# **Supporting Information**

## Partially saturated fluorinated heterocycles: Diastereo- and enantioselective synthesis of β-trifluoromethyl-pyrroline carboxylates

Hiroyuki Kawai, Yutaka Sugita, Etsuko Tokunaga, <mark>Hiroyasu Sato, Motoo Shiro,</mark> and Norio Shibata\*

Department of Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology,

Gokiso, Showa-ku, Nagoya 466-8555, Japan Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan

#### **Experimental Section**

#### **General Methods:**

All reactions were performed in oven-dried glassware under a positive pressure of nitrogen. Solvents were transferred *via* syringe and were introduced into the reaction vessels though a rubber septum. All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates were visualized with UV light and 7% phosphomolybdic acid or KMnO<sub>4</sub> in water/heat. Column chromatography was carried out on a column packed with silica-gel 60N spherical neutral size 63-210  $\mu$ m. The <sup>1</sup>H-NMR (300 MHz), <sup>19</sup>F-NMR (282 MHz), <sup>13</sup>C-NMR (150.9 MHz) spectra for solution in CDCl<sub>3</sub> were recorded on a Buruker Avance 600 and a Varian Mercury 300. Chemical shifts ( $\delta$ ) are expressed in ppm downfield from internal TMS or CHCl<sub>3</sub>. HPLC analyses were performed on a JASCO U-2080 Plus using 4.6 x 250 mm CHIRALPAK AD-3 or CHIRALCEL OJ-H or CHIRALPAK IB column. Mass spectra were recorded on a SHIMADZU LCMS-2010EV. Optical rotations were measured on a HORIBA SEPA-300. Infrared spectra were recorded on a JASCO FT/ IR-200 spectrometer. The  $\beta$ -trifluoromethylated enones **3** were prepared according to literature.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> G. Blay, I. Fernández, M. C. Munoz, J. R. Pedro, C. Vila, *Chem. Eur. J.* 2010, 16, 9117.

#### Synthesis of 1-adamantyl glycinate-benzophenone schiff base 5b:



To a stirred solution of 1-adamantyl 2-bromoacetate (3.45 g, 12.6 mmol) in MeCN (12 mL) was added benzophenone imine (2.11 mL, 12.6 mmol, 1.0 equiv) and *i*Pr<sub>2</sub>NEt (2.20 mL, 12.6 mmol, 1.0 equiv) successively at ambient temperature and heated under reflux for 19 h under nitrogen atmosphere. The reaction mixture was cooled to room temperature and partitioned between  $CH_2Cl_2$  and water. The resulting organic layer was washed with  $H_2O$  (two times) and brine, dried over  $Na_2SO_4$  and concentrated under reduced pressure. The residue was purified by column chromatography on flash silica gel (*n*-hexane/ethyl acetate = 9/1) to give **5b** as a white solid (1.83 g, 39%).

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  1.65 (s, 6H), 2.12 (s, 9H), 4.12 (s, 2H), 7.18-7.20 (m, 2H), 7.30-7.39 (m, 3H), 7.45 (s, 3H), 7.65 (d, *J* = 6.9 Hz, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150.9 MHz)  $\delta$  30.8, 36.1, 41.3, 56.4, 81.1, 127.7, 128.0, 128.6, 128.7, 130.3, 136.1, 139.4, 169.5, 171.4; IR (KBr) 2911, 1749, 1624, 1490, 1445, 1394, 1353, 1284, 1184, 1103, 1057, 939, 884, 783, 699, 639, 575, 463 cm<sup>-1</sup>; mp = 65.5-68.0 °C (CHCl<sub>3</sub>); MS (ESI, *m/z*) 375 (M+H)+, HRMS (ESI) calcd. for C<sub>25</sub>H<sub>28</sub>NO<sub>2</sub> [(M+H)<sup>+</sup>]: 373.2042 Found: 374.2120;

General procedure for the aymmetric synthesis of  $\beta$ -trifluoromethylated pyrrolines by organocatalytic conjugated addition of glycinate schiff base:



To a stirred solution of  $\beta$ -trifluoromethylated enone **4** (0.10 mmol), catalyst **6e** (5.8 mg, 0.01 mmol, 10 mol%) and glycinate schiff base **5b** (41.1 mg, 0.11 mmol, 1.1 equiv) in CPME (1.0 mL) was added Cs<sub>2</sub>CO<sub>3</sub> (163 mg, 0.50 mmol, 5.0 equiv) at -20°C under nitrogen atmosphere. After reaction mixture was stirred at the same temperature, it was quenched with sat. NH<sub>4</sub>Cl aq. Aqueous layer was extracted with AcOEt, and the combined organic layers was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure to furnish the conjugated adduct intermediate. This intermediate was treated with conc. HCl (8.3 µL, 0.10 mmol, 1.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL) at ambient temperature for 6 h. After dilution with water, the resulting mixture was extracted with

CH<sub>2</sub>Cl<sub>2</sub>, and the combined organic layers was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 95/5) to give  $\beta$ -trifluoromethylated pyrroline (2*R*,3*R*)-**3**.

#### (2R,3R)-1-Adamantyl 5-phenyl-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (3b)



Reaction of **4a** (20.0 mg, 0.10 mmol), catalyst **6e** (5.8 mg, 0.010 mmol, 10 mol%), glycinate schiff base **5b** (41.1 mg, 0.11 mmol, 1.1 equiv),  $Cs_2CO_3$  (162.9 mg, 0.50 mmol, 5.0 equiv) in CPME (1.0 mL) at -20 °C for 9 h gave (2*R*,3*R*)-**3b** (37.4 mg, 95%, 86% ee) as a white solid.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 1.67 (s, 6H), 2.17 (s, 9H), 3.16-3.25 (m, 1H), 3.34-3.52 (m, 2H), 4.94-4.96 (m, 1H), 7.40-7.51 (m, 3H), 7. 84-7.87 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150.9 MHz) δ 30.9, 36.1, 36.6 (q, J = 2.0 Hz), 41.1, 44.0 (q, J = 28.2 Hz), 76.3 (q, J = 1.5 Hz), 82.5, 126.9 (q, J = 277.7Hz), 128.0, 128.5, 131.4, 132.9, 169.4, 173.1; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282 MHz) δ -71.6 (d, J = 8.7 Hz, 3F); IR (KBr) 2913, 2855, 1744, 1625, 1577, 1448, 1386, 1354, 1200, 1154, 1107, 1061, 965, 932, 889, 822, 769, 691, 556, 472 cm<sup>-1</sup>; mp = 88.0-90.0 °C (CHCl<sub>3</sub>); MS (ESI, m/z) 415 [(M+Na)<sup>+</sup>], HRMS (ESI) calcd. for C<sub>22</sub>H<sub>24</sub>F<sub>3</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>]: 414.1657 Found: 414.1651; The ee of the product was determined by HPLC using an AD-3 column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min,  $\lambda = 254$  nm,  $\tau_{maj} = 11.9$  min,  $\tau_{min} = 13.5$  min); [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -54.2 (c = 0.65, CHCl<sub>3</sub>), 86% ee.

#### (2R,3R)-1-Adamantyl 5-m-tolyl-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (3c)



Reaction of **4c** (21.4 mg, 0.10 mmol), catalyst **6e** (5.8 mg, 0.010 mmol, 10 mol%), glycinate schiff base **5b** (41.1 mg, 0.11 mmol, 1.1 equiv),  $Cs_2CO_3$  (162.9 mg, 0.50 mmol, 5.0 equiv) in CPME (1.0 mL) at -20 °C for 36 h gave (2*R*,3*R*)-**3c** (29.2 mg, 72%, 84% ee) as a white solid.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  1.67 (s, 6H), 2.17 (s, 9H), 2.39 (s, 3H), 3.13-3.24 (m, 1H), 3.33-3.49 (m, 2H), 4.93-4.95 (m, 1H), 7.30-7.34 (m, 2H), 7.60-7.64 (m, 1H), 7.72 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150.9 MHz)  $\delta$  21.3, 30.9, 36.1, 36.6 (q, *J* = 2.0 Hz), 41.1, 44.0 (q, *J* = 28.2 Hz), 76.2, 82.5, 125.3, 126.9 (q, *J* = 277.7 Hz), 128.4, 128.5, 132.2, 132.8, 138.3, 169.5, 173.3; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282

