Supporting Information

Catalytic enantioselective synthesis of β-trifluoromethyl pyrrolines

Hiroyuki Kawai, Takashi Kitayama, Etsuko Tokunaga, Takashi Matsumoto, Hiroyasu Sato, Motoo Shiro and Norio Shibata*

Department of Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan

Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan

Experimental Section

General Methods:

All reactions were performed in oven-dried glassware under a positive pressure of nitrogen. Solvents were transferred *via* syringe and were introduced into the reaction vessels though a rubber septum. All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates were visualized with UV light and 7% phosphomolybdic acid or KMnO₄ in water/heat. Column chromatography was carried out on a column packed with silica-gel 60N spherical neutral size 63-210 μ m. The ¹H-NMR (300 MHz), ¹⁹F-NMR (282 MHz), ¹³C-NMR (150.9 MHz) spectra for solution in CDCl₃ were recorded on a Buruker Avance 600 and a Varian Mercury 300. Chemical shifts (δ) are expressed in ppm downfield from internal TMS or CHCl₃. HPLC analyses were performed on a JASCO U-2080 Plus using 4.6 x 250 mm CHIRALPAK AD-3 or CHIRALCEL OJ-H or CHIRALPAK IB column. Mass spectra were recorded on a SHIMADZU LCMS-2010EV. Optical rotations were measured on a HORIBA SEPA-300. Infrared spectra were recorded on a JASCO FT/ IR-200 spectrometer. The β -trifluoromethylated enones **3** were prepared according to literature.¹

¹ G. Blay, I. Fernández, M. C. Munoz, J. R. Pedro, C. Vila, Chem. Eur. J. 2010, 16, 9117.

General procedure for the asymmetric conjugated addition of nitromethane to β-trifluoromethylated enones 3:

To a stirred solution of β -trifluoromethylated enone **3** (0.20 mmol), catalyst **7** (2.3 mg, 0.004 mmol, 2 mol%) in toluene (1.0 mL) was added nitromethane (58.8 µL, 1.00 mmol, 5.0 equiv) at ambient temperature under nitrogen atmosphere. After completion of reaction checked by TLC, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 90/10) to give (*S*)-**4**.

(S)-4,4,4-Trifluoro-3-(nitromethyl)-1-phenylbutan-1-one (4a)

Reaction of **3a** (20.0 mg, 0.10 mmol), catalyst 7 (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μ L, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 20 h gave (*S*)-**4a** (26.1 mg, 99%, 97% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.35 (dd, J = 9.0, 18.6 Hz, 1H), 3.47 (dd, J = 3.9, 18.3 Hz, 1H), 3.88-3.99 (m, 1H), 4.63 (dd, J = 4.8, 13.8 Hz, 1H), 4.72 (dd, J = 6.8, 13.8 Hz, 1H), 7.51 (t, J = 7.5 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.97 (d, J = 7.5 Hz, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 34.2 (m), 37.9 (q, J = 28.2 Hz), 72.3 (m), 126.1 (q, J = 280.0 Hz), 128.1, 128.9, 134.2, 135.5, 194.7; ¹⁹F NMR (CDCl₃, 282 MHz) δ -71.3 (d, J = 9.0 Hz, 3F); IR (KBr) 3068, 2962, 1691, 1558, 1451, 1396, 1172, 1102, 959, 930, 897, 799, 758, 724, 690, 653, 552, 510 cm⁻¹; mp = 48.0-49.0 °C (CHCl₃); MS (ESI, m/z) 300 [(M+Na)⁺], HRMS (ESI) calcd. for C₁₁H₁₀F₃NNaO₃ [(M+Na)⁺]: 284.0510 Found: 284.0506; The ee of the product was determined by HPLC using an IB column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 16.1$ min, $\tau_{min} = 12.3$ min); [α]_D²⁵ = -7.4 (c = 0.64, CHCl₃), 97% ee.

(S)-4,4,4-Trifluoro-3-(nitromethyl)-1-*m*-tolylbutan-1-one (4b)

Reaction of **3b** (42.8 mg, 0.20 mmol), catalyst **7** (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μ L, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 70 h gave (*S*)-**4b** (52.4 mg, 95%, 98% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 2.43 (s, 3H), 3.32 (dd, J = 9.3, 18.3 Hz, 1H), 3.45 (dd, J = 4.1, 18.5 Hz, 1H), 3.87-3.98 (m, 1H), 4.62 (dd, J = 4.5, 14.1 Hz, 1H), 4.70 (dd, J = 6.5, 14.1 Hz, 1H), 7.36-7.46 (m, 2H), 7.74-7.77 (m, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 21.3, 34.2 (m), 37.9 (q, J =

