.3 (q), 128.0, 127.3, 113.6, 78.7, 54.9, 45.4, 35.0.

4.11 (*R*)-2-(2-nitro-1-(3-phenylpropylthio)ethyl)pyridine (22)

3-Phenylpropyl ethanethiolate (300 mg, 1.54 mmol) was dissolved in freshly degassed methanol (3.0 ml). Acetyl chloride (175 μ l, 2.46 mmol) was added *via* syringe at room temperature under an argon atmosphere and the obtained solution was allowed to stir at room temperature for 18 h. The solvent was then evaporated *in vacuo*. The obtained thiol was used in the next step without the need of further purification.

The Michael adduct was prepared according to procedure B using the quinine-based cinchona alkaloid catalyst **12** (25.84 mg, 0.03 mmol), 3-((*E*)-2-nitrovinyl)pyridine (23.21 mg, 0.16 mmol), 3-phenylpropane-1-thiol (23 μ L, 0.16 mmol) and CH₂Cl₂ (15.5 mL, 0.01 M). After purification of the crude material by flash chromatography (CH₂Cl₂) the product was obtained as a clear yellow oil (26.27 mg, 56%). [α]_D²² +34 (*c* 0.2 in CHCl₃). The enantiomeric excess was determined by CSP-HPLC analysis using a Chiralcel AD-H column (4.6 mm x 25 cm); n-hexane/IPA 95/5; 1 mL/min; λ = 220 nm. t_R (minor) = 16.09 min; t_R (major) = 17.27 min; 94% ee. The absolute configuration of (*R*)-22 was established by analogy with (*S*)-4a. v_{max}/cm⁻¹: 2923, 1702, 1589, 1550, 1471, 1434, 1375, 1294, 1076, 949, 744, 699. $\delta_{\rm H}$ (400 MHz, (CD₃)₂CO): 8.48 (d, J 4.4, 1H), 7.82 (td, J 7.6, 1.6, 1H), 7.58 (d, J 7.6, 1H), 7.33-7.14

> Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

(m, 6H), 5.39 (dd, J 14.0, 9.2, 1H), 5.07 (dd, J 14.0, 6.0, 1H), 4.80 (dd, J 9.2, 6.0, 1H), 2.75-2.62 (m, 3H), 2.59-2.50 (m, 1H), 1.90-1.76 (m, 2H). δ_{C} (100 MHz, (CD₃)₂CO): 157.2 (q), 148.3, 141.0 (q), 136.7, 127.9, 127.8, 125.4, 123.1, 122.3, 75.9, 45.3, 33.9, 30.9, 29.0.

4.12 (S)-2-nitro-1-phenylethyl)(3-phenylpropyl)sulfane (23)

3-Phenylpropyl ethanethiolate (300 mg, 1.54 mmol) was dissolved in freshly degassed methanol (3.0 ml). Acetyl chloride (175 μ l, 2.46 mmol) was added *via* syringe at room temperature under an argon atmosphere and the obtained solution was allowed to stir at room temperature for 18 h. The solvent was then evaporated *in vacuo*. The obtained thiol was used in the next step without the need of further purification.

The Michael adduct was prepared according to procedure B using the quinine-based cinchona alkaloid catalyst **12** (33.42 mg, 0.04 mmol), trans- β -nitrostyrene (30 mg, 0.20 mmol), 3-phenylpropane-1-thiol (30 µL, 0.20 mmol) and CH₂Cl₂ (20 mL, 0.01 M). After purification of the crude material by flash chromatography (CH₂Cl₂) the product was obtained as a yellow oil (46.31 mg, 77%). [α]_D²² +71 (*c* 0.2 in CHCl₃). The enantiomeric excess was determined by CSP-HPLC analysis using a Chiralcel AD-H column (4.6 mm x 25 cm); n-hexane/IPA 99/1; 1 mL/min; $\lambda = 220$ nm. t_R (minor) = 15.11 min; t_R (major) = 16.57 min; 89% ee. The absolute configuration of (*S*)-23 was established by analogy with (*S*)-4a. v_{max}/cm⁻¹: 2921, 1634, 1552, 1495, 1452, 1342, 1260, 1200, 1078, 966, 745, 697. $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.63-6.90 (m, 10H), 4.76 (app. d, 2H), 4.56 (app. t, 1H), 2.69-2.64 (m, 2H), 2.47 (t, J 7.2, 2H), 1.91-1.81 (m, 2H). $\delta_{\rm C}$ (100 MHz, CDCl₃): 141.0 (q), 137.4 (q), 129.1, 128.5, 128.4, 128.4, 127.6, 126.1, 79.3, 46.5, 34.5, 30.9, 30.7.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

5.0 NMR Spectra

¹H NMR spectrum (600 MHz, CDCl₃) of the quinine-derived catalyst (**12**)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

¹⁹F NMR spectrum (350 MHz, CDCl₃) of the quinine-derived catalyst (12)

¹H NMR spectrum (400 MHz, CDCl₃) of (4-tert-butylbenzyl)(2-nitro-1-phenylethyl)sulfane