MHz)  $\delta$  -71.6 (d, J = 9.0 Hz, 3F); IR (KBr) 2913, 1731, 1584, 1457, 1397, 1338, 1271, 1245, 1200, 1155, 1114, 1056, 967, 933, 883, 807, 741, 695, 469 cm<sup>-1</sup>; mp = 80.5-82.0 °C (CHCl<sub>3</sub>); MS (ESI, m/z) 407 [(M+H)<sup>+</sup>], HRMS (ESI) calcd. for C<sub>23</sub>H<sub>27</sub>F<sub>3</sub>NO<sub>2</sub> [(M+H)<sup>+</sup>]: 406.1994 Found: 406.1987; The ee of the product was determined by HPLC using an AD-3 column (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min,  $\lambda = 254$  nm,  $\tau_{maj} = 13.8$  min,  $\tau_{min} = 16.5$  min);  $[\alpha]_D^{25} = -53.8$  (c = 0.45, CHCl<sub>3</sub>), 84% ee.

#### (2R,3R)-1-Adamantyl 5-p-tolyl-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (3d)



Reaction of **4d** (21.4 mg, 0.10 mmol), catalyst **6e** (5.8 mg, 0.010 mmol, 10 mol%), glycinate schiff base **5b** (41.1 mg, 0.11 mmol, 1.1 equiv),  $Cs_2CO_3$  (162.9 mg, 0.50 mmol, 5.0 equiv) in CPME (1.0 mL) at -20 °C for 12 h gave (2*R*,3*R*)-**3d** (38.4 mg, 95%, 87% ee) as a white solid.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 1.67 (s, 6H), 2.17 (s, 9H), 2.39 (s, 3H), 3.12-3.24 (m, 1H), 3.31-3.48 (m, 2H), 4.92-4.94 (m, 1H), 7.23 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.1 Hz, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150.9 MHz) δ 21.5 30.8, 36.1, 36.5 (q, J = 1.5 Hz), 41.1, 44.0 (q, J = 28.2 Hz), 76.2, 82.4, 126.9 (q, J = 277.2 Hz), 128.0, 129.2, 130.2, 141.8, 169.5, 172.9; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282 MHz) δ -71.5 (d, J = 9.0 Hz, 3F); IR (KBr) 2918, 1725, 1619, 1567, 1515, 1457, 1397, 1334, 1217, 1154, 1110, 1052, 964, 932, 884, 821, 795, 736, 553, 507 cm<sup>-1</sup>; mp = 97.0-99.5 °C (CHCl<sub>3</sub>); MS (ESI, *m/z*) 429 [(M+Na)<sup>+</sup>], HRMS (ESI) calcd. for C<sub>23</sub>H<sub>26</sub>F<sub>3</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>]: 428.1813 Found: 428.1806; The ee of the product was determined by HPLC using an AD-3 column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min,  $\lambda = 254$  nm,  $\tau_{maj} = 12.3$  min,  $\tau_{min} = 14.3$  min); [α]<sub>D</sub><sup>25</sup> = -38.7 (c = 1.20, CHCl<sub>3</sub>), 87% ee.

#### (2R,3R)-1-Adamantyl

5-(3-methoxyphenyl)-3-(trifluoromethyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (3e)



Reaction of **4e** (23.0 mg, 0.10 mmol), catalyst **6e** (5.8 mg, 0.010 mmol, 10 mol%), glycinate schiff base **5b** (41.1 mg, 0.11 mmol, 1.1 equiv), Cs<sub>2</sub>CO<sub>3</sub> (162.9 mg, 0.50 mmol, 5.0 equiv) in CPME (1.0