28.7 Hz), 72.4 (m), 125.2, 126.1 (q, J = 280.0 Hz), 128.6, 128.8, 134.9, 135.6, 138.8, 194.8; ¹⁹F NMR (CDCl₃, 282 MHz) δ -71.3 (d, J = 7.9 Hz, 3F) ; IR (KBr) 3018, 2928, 1681, 1562, 1430, 1385, 1300, 1251, 1173, 1115, 972, 872, 798, 724, 686, 630, 597, 549, 505, 464 cm⁻¹; mp = 49.0-50.0 °C (CHCl₃); MS (ESI, m/z) 298 [(M+K)⁺], HRMS (ESI) calcd. for C₁₂H₁₂F₃NNaO₃ [(M+Na)⁺]: 298.0667 Found: 298.0670; The ee of the product was determined by HPLC using an IB column (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 14.5$ min, $\tau_{min} = 15.9$ min); $[\alpha]_D^{25} = +0.3$ (c = 1.19, CHCl₃), 98% ee.

(S)-4,4,4-Trifluoro-3-(nitromethyl)-1-p-tolylbutan-1-one (4c)

Reaction of **3c** (42.8 mg, 0.20 mmol), catalyst **7** (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μ L, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 48 h gave (*S*)-**4c** (53.1 mg, 96%, 96% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 2.43 (s, 3H), 3.30 (dd, J = 9.3, 18.3 Hz, 1H), 3.43 (dd, J = 3.9, 18.3 Hz, 1H), 3.86-3.97 (m, 1H), 4.62 (dd, J = 4.5, 14.1 Hz, 1H), 4.69 (dd, J = 6.9, 13.7 Hz, 1H), 7.30 (d, J = 14.4 Hz, 2H), 7.86 (d, J = 8.1 Hz, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 21.7, 34.0 (m), 37.9 (q, J = 28.7 Hz), 72.4 (m), 126.1 (q, J = 280.0 Hz), 128.2, 129.6, 133.1, 145.2, 194.2; ¹⁹F NMR (CDCl₃, 282 MHz) δ -71.4 (d, J = 9.0 Hz, 3F) ; IR (KBr) 3022, 2922, 1683, 1556, 1345, 1119, 972, 919, 891, 846, 808, 764, 730, 651, 590, 567, 506, 459 cm⁻¹; mp = 43.0-44.5 °C (CHCl₃); MS (ESI, m/z) 298 [(M+K)⁺], HRMS (ESI) calcd. for C₁₂H₁₂F₃NNaO₃ [(M+Na)⁺]: 298.0667 Found: 298.0663; The ee of the product was determined by HPLC using an OJ-H column (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 18.2$ min, $\tau_{min} = 14.9$ min); [α]_D²⁵ = -8.5 (c = 0.80, CHCl₃), 96% ee.

(S)-4,4,4-Trifluoro-1-(4-methoxyphenyl)-3-(nitromethyl)butan-1-one (4d)

Reaction of **3d** (46.0 mg, 0.20 mmol), catalyst **7** (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μ L, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 48 h gave (*S*)-**4d** (56.1 mg, 96%, 97% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.27 (dd, J = 9.2, 18.5 Hz, 1H), 3.40 (dd, J = 4.1, 18.2 Hz, 1H), 3.83-3.97 (m, 1H), 3.89 (s, 3H), 4.63 (dd, J = 5.0, 14.3 Hz, 1H), 4.69 (dd, J = 6.8, 14.0 Hz, 1H),

6.94-6.99 (m, 2H), 7.91-7.96 (m, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 33.7 (m), 37.9 (q, J = 28.2 Hz), 55.5, 72.4 (m), 114.0, 126.2 (q, J = 280.0 Hz), 128.6, 130.4, 164.3, 193.0; ¹⁹F NMR (CDCl₃, 282 MHz) δ -71.3 (d, J = 7.9 Hz, 3F) ; IR (KBr) 2965, 2844, 1667, 1550, 1255, 1120, 1030, 968, 919, 842, 818, 733, 652, 603, 569, 499, 419 cm⁻¹; mp = 90.0-92.0 °C (CHCl₃); MS (ESI, *m/z*) 314 [(M+Na)⁺], HRMS (ESI) calcd. for C₁₂H₁₂F₃NNaO₄ [(M+Na)⁺]: 314.0616 Found: 314.0626; The ee of the product was determined by HPLC using an OJ-H column (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 41.2$ min, $\tau_{min} = 31.6$ min); [α]_D²⁵ = -10.8 (c = 1.43, CHCl₃), 97% ee.

(S)-4,4,4-Trifluoro-1-(4-fluorophenyl)-3-(nitromethyl)butan-1-one (4e)

Reaction of **3e** (43.6 mg, 0.20 mmol), catalyst **7** (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μ L, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 70 h gave (*S*)-**4e** (49.1 mg, 88%, 97% ee) as a colorless oil.