¹³C NMR spectrum (100 MHz, CDCl₃) of nitrostyrene(4-tert-butylbenzyl)(2-nitro-1-phenylethyl)sulfane (**4a**)

¹H NMR spectrum (400 MHz, CDCl₃) of (4-tert-butylbenzyl)(1-(4-bromophenyl)-2nitroethyl)sulfane (**13**)

¹³C NMR spectrum (100 MHz, CDCl₃) of (4-tert-butylbenzyl)(1-(4-bromophenyl)-2nitroethyl)sulfane (13)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

 $^{1}\mathrm{H}$ NMR spectrum (400 MHz, CDCl₃) of (4-tert-butylbenzyl)(2-nitro-1-(4nitrophenyl)ethyl)sulfane (14) [lel] test e S H NO₂ N O_2N 0 7 .825 0.921 Ğ 8 6 ź [ppm]

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

¹H NMR spectrum (400 MHz, CDCl₃) of (4-tert-butylbenzyl)(1-(3-chlorophenyl)-2nitroethyl)sulfane (15)

¹³C NMR spectrum (100 MHz, CDCl₃) of (4-tert-butylbenzyl)(1-(3-chlorophenyl)-2nitroethyl)sulfane (15)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

¹H NMR spectrum (400 MHz, CDCl₃) of (4-tert-butylbenzyl)(1-(4-methoxyphenyl)-2nitroethyl)sulfane (16)

¹³C NMR spectrum (100 MHz, CDCl₃) of (4-tert-butylbenzyl)(1-(4-methoxyphenyl)-2nitroethyl)sulfane (16)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

¹H NMR spectrum (400 MHz, CDCl₃) of 2-(1-(4-tert-butylbenzylthio)-2-nitroethyl)thiophene

¹H NMR spectrum (400 MHz, CDCl₃) of 2-(1-(4-tert-butylbenzylthio)-2-nitroethyl)furane

¹³C NMR spectrum (100 MHz, CDCl₃) of 2-(1-(4-tert-butylbenzylthio)-2-nitroethyl)furane (18)

¹H NMR spectrum (400 MHz, CDCl₃) of 3-(1-(4-tert-butylbenzylthio)-2-nitroethyl)pyridine

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

¹H NMR spectrum (400 MHz, CDCl₃) of (4-methoxybenzyl)(2-nitro-1-phenylethyl)sulfane

¹³C NMR spectrum (100 MHz, CDCl₃) of (4-methoxybenzyl)(2-nitro-1-phenylethyl)sulfane(21)

¹H NMR spectrum (400 MHz, Acetone-d₆) of (2-nitro-1-phenylethyl)(3-phenylpropyl)sulfane

¹³C NMR spectrum (100 MHz, (CD₃)₂CO) of (2-nitro-1-phenylethyl)(3-phenylpropyl)sulfane

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

¹H NMR spectrum (400 MHz, CDCl₃) of (S)-2-nitro-1-phenylethyl)(3-phenylpropyl)sulfane

¹³C NMR spectrum (100 MHz, CDCl₃) of (*S*)-2-nitro-1-phenylethyl)(3-phenylpropyl)sulfane (23)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

6.0 HPLC conditions and chromatograms

6. 1 (4-tert-butylbenzyl)(2-nitro-1-phenylethyl)sulfane (4a)

Chiralcel AS (4.6 mm x 25 cm), hexane/IPA: 99/1, 1 mL min⁻¹, RT, UV detection at 220 nm.

Peak No	Result	Ret. Time
		(min)
1	9.6800	7.840
2	7.1484	10.838

Peak No	Result	Ret. Time
		(min)
1	91.5865	7.852
2	3.7594	10.845

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

6.2 (4-tert-butylbenzyl)(1-(4-bromophenyl)-2-nitroethyl)sulfane (13)

Chiralcel OD-H (4.6 mm x 25 cm), hexane/IPA: 98/2, 0.8 mL min⁻¹, RT, UV detection at 220 nm.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

6.3 (4-tert-butylbenzyl)(2-nitro-1-(4-nitrophenyl)ethyl)sulfane (14)

Chiralcel AD-H (4.6 mm x 25 cm), hexane/IPA: 90/10, 1 mL min⁻¹, RT, UV detection at 220 nm.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

6.4 (4-tert-butylbenzyl)(1-(3-chlorophenyl)-2-nitroethyl)sulfane (15)

Chiralcel OD-H (4.6 mm x 25 cm), hexane/IPA: 90/10, 1 mL min⁻¹, RT, UV detection at 220 nm.

15.0

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

6.5 (4-tert-butylbenzyl)(1-(4-methoxyphenyl)-2-nitroethyl)sulfane (16)

Chiralcel AD-H (4.6 mm x 25 cm), hexane/IPA: 99/1, 0.8 mL min⁻¹, RT, UV detection at 220 nm.