mL) at -20 °C for 36 h gave (2*R*,3*R*)-3e (31.1 mg, 74%, 84% ee) as a colorless oil.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 1.67 (s, 6H), 2.17 (s, 9H), 3.14-3.23 (m, 1H), 3.33-3.48 (m, 2H), 3.86 (s, 3 H), 4.94-4.96 (m, 1H), 7.01-7.05 (m, 1H), 7.30-7.38 (m, 2H), 7.46 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150.9 MHz) δ 30.9, 36.1, 36.7, 41.1, 44.1 (q, J = 28.2 Hz), 55.4, 76.2, 82.6, 112.3, 117.9, 120.8, 126.9 (q, J = 277.7 Hz), 129.5, 134.2, 159.7, 169.4, 173.1; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282 MHz) δ -71.6 (d, J = 8.7 Hz, 3F); IR (neat) 2913, 2854, 1732, 1584, 1457, 1337, 1200, 1116, 1053, 965, 878, 788, 734, 689, 496 cm<sup>-1</sup>; MS (ESI, m/z) 444 [(M+Na)<sup>+</sup>], HRMS (ESI) calcd. for C<sub>23</sub>H<sub>26</sub>F<sub>3</sub>NNaO<sub>3</sub> [(M+Na)<sup>+</sup>]: 444.1762 Found: 444.1756; The ee of the product was determined by HPLC using an OZ-H column (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min,  $\lambda = 254$  nm,  $\tau_{maj} = 15.3$  min,  $\tau_{min} = 12.3$  min);  $[\alpha]_D^{25} = -38.9$  (c = 0.63, CHCl<sub>3</sub>), 84% ee.

#### (2R,3R)-1-Adamantyl

#### 5-(4-methoxyphenyl)-3-(trifluoromethyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (3f)



Reaction of **4f** (23.0 mg, 0.10 mmol), catalyst **6e** (5.8 mg, 0.010 mmol, 10 mol%), glycinate schiff base **5b** (41.1 mg, 0.11 mmol, 1.1 equiv),  $Cs_2CO_3$  (162.9 mg, 0.50 mmol, 5.0 equiv) in CPME (1.0 mL) at -20 °C for 12 h gave (2*R*,3*R*)-**3f** (39.6 mg, 94%, 88% ee) as a white solid.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 1.67 (s, 6H), 2.17 (s, 9H), 3.12-3.21 (m, 1H), 3.30-3.46 (m, 2H), 3.85 (s, 3 H), 4.90-4.92 (m, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.81 (d, J = 9.3 Hz, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150.9 MHz) δ 30.8, 36.1, 36.4 (q, J = 2.0 Hz), 41.1, 44.3 (q, J = 28.7 Hz), 55.4, 76.1, 82.4, 113.8, 125.7, 127.0 (q, J = 277.7 Hz), 129.8, 162.1, 169.7, 172.3; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282 MHz) δ -71.5 (d, J = 9.0 Hz, 3F); IR (KBr) 2913, 1739, 1608, 1571, 1515, 1457, 1246, 1054, 965, 930, 886, 841, 791, 738, 617, 557, 503 cm<sup>-1</sup>; mp = 98.5-101.5 °C (CHCl<sub>3</sub>); MS (ESI, *m/z*) 423 [(M+H)<sup>+</sup>], HRMS (ESI) calcd. for C<sub>23</sub>H<sub>27</sub>F<sub>3</sub>NO<sub>3</sub> [(M+H)<sup>+</sup>]: 422.1943 Found: 422.1932; The ee of the product was determined by HPLC using an AD-3 column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min,  $\lambda = 254$  nm,  $\tau_{maj} = 18.9$  min,  $\tau_{min} = 25.0$  min);  $[\alpha]_D^{25} = -34.7$  (c = 0.27, CHCl<sub>3</sub>), 88% ee.