¹H NMR (CDCl₃, 300 MHz) δ 3.33 (dd, J = 9.0, 18.3 Hz, 1H), 3.44 (dd, J = 4.1, 18.5 Hz, 1H), 3.85-3.97 (m, 1H), 4.63 (dd, J = 4.8, 13.8 Hz, 1H), 4.72 (dd, J = 6.8, 14.0 Hz, 1H), 7.18 (t, J = 8.6 Hz, 2H), 8.01 (dd, J = 5.3, 8.9 Hz, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 34.1 (m), 37.9 (q, J = 28.2 Hz), 72.3 (m), 116.1 (d, J = 22.6 Hz), 126.0 (q, J = 280.0 Hz), 130.9 (d, J = 9.1 Hz), 132.0 (d, J = 3.0 Hz), 166.3 (d, J = 256.5 Hz), 193.1; ¹⁹F NMR (CDCl₃, 282 MHz) δ -103.5 (m, 1F), -71.3 (d, J = 7.9 Hz, 3F) ; IR (neat) 2928, 1688, 1599, 1562, 1508, 1380, 1342, 1301, 1228, 1176, 1124, 1003, 973, 911, 837, 735, 651, 587, 548, 474 cm⁻¹; MS (ESI, *m/z*) 302 [(M+Na)⁺], HRMS (ESI) calcd. for C₁₁H₉F₄NNaO₃ [(M+Na)⁺]: 302.0416 Found: 302.0414; The ee of the product was determined by HPLC using an OJ-H column (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 18.4$ min, $\tau_{min} = 15.1$ min); $[\alpha]_D^{25} = -6.6$ (c = 1.20, CHCl₃), 97% ee.

(S)-1-(4-Chlorophenyl)-4,4,4-trifluoro-3-(nitromethyl)butan-1-one (4f)

Reaction of **3f** (46.9 mg, 0.20 mmol), catalyst **7** (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μ L, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 71 h gave (*S*)-**4f** (59.1 mg, 99%, 97% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.32 (dd, J = 9.2, 18.5 Hz, 1H), 3.43 (dd, J = 4.5, 18.3 Hz, 1H),

3.85-3.96 (m, 1H), 4.63 (dd, J = 4.8, 13.8 Hz, 1H), 4.72 (dd, J = 6.6, 13.8 Hz, 1H), 7.48 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 34.2 (m), 37.8 (q, J = 28.7 Hz), 72.3 (m), 126.0 (q, J = 280.0 Hz), 129.2, 129.5, 133.8, 140.7, 193.5; ¹⁹F NMR (CDCl₃, 282 MHz) δ -71.3 (d, J = 9.0 Hz, 3F) ; IR (KBr) 3097, 2947, 1927, 1691, 1554, 1380, 1308, 1265, 1227, 1121, 1029, 948, 890, 821, 781, 715, 621, 553, 499, 456 cm⁻¹; mp = 45.0-46.0 °C (CHCl₃); MS (ESI, *m/z*) 318 [(M+Na)⁺], HRMS (ESI) calcd. for C₁₁H₉ClF₃NNaO₃ [(M+Na)⁺]: 318.0121 Found: 318.0118; The ee of the product was determined by HPLC using an IB column (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 17.7$ min, $\tau_{min} = 19.7$ min); $[\alpha]_D^{25} = -8.5$ (c = 1.31, CHCl₃), 97% ee.

(S)-1-(4-Bromophenyl)-4,4,4-trifluoro-3-(nitromethyl)butan-1-one (4g)

Reaction of **3g** (55.8 mg, 0.20 mmol), catalyst **7** (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μ L, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 72 h gave (*S*)-**4g** (62.8 mg, 92%, 98% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.32 (dd, J = 8.9, 18.5 Hz, 1H), 3.43 (dd, J = 4.4, 18.2 Hz, 1H), 3.85-3.96 (m, 1H), 4.63 (dd, J = 4.8, 13.8 Hz, 1H), 4.72 (dd, J = 6.6, 13.8 Hz, 1H), 7.49 (d, J = 8.4Hz, 2H), 7.91 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 34.2 (m), 37.8 (q, J = 28.2 Hz), 72.2 (m), 126.0 (q, J = 280.0 Hz), 129.5, 132.2, 134.2, 193.7; ¹⁹F NMR (CDCl₃, 282 MHz) δ -71.3 (d, J = 7.9 Hz, 3F) ; IR (KBr) 3032, 2974, 1928, 1676, 1558, 1487, 1344, 1172, 1121, 973, 895, 817, 784, 737, 704, 637, 564, 509, 472 cm⁻¹; mp = 40.0-41.0 °C (CHCl₃); MS (ESI, *m/z*) 362 [(M+Na)⁺], HRMS (ESI) calcd. for C₁₁H₉BrF₃NNaO₃ [(M+Na)⁺]: 361.9616 Found: 361.9615; The ee of the product was determined by HPLC using an IB column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{mai} = 12.7$ min, $\tau_{min} = 13.8$ min); $[\alpha]_D^{25} = -8.9$ (c = 1.37, CHCl₃), 98% ee.