Peak	Result	Ret. Time
No		(min)
1	3.1626	27.990
2	3.1014	34.380

Peak	Result	Ret. Time
No		(min)
1	3.6801	26.718
2	94.0283	31.315

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

6.6 2-(1-(4-tert-butylbenzylthio)-2-nitroethyl)thiophene (17)

Chiralcel AD-H (4.6 mm x 25 cm), hexane/IPA: 99/1, 1 mL min⁻¹, RT, UV detection at 220 nm.

Peak No	Result	Ret. Time (min)
1	28.6455	14.668
2	28.5375	16.330

Peak No	Result	Ret. Time (min)
1	3.7050	14.887
2	94.1917	16.552

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

6.7 2-(1-(4-tert-butylbenzylthio)-2-nitroethyl)furane (18)

Chiralpak AD-H (4.6 mm x 25 cm), hexane/IPA: 99/1, 1.0 mL min⁻¹, RT, UV detection at 220 nm.

Peak No	Result	Ret. Time (min)	m AU 600 —	Chapter Constitution and COST and Difference Cost of Cost o	File: c:\hpic\caroletreaults\capS Channel: 1 = 220 nm Results Last recalc: NA
1	41.5742	15.332			
2	41.8771	17.924	500 —		
		·	400 —	2 KE 21 P	
			300 — 200 —		
			100 — 0 — -34 —	χ χ	<u>во хууу</u> у Х <u>хуууу</u> у b2.5
Peak No	Result	Ret. Time (min)	m AU 500 -	[: "09111.0016/000010.000000000000000000000000	
1	4.6180	15.152			
2	86.0601	17.333	400 -	- 	
			300 -		
			200 -		
			100 -		
			-55 -	1 12.5 115.0 117.5	l _{20.0}

6.8 3-(1-(4-tert-butylbenzylthio)-2-nitroethyl)pyridine (19)

Chiralcel OD-H (4.6 mm x 25 cm), hexane/IPA: 99/1, 0.8 mL min⁻¹, RT, UV detection at 220 nm.

Peak	Result	Ret. Time	
No		(min)	
1	49.2944	31.035	
2	50.3004	39.225	

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

6.9 (R)-2-(2-nitro-1-(2-nitrobenzylthio)ethyl)pyridine (20)

Chiralcel AD-H (4.6 mm x 25 cm), hexane/IPA: 99/1, 1 mL min⁻¹, RT, UV detection at 220 nm.

Peak	Result	Ret. Time		
No		(min)	mAU [="https://antieresultaca.pdf?Aadhis111+2011.nm]	File: c:\hplc Channel: 1 = 22 Last recalc: NA
1	22.764	45.785		
2	23.656	48.353	250	
				Δ
			140.0 42.5 45.0 47.5 50.0 H	52.5
			MAU Chipt Candom and a Chipt Can	ap681aadh96111-4-2011.run
Peak	Result	Ret. Time	Lindinal 1 2 22 (n) Haudis Lant mean: 12 200 (n) 1 2 19 (n)	
No		(min)	300-	
1	1.638	46.524		
2	44.311	49.353	200-	
				X: 41.9716 Minutes Y: 0.865 mAU
			8 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				Δ
			-38 - 40 45 50 55	Minutes

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

6.10 (4-methoxybenzyl)(2-nitro-1-phenylethyl)sulfane (21)

Chiralcel AD-H (4.6 mm x 25 cm), hexane/IPA: 99/1, 1 mL min⁻¹, RT, UV detection at 220 nm.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

6.11 (*R*)-2-(2-nitro-1-(3-phenylpropylthio)ethyl)pyridine (22)

Chiralcel AD-H (4.6 mm x 25 cm), hexane/IPA: 99/1, 1 mL min⁻¹, RT, UV detection at 220 nm.

Peak	Result	Ret. Time	m /X []] (m /X] (m / X) (m / X) (
No		(min)	
1	26.5455	15.675	500- Z
2	26.4615	16.752	
			300- 00- 100- 100- 100- 100- 150- 1
Peak	Result	Ret. Time	mAT [110010400000410040501031301100 A10010400400401031301100 A10010404004010421301100 A1001040 A100104004004004010421301100 A1001040 A10010400A10000000000
No		(min)	500-
1	1.7760	16.09	400-
2	58.0266	17.27	
			300- 200- 100-

L_{16.0}

46.6

I_{17.0}

17.5

L_{15.5}

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

6.12 (S)-2-nitro-1-phenylethyl)(3-phenylpropyl)sulfane (23)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

7.0 Crystal structure

The structure have been deposited in the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 859316

7. 1 (S)-(4-tert-butylbenzyl)(2-nitro-1-phenylethyl)sulfane (4a)

Formula: $C_{19}H_{23}NO_2S$ Space group: $P 2_1 2_1 2_1$ Cell lengths: a 8.4220(17) b 10.230(2) c 20.787(4) Cell angles: α 90.00 β 90.00 γ 90.00 Cell volume: 1790.95 Z, Z': 4, 0 R-factor: 6.39

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

8.0 References

1. C. Palacio and S. J. Connon, Org. Lett. 2011, 13, 1298-1301.