#### (2R,3R)-1-Adamantyl

#### 5-(4-fluorophenyl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (3g)



Reaction of **4g** (21.8 mg, 0.10 mmol), catalyst **6e** (5.8 mg, 0.010 mmol, 10 mol%), glycinate schiff base **5b** (41.1 mg, 0.11 mmol, 1.1 equiv),  $Cs_2CO_3$  (162.9 mg, 0.50 mmol, 5.0 equiv) in CPME (1.0 mL) at -20 °C for 15 h gave (2*R*,3*R*)-**3g** (38.3 mg, 94%, 84% ee) as a white solid.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 1.68 (s, 6H), 2.17 (s, 9H), 3.13-3.20 (m, 1H), 3.31-3.49 (m, 2H), 4.94 (brs, 1H), 7.11 (t, J = 8.6 Hz, 2H), 7.86 (dd, J = 5.7, 8.4 Hz, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150.9 MHz) δ 30.8, 36.0, 36.6 (q, J = 2.0 Hz), 41.1, 44.1 (q, J = 28.2 Hz), 76.2 (q, J = 1.1 Hz), 82.6, 115.7 (d, J = 21.1 Hz), 126.8 (q, J = 277.2 Hz), 129.2 (d, J = 3.0 Hz), 130.2 (d, J = 9.1 Hz), 164.6 (d, J = 252.0 Hz), 169.4, 171.9; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282 MHz) δ -108.6 (m, 1F), -71.6 (d, J = 8.7 Hz, 3F); IR (KBr) 2919, 1742, 1629, 1604, 1515, 1457, 1387, 1353, 1200, 1156, 1117, 1054, 966, 931, 890, 847, 820, 775, 551 cm<sup>-1</sup>; mp = 65.0-67.0 °C (CHCl<sub>3</sub>); MS (ESI, m/z) 433 [(M+Na)<sup>+</sup>], HRMS (ESI) calcd. for C<sub>22</sub>H<sub>23</sub>F<sub>4</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>]: 432.1563 Found: 432.1563; The ee of the product was determined by HPLC using an AD-3 column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min,  $\lambda = 254$  nm,  $\tau_{maj} = 13.7$  min,  $\tau_{min} = 16.2$  min);  $[\alpha]_D^{25} = -50.9$  (c = 0.83, CHCl<sub>3</sub>), 84% ee.

## (2R,3R)-1-Adamantyl

#### 5-(4-chlorophenyl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (3h)



Reaction of **4h** (23.5 mg, 0.10 mmol), catalyst **6e** (5.8 mg, 0.010 mmol, 10 mol%), glycinate schiff base **5b** (41.1 mg, 0.11 mmol, 1.1 equiv),  $Cs_2CO_3$  (162.9 mg, 0.50 mmol, 5.0 equiv) in CPME (1.0 mL) at -20 °C for 15 h gave (2*R*,3*R*)-**3h** (39.6 mg, 93%, 78% ee) as a colorless oil.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 1.68 (s, 6H), 2.17 (s, 9H), 3.12-3.19 (m, 1H), 3.31-3.49 (m, 2H), 4.94 -4.95 (m, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150.9 MHz) δ 30.8, 36.0, 36.5 (q, J = 2.0 Hz), 41.1, 44.1 (q, J = 28.7 Hz), 76.3 (q, J = 1.5 Hz), 82.7, 126.8 (q, J = 2.0 Hz)

277.7 Hz), 128.8, 129.4, 131.3, 137.6, 169.2, 172.0; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282 MHz)  $\delta$  -71.6 (d, *J* = 8.7 Hz, 3F); IR (neat) 2914, 2855, 1733, 1621, 1598, 1493, 1457, 1402, 1345, 1200, 1117, 1053, 1014, 965, 886, 830, 733, 553 cm<sup>-1</sup>; MS (ESI, *m/z*) 448 [(M+Na)<sup>+</sup>], HRMS (ESI) calcd. for C<sub>22</sub>H<sub>23</sub>ClF<sub>3</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>]: 448.1267 Found: 448.1264; The ee of the product was determined by HPLC using an AD-3 column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min,  $\lambda$  = 254 nm,  $\tau_{maj}$  = 15.9 min,  $\tau_{min}$  = 18.7 min); [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -37.6 (c = 0.45, CHCl<sub>3</sub>), 78% ee.

#### (2R,3R)-1-Adamantyl

-(4-bromophenyl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (3i)



Reaction of **4i** (28.0 mg, 0.10 mmol), catalyst **6e** (5.8 mg, 0.010 mmol, 10 mol%), glycinate schiff base **5b** (41.1 mg, 0.11 mmol, 1.1 equiv),  $Cs_2CO_3$  (162.9 mg, 0.50 mmol, 5.0 equiv) in CPME (1.0 mL) at -20 °C for 15 h gave (2*R*,3*R*)-**3i** (45.2 mg, 96%, 77% ee) as a colorless oil.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 1.67 (s, 6H), 2.17 (s, 9H), 3.12-3.19 (m, 1H), 3.31-3.49 (m, 2H), 4.93 (brs, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150.9 MHz) δ 30.8, 36.0, 36.5 (q, J = 1.5 Hz), 41.1, 44.1 (q, J = 28.2 Hz), 76.3, 82.7, 126.1, 126.8 (q, J = 277.7 Hz), 129.5, 131.7, 131.8, 169.2, 172.1; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282 MHz) δ -71.6 (d, J = 8.7 Hz, 3F); IR (neat) 2913, 2854, 1733, 1620, 1592, 1488, 1457, 1398, 1333, 1200, 1117, 1053, 1011, 965, 823, 734 cm<sup>-1</sup>; MS (ESI, m/z) 492 [(M+Na)<sup>+</sup>-1], 494 [(M+Na)<sup>+</sup>+1], HRMS (ESI) calcd. for C<sub>22</sub>H<sub>23</sub>BrF<sub>3</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>]: 492.0762 Found: 492.0751; The ee of the product was determined by HPLC using an AD-3 column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min,  $\lambda = 254$  nm,  $\tau_{maj} = 17.6$  min,  $\tau_{min} = 21.6$  min); [α]<sub>D</sub><sup>25</sup> = -32.9 (c = 0.91, CHCl<sub>3</sub>), 77% ee.

#### (2R,3R)-1-Adamantyl

5-(naphthalen-2-yl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (3j)



Reaction of 4j (25.0 mg, 0.10 mmol), catalyst 6e (5.8 mg, 0.010 mmol, 10 mol%), glycinate schiff

base **5b** (41.1 mg, 0.11 mmol, 1.1 equiv), Cs<sub>2</sub>CO<sub>3</sub> (162.9 mg, 0.50 mmol, 5.0 equiv) in CPME (1.0 mL) at -20 °C for 14 h gave (2*R*,3*R*)-**3**j (35.7 mg, 81%, 72% ee) as a white solid.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 1.68 (s, 6H), 2.19 (s, 9H), 3.31-3.38 (m, 1H), 3.44-3.57 (m, 2H), 5.01 (brs, 1H), 7.50-7.58 (m, 2H), 7.86-7.91 (m, 3H), 8.09 (d, J = 9.0 Hz, 1H), 8.19 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150.9 MHz) δ 30.9, 36.1, 36.6, 41.1, 44.1 (q, J = 28.2 Hz), 76.4, 82.6, 124.5, 126.6, 126.9 (q, J = 277.2 Hz), 127.6, 127.8, 128.3, 128.8, 129.0, 130.4, 132.7, 134.7, 169.4, 173.1; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282 MHz) δ -71.5 (d, J = 8.7 Hz, 3F); IR (KBr) 2917, 1730, 1611, 1573, 1436, 1396, 1354, 1275, 1244, 1200, 1153, 1112, 1056, 969, 931, 869, 831, 755, 479 cm<sup>-1</sup>; mp = 148.0-151.0 °C (CHCl<sub>3</sub>); MS (ESI, *m/z*) 464 [(M+Na)<sup>+</sup>], HRMS (ESI) calcd. for C<sub>26</sub>H<sub>26</sub>F<sub>3</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>]: 464.1813 Found: 464.1812; The ee of the product was determined by HPLC using an AD-3 column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min,  $\lambda = 254$  nm,  $\tau_{maj} = 18.3$  min,  $\tau_{min} = 22.0$  min);  $[\alpha]_D^{25} = -61.4$  (c = 0.59, CHCl<sub>3</sub>), 72% ee.

# (2*R*,3*R*)-1-Adamantyl 5-(furan-2-yl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (3k)



Reaction of **4k** (19.0 mg, 0.10 mmol), catalyst **6e** (5.8 mg, 0.010 mmol, 10 mol%), glycinate schiff base **5b** (41.1 mg, 0.11 mmol, 1.1 equiv),  $Cs_2CO_3$  (162.9 mg, 0.50 mmol, 5.0 equiv) in CPME (1.0 mL) at -20 °C for 16 h gave **3k** (36.5 mg, 96%, 80% ee) as a colorless oil.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 1.67 (s, 6H), 2.16 (s, 9H), 3.09-3.16 (m, 1H), 3.28-3.46 (m, 2H), 4.92-4.94 (m, 1H), 6.51 (dd, J = 1.7, 3.5 Hz, 1H), 6.95 (d, J = 3.6 Hz, 1H), 7.56 (d, J = 1.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150.9 MHz) δ 30.8, 36.0, 36.4, 41.1, 43.8 (q, J = 28.7 Hz), 76.3, 82.6, 111.9, 114.6, 126.7 (q, J = 277.2 Hz), 145.4, 148.4, 163.6, 169.2; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282 MHz) δ -71.6 (d, J = 9.0 Hz, 3F); IR (neat) 2914, 2855, 1732, 1629, 1483, 1457, 1389, 1330, 1200, 1115, 1053, 965, 912, 885, 734, 595, 498 cm<sup>-1</sup>; MS (ESI, m/z) 405 [(M+Na)<sup>+</sup>], HRMS (ESI) calcd. for C<sub>20</sub>H<sub>22</sub>F<sub>3</sub>NNaO<sub>3</sub> [(M+Na)<sup>+</sup>]: 404.1449 Found: 404.1444; The ee of the product was determined by HPLC using an AD-3 column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm,  $\tau_{maj} = 8.7$  min,  $\tau_{min} = 4.7$  min); [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -57.0 (c = 0.82, CHCl<sub>3</sub>), 80% ee.





| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 11.925   | 49.845   | 51.296   |
| 2   | 13.492   | 50.155   | 48.704   |

(2R,3R)-**3b** HPLC using an AD-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min,  $\lambda$  = 254 nm)



| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 11.883   | 93.100   | 93.443   |
| 2   | 13.450   | 6.900    | 6.557    |



(2R,3R)-3c HPLC using an AD-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min,  $\lambda$  = 254 nm)



| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 13.808   | 92.197   | 92.522   |
| 2   | 16.458   | 7.803    | 7.478    |



| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 14.042   | 49.838   | 50.613   |
| 2   | 16.567   | 50.162   | 49.387   |



(2R,3R)-3d HPLC using an AD-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min,  $\lambda$  = 254 nm)



| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 12.283   | 50.027   | 51.119   |
| 2   | 14.267   | 49.973   | 48.881   |



| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 12.308   | 93.671   | 93.917   |
| 2   | 14.308   | 6.329    | 6.083    |



(2R,3R)-**3e** HPLC using an OZ-H (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min,  $\lambda$  = 254 nm)



| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 12.325   | 7.946    | 9.075    |
| 2   | 15.267   | 92.054   | 90.925   |



| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 12.308   | 49.900   | 54.616   |
| 2   | 15.225   | 50.100   | 45.384   |

Ņ

MeO







-SUY-160-2 - CH1

25.0



| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 19.117   | 49.924   | 50.858   |
| 2   | 24.958   | 50.076   | 49.142   |



# (2R,3R)-**3g** HPLC using an AD-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda$ = 254 nm)





| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 13.650   | 91.756   | 91.831   |
| 2   | 16.158   | 8.244    | 8.169    |



| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 13.825   | 50.214   | 50.958   |
| 2   | 16.375   | 49.786   | 49.042   |





| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 15.950   | 50.031   | 51.936   |
| 2   | 18.675   | 49.969   | 48.064   |



(2*R*,3*R*)-**3h** HPLC using an AD-3

(*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5/min,  $\lambda$  = 254 nm)

| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 15.925   | 89.064   | 89.768   |
| 2   | 18.667   | 10.936   | 10.232   |







| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 17.683   | 49.761   | 50.311   |
| 2   | 21.650   | 50.239   | 49.689   |



| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 17.617   | 88.458   | 88.545   |
| 2   | 21.658   | 11.542   | 11.455   |



(2R,3R)-**3j** HPLC using an AD-3 (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5/min,  $\lambda$  = 254 nm)



| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 18.408   | 50.003   | 52.285   |
| 2   | 22.075   | 49.997   | 47.715   |

20.0

25.

| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 18.250   | 85.984   | 86.832   |
| 2   | 21.992   | 14.016   | 13.168   |



5.0

(2R,3R)-**3k** HPLC using an OD-3 (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm)



| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 4.950    | 50.267   | 64.283   |
| 2   | 9.100    | 49.733   | 35.717   |



| No. | tR (min) | Area (%) | High (%) |
|-----|----------|----------|----------|
| 1   | 4.725    | 10.151   | 16.088   |
| 2   | 8.692    | 89.849   | 83.912   |





13C



N // ′CF<sub>3</sub> 3b <sup>19</sup>F NMR



udđ

-180





















13C







































13C

## Transesterification of 3b to methylester 7:

(2R,3R)-Methyl 5-phenyl-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (7)



(2R, 3R)-**3b** (99% ee)