(S)-4,4,4-Trifluoro-3-(nitromethyl)-1-(4-nitrophenyl)butan-1-one (4h)

Reaction of **3h** (49.0 mg, 0.20 mmol), catalyst **7** (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μ L, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 90 h gave (*S*)-**4h** (57.3 mg, 94%, 97% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.44 (dd, J = 8.4, 18.6 Hz, 1H), 3.53 (dd, J = 4.5, 18.6 Hz, 1H), 3.88-3.98 (m, 1H), 4.66 (dd, J = 5.0, 14.0 Hz, 1H), 4.77 (dd, J = 6.5, 14.0 Hz, 1H), 8.15 (d, J = 8.4 Hz, 2H), 8.36 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 34.9 (m), 37.8 (q, J = 28.7 Hz), 72.1 (m), 124.1, 125.8 (q, J = 280.0 Hz), 129.2, 139.8, 150.8, 193.4; ¹⁹F NMR (CDCl₃, 282 MHz) δ -71.2 (d, J = 7.9 Hz, 3F) ; IR (KBr) 3113, 2931, 1687, 1563, 1525, 1345, 1254, 1217, 1125, 1059, 1006, 952, 851, 788, 748, 723, 687, 642, 489 cm⁻¹; mp = 80.0-81.0 °C (CHCl₃); MS (ESI, *m/z*) 329 [(M+Na)⁺], HRMS (ESI) calcd. for C₁₁H₉F₃N₂NaO₅ [(M+Na)⁺]: 329.0361 Found: 329.0368.; The ee of the product was determined by HPLC using an OJ-H column (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 47.5$ min, $\tau_{min} = 64.5$ min); [α]_D²⁵ = -8.2 (c = 1.53, CHCl₃), 97% ee.

(S)-4,4,4-Trifluoro-1-(naphthalen-2-yl)-3-(nitromethyl)butan-1-one (4i)

Reaction of **3i** (50.0 mg, 0.20 mmol), catalyst **7** (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μ L, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 72 h gave (*S*)-**4i** (60.3 mg, 97%, 97% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.46 (dd, J = 9.2, 18.2 Hz, 1H), 3.58 (dd, J = 4.1, 18.5 Hz, 1H), 3.96-4.01 (m, 1H), 4.66 (dd, J = 4.7, 14.0 Hz, 1H), 4.74 (dd, J = 6.5, 14.0 Hz, 1H), 7.55-7.66 (m, 2H), 7.87-7.92 (m, 2H), 7.95-8.00 (m, 2H), 8.46 (s, 1H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 34.2 (m), 38.0 (q, J = 28.2 Hz), 72.4 (m), 123.3, 126.1 (q, J = 281 Hz), 127.2, 127.8, 128.9, 129.1, 129.6, 130.1, 132.3, 132.8, 135.9, 194.5; ¹⁹F NMR (CDCl₃, 282 MHz) δ -71.2 (d, J = 8.7 Hz, 3F) ; IR (KBr) 3035, 2931, 1675, 1569, 1469, 1430, 1384, 1254, 1168, 1117, 974, 941, 857, 823, 748, 625, 592, 549, 474 cm⁻¹; mp = 74.5-76.5 °C (CHCl₃); MS (ESI, *m/z*) 334 [(M+Na)⁺], HRMS (ESI) calcd. for C₁₅H₁₂F₃NNaO₃ [(M+Na)⁺]: 334.0667 Found: 334.0669; The ee of the product was determined by HPLC using an IB column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 17.1$ min, $\tau_{min} = 14.9$ min); $[\alpha]_D^{25} = -24.3$ (c = 1.65, CHCl₃), 97% ee.

(S)-4,4,4-Trifluoro-1-(furan-2-yl)-3-(nitromethyl)butan-1-one (4j)

Reaction of **3j** (38.0 mg, 0.20 mmol), catalyst **7** (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μ L, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 72 h gave (*S*)-**4j** (47.6 mg, 95%, 98% ee) as a yellow oil.

¹H NMR (CDCl₃, 300 MHz) δ 3.20 (dd, J = 9.0, 18.0 Hz, 1H), 3.35 (dd, J = 4.4, 18.2 Hz, 1H),

3.83-3.94 (m, 1H), 4.64 (dd, J = 5.1, 13.8 Hz, 1H), 4.71 (dd, J = 6.5, 14.0 Hz, 1H), 6.61 (dd, J = 1.7, 3.8 Hz, 1H), 7.29 (dd, J = 0.8, 4.1 Hz, 1H), 7.64-7.65 (m, 1H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 33.8 (m), 37.5 (q, J = 28.7 Hz), 72.3 (m), 112.8, 118.2, 125.9 (q, J = 280.0 Hz), 147.2, 151.6, 183.6; ¹⁹F NMR (CDCl₃, 282 MHz) δ -71.4 (d, J = 9.0 Hz, 3F) ; IR (neat) 3142, 2929, 1681, 1567, 1469, 1386, 1254, 1176, 1126, 1037, 974, 914, 883, 838, 767, 735, 639, 594 cm⁻¹; MS (ESI, *m/z*) 274 [(M+Na)⁺], HRMS (ESI) calcd. for C₉H₈F₃NNaO₄[(M+Na)⁺]: 274.0303 Found: 274.0304; The ee of the product was determined by HPLC using an IB column (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 23.3$ min, $\tau_{min} = 20.0$ min); $[\alpha]_D^{25} = -8.7$ (c = 1.12, CHCl₃), 98% ee.

General procedure for the enantioselective one-pot synthesis of β -trifluoromethyl pyrrolines 2:

To a stirred solution of β -trifluoromethylated enone **3** (0.10 mmol), catalyst **7** (1.1 mg, 0.002 mmol, 2 mol%) in toluene (0.5 mL) was added nitromethane (26.9 µL, 0.50 mmol, 5.0 equiv) at ambient temperature under nitrogen atmosphere. After completion of reaction checked by TLC, the reaction mixture was concentrated under reduced pressure. To a stirred solution of crude **4** in THF/MeOH (2/1, 1.5 mL) was added acetic acid (90.0 µL, 16.0 equiv), Fe (251 mg, 45.0 equiv) successively at the ambient temperature, and the resulting mixture was heated at 65 °C for 10 h under nitrogen atmosphere. After cooling down to room temperature, the reaction mixture was filtrated through Celite, rinsed with AcOEt. The whole mixture was washed with sat. NaHCO₃ aq., brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (CHCl₃) to give β -trifluoromethyl pyrroline (*S*)-**2**.

(S)-5-Phenyl-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole (2a)

Reaction of **3a** (20.0 mg, 0.10 mmol), catalyst **7** (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μ L, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 50 h gave the crude product of **4a**. Reduction-cyclization-dehydration reaction of crude **4a**, acetic acid (90.0 μ L, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 °C for 10 h gave (*S*)-**2a** (19.0 mg, 89%, 98% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.12-3.32 (m, 3H), 4.20-4.37 (m, 2H), 7.40-7.50 (m, 3H), 7.78-7.84 (m, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 35.9 (m), 40.9 (q, *J* = 28.2 Hz), 61.2 (m), 127.5 (q, *J* = 277.2 Hz), 127.6, 128.6, 131.0, 133.4, 170.9; ¹⁹F NMR (CDCl₃, 282 MHz) δ -72.2 (d, *J* = 8.7 Hz, 3F) ; IR (KBr) 3032, 2944, 1628, 1578, 1496, 1439, 1385, 1351, 1276, 1108, 1024, 928, 797, 764, 694, 553, 520.7, 458 cm⁻¹; mp = 61.0-62.0 °C (CHCl₃); MS (ESI, *m/z*) 214 [M+H]⁺, HRMS (ESI) calcd. for C₁₁H₁₁F₃N [M+H]⁺: 214.0844 Found: 214.0835; The ee of the product was determined by

HPLC using an OJ-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 14.9$ min, $\tau_{min} = 19.6$ min); $[\alpha]_D^{25} = -42.4$ (c = 0.32, CHCl₃), 98% ee.

(S)-5-p-Tolyl-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole (2c)

Reaction of **3c** (21.4 mg, 0.10 mmol), catalyst **7** (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μ L, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 50 h gave the crude product of **4c**. Reduction-cyclization-dehydration reaction of crude **3c**, acetic acid (90.0 μ L, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 °C for 10 h gave (*S*)-**2c** (20.9 mg, 92%, 98% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 2.39 (s, 3H), 3.10-3.26 (m, 3H), 4.18-4.35 (m, 2H), 7.23 (d, J = 7.8 Hz, 2H), 7.71 (d, J = 8.1 Hz, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 21.5, 35.9 (m), 40.8 (q, J = 28.2 Hz), 61.1 (m), 127.57 (q, J = 277.2 Hz), 127.57, 129.3, 130.7, 141.3, 170.8; ¹⁹F NMR (CDCl₃, 282 MHz) δ -72.2 (d, J = 7.9 Hz, 3F) ; IR (KBr) 2950, 2879, 1924, 1622, 1569, 1514, 1459, 1387, 1343, 1320, 1109, 960, 821, 714, 609, 554, 517, 468 cm⁻¹; mp = 62.0-64.5 °C (CHCl₃); MS (ESI, *m/z*) 228 [M+H]⁺, HRMS (ESI) calcd. for C₁₂H₁₃F₃N [M+H]⁺: 228.1000 Found: 228.1007; The ee of the product was determined by HPLC using an OJ-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 15.9$ min, $\tau_{min} = 23.2$ min); [α]_D²⁵ = -43.5 (c = 0.36, CHCl₃), 98% ee.

(S)-5-(4-Methoxyphenyl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole (2d)

Reaction of **3d** (23.0 mg, 0.10 mmol), catalyst **7** (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μ L, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 50 h gave the crude product of **4d**. Reduction-cyclization-dehydration reaction of crude **4d**, acetic acid (90.0 μ L, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 °C for 10 h gave (*S*)-**2d** (23.6 mg, 97%, 98% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.10-3.24 (m, 3H), 3.85 (s, 3H), 4.16-4.32 (m, 2H), 6.93 (d, J = 8.7 Hz, 2H), 7.77 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 35.8 (m), 40.9 (q, J = 28.2 Hz), 55.3, 61.0 (m), 113.9, 126.2, 127.6 (q, J = 276.7 Hz), 129.3, 161.8, 170.2; ¹⁹F NMR (CDCl₃, 282 MHz) δ -72.2 (d, J = 8.7 Hz, 3F); IR (KBr) 2962, 2841, 1623, 1575, 1516, 1462, 1385, 1345, 1319,

1158, 1111, 1037, 845, 821, 556 cm⁻¹; mp = 79.5-81.0 °C (CHCl₃); MS (ESI, *m/z*) 244 [M+H]⁺, HRMS (ESI) calcd. for C₁₂H₁₃F₃NO [M+H]⁺: 244.0949 Found: 244.0948; The ee of the product was determined by HPLC using an AD-3 column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 26.9$ min, $\tau_{min} = 25.7$ min); $[\alpha]_D^{25} = -42.7$ (c = 0.53, CHCl₃), 98% ee.

(S)-5-(4-Chlorophenyl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole (2f)

Reaction of **3f** (23.5 mg, 0.10 mmol), catalyst **7** (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μ L, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 72 h gave the crude product of **4f**. Reduction-cyclization-dehydration reaction of crude **4f**, acetic acid (90.0 μ L, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 °C for 10 h gave (*S*)-**2f** (23.3 mg, 94%, 98% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.12-3.25 (m, 3H), 4.19-4.37 (m, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 35.9 (m), 40.9 (q, J = 28.2 Hz), 61.3 (m), 127.4 (q, J = 277.2 Hz), 128.86, 128.91, 131.8, 137.1, 169.8; ¹⁹F NMR (CDCl₃, 282 MHz) δ -72.3 (d, J = 8.7 Hz, 3F) ; IR (KBr) 2955, 2880, 1625, 1492, 1439, 1387, 1321, 1274, 1116, 1034, 1014, 957, 828, 714, 553, 528, 455 cm⁻¹; mp = 67.0-68.0 °C (CHCl₃); MS (ESI, m/z) 248 [M+H]⁺, HRMS (ESI) calcd. for C₁₁H₁₀ClF₃N [M+H]⁺: 248.0454 Found: 248.0459; The ee of the product was determined by HPLC using an OJ-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 14.6$ min, $\tau_{min} = 22.6$ min); [α]_D²⁵ = -38.2 (c = 0.45, CHCl₃), 98% ee.

(S)-5-(4-Bromophenyl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole (2g)

Reaction of **3g** (27.9 mg, 0.10 mmol), catalyst **7** (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μ L, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 72 h gave the crude product of **4g**. Reduction-cyclization-dehydration reaction of crude **4g**, acetic acid (90.0 μ L, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 °C for 10 h gave (*S*)-**2g** (26.7 mg, 91%, 98% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.12-3.24 (m, 3H), 4.18-4.36 (m, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.69 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 35.9 (m), 40.9 (q, *J* = 28.7 Hz), 61.3 (m),

125.6, 127.4 (q, *J* = 277.2 Hz), 129.1, 131.8, 132.2, 169.9; ¹⁹F NMR (CDCl₃, 282 MHz) δ -72.3 (d, *J* = 7.9 Hz, 3F) ; IR (KBr) 2956, 2877, 1624, 1590, 1564, 1488, 1438, 1385, 1343, 1321, 1272, 1114, 1072, 1033, 825, 709, 551, 456 cm⁻¹; mp = 78.0-79.0 °C (CHCl₃); MS (ESI, *m/z*) 292 [M+H]⁺, HRMS (ESI) calcd. for C₁₁H₁₀BrF₃N [M+H]⁺: 291.9949 Found: 291.9942; The ee of the product was determined by HPLC using an OJ-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm, τ_{maj} = 16.0 min, τ_{min} = 28.2 min); [α]_D²⁵ = -33.3 (c = 0.61, CHCl₃), 98% ee.

(S)-4-(3-(Trifluoromethyl)-3,4-dihydro-2H-pyrrol-5-yl)aniline (2h)

Reaction of **3h** (24.5 mg, 0.10 mmol), catalyst 7 (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μ L, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 90 h gave the crude product of **4h**. Reduction-cyclization-dehydration reaction of crude **4h**, acetic acid (90.0 μ L, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 °C for 10 h gave (*S*)-**2h** (19.5 mg, 85%, 98% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.08-3.21 (m, 3H), 4.06-4.30 (m, 5H), 6.67 (d, J = 8.7 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 35.7 (m), 40.8 (q, J = 27.7 Hz), 60.8 (m), 114.4, 123.7, 127.6 (q, J = 277.2 Hz), 129.3, 149.1, 170.4 ; ¹⁹F NMR (CDCl₃, 282 MHz) δ -72.1 (d, J = 7.9 Hz, 3F) ; IR (KBr) 3329, 3215, 2873, 1601, 1520, 1437, 1378, 1350, 1303, 1264, 1220, 1177, 1144, 1102, 1027, 984, 831, 550, 465 cm⁻¹; mp = 128.0-131.0 °C (CHCl₃); MS (ESI, *m/z*) 229 [M+H]⁺, HRMS (ESI) calcd. for C₁₁H₁₂F₃N₂ [M+H]⁺: 229.0953 Found: 229.0952; The ee of the product was determined by HPLC using an OJ-H column (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{mai} = 10.6$ min, $\tau_{min} = 16.0$ min); $[\alpha]_D^{25} = -47.8$ (c = 0.50, CHCl₃), 98% ee.

(S)-5-(Naphthalen-2-yl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole (2i)

Reaction of **3i** (25.0 mg, 0.10 mmol), catalyst **7** (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μ L, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 72 h gave the crude product of **4i**. Reduction-cyclization-dehydration reaction of crude **4i**, acetic acid (90.0 μ L, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 °C for 10 h gave (*S*)-**2i** (25.0 mg, 95%, 97% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.17-3.43 (m, 3H), 4.25-4.43 (m, 2H), 7.50-7.57 (m, 2H), 7.84-7.91

(m, 3H), 8.06 (d, J = 8.7 Hz, 1H), 8.13 (s, 1H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 36.0 (m), 40.9 (q, J = 28.2 Hz), 61.3 (m), 124.2, 126.6, 127.4, 127.6 (q, J = 277.2 Hz), 127.8, 128.41, 128.44, 128.7, 130.9, 132.8, 134.5, 170.9; ¹⁹F NMR (CDCl₃, 282 MHz) δ -72.1 (d, J = 9.9 Hz, 3F) ; IR (KBr) 3071, 2934, 1620, 1436, 1379, 1320, 1270, 1204, 1155, 1106, 1022, 960, 897, 869, 826, 754, 623, 576, 480 cm⁻¹; mp = 91.0-92.0 °C (CHCl₃); MS (ESI, *m/z*) 264 [M+H]⁺, HRMS (ESI) calcd. for C₁₅H₁₃F₃N [M+H]⁺: 264.1000 Found: 264.0997; The ee of the product was determined by HPLC using an AD-3 column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 23.9$ min, $\tau_{min} = 33.6$ min); $[\alpha]_D^{25} = -34.7$ (c = 0.14, CHCl₃), 97% ee.

No.	tR (min)	Area (%)	High (%)
1	12.058	49.945	56.471
2	15.967	50.055	43.529

No.	tR (min)	Area (%)	High (%)
1	12.258	1.435	1.977
2	16.133	98.565	98.023

(S)-4b HPLC using an IB (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm)

No.	tR (min)	Area (%)	High (%)
1	14.575	50.015	53.549
2	15.933	49.985	46.451

No.	tR (min)	Area (%)	High (%)
1	14.467	99.086	99.152
2	15.875	0.914	0.848

No.	tR (min)	Area (%)	High (%)
1	15.458	50.115	54.325
2	18.908	49.885	45.675

No.	tR (min)	Area (%)	High (%)
1	14.850	1.959	2.120
2	18.183	98.041	97.880

(S)-4d HPLC using an OJ-H (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm)

No.	tR (min)	Area (%)	High (%)
1	32.375	50.139	55.278
2	42.792	49.861	44.722

No.	tR (min)	Area (%)	High (%)
1	31.600	1.660	2.356
2	41.217	98.340	97.644

(S)-4e HPLC using an OJ-H (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm)

No.	tR (min)	Area (%)	High (%)
1	15.592	50.010	55.793
2	19.325	49.990	44.207

No.	tR (min)	Area (%)	High (%)
1	15.117	1.730	2.261
2	18.383	98.270	97.739

No.	tR (min)	Area (%)	High (%)
1	17.183	49.544	51.351
2	18.533	50.456	48.649

No.	tR (min)	Area (%)	High (%)
1	17.717	98.716	98.729
2	19.667	1.284	1.271

(S)-4g HPLC using an IB (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm)

No.	tR (min)	Area (%)	High (%)
1	13.758	49.816	51.528
2	15.158	50.184	48.472

No.	tR (min)	Area (%)	High (%)
1	12.650	99.056	98.999
2	13.808	0.944	1.001

(*S*)-4h HPLC using an OJ-H (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm)

No.	tR (min)	Area (%)	High (%)
1	49.617	50.160	56.908
2	65.683	49.840	43.092

No.	tR (min)	Area (%)	High (%)
1	47.492	98.559	98.761
2	64.533	1.441	1.239

(S)-4i HPLC using an IB (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm)

No.	tR (min)	Area (%)	High (%)
1	15.617	49.914	52.896
2	18.133	50.086	47.104

No.	tR (min)	Area (%)	High (%)
1	14.925	1.502	2.124
2	17.117	98.498	97.876

(*S*)-**4j** HPLC using an IB

(*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm)

No.	tR (min)	Area (%)	High (%)
1	20.008	49.968	53.812
2	23.783	50.032	46.188

No.	tR (min)	Area (%)	High (%)
1	19.983	1.078	1.324
2	23.333	98.922	98.676

No.	tR (min)	Area (%)	High (%)
1	14.875	49.943	53.414
2	19.542	50.057	46.586

No.	tR (min)	Area (%)	High (%)
1	14.908	98.994	99.083
2	19.617	1.006	0.917

(S)-2c HPLC using an OJ-H (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm)

No.	tR (min)	Area (%)	High (%)
1	15.917	50.198	55.503
2	23.233	49.802	44.497

No.	tR (min)	Area (%)	High (%)
1	15.858	99.132	99.266
2	23.175	0.868	0.734

No.	tR (min)	Area (%)	High (%)
1	26.133	49.801	51.084
2	27.300	50.199	48.916

30.0

No.	tR (min)	Area (%)	High (%)
1	25.733	1.143	1.245
2	26.908	98.857	98.755

30.0

20.0

(S)-2f HPLC using an OJ-H (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm)

20.0

No.	tR (min)	Area (%)	High (%)
1	14.558	50.044	56.176
2	22.583	49.956	43.824

No.	tR (min)	Area (%)	High (%)
1	14.575	98.946	99.153
2	22.625	1.054	0.847

(S)-2g HPLC using an OJ-H (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm)

No.	tR (min)	Area (%)	High (%)
1	16.042	50.082	62.400
2	28.425	49.918	37.600

No.	tR (min)	Area (%)	High (%)
1	16.000	98.740	99.249
2	28.192	1.260	0.751

(S)-2h HPLC using an OJ-H (*n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm)

No.	tR (min)	Area (%)	High (%)
1	10.650	49.870	59.272
2	16.067	50.130	40.728

No.	tR (min)	Area (%)	High (%)
1	10.567	99.045	99.234
2	16.033	0.955	0.766

ESI19

(S)-2i HPLC using an AD-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm)

No.	tR (min)	Area (%)	High (%)
1	23.758	49.751	56.554
2	33.408	50.249	43.446

No.	tR (min)	Area (%)	High (%)
1	23.867	98.648	98.875
2	33.575	1.352	1.125

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

CH2NO2 0 CF₃ mđđ 4a ¹⁹F NMR -180 -160 -140 -120 -100 - 80 обе.17-81е.17--60 -40 -20 000.0-0 20

13C

 CH_2NO_2 0 CF₃ ۳ Me 4c ¹⁹F NMR -180 -160 -140 -120 -100 - 80 TLE.IL-626.17---60 -40 -20 000.0-0 20

13C

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

 CH_2NO_2 О CF₃ ′ **4j** ¹⁹F NMR

wdd

-180

-160

-140

-120

13C

ESI65

13C

X-ray crystallographic structure of (S)-4i

X-ray crystallographic structure of racemic 2g

Figure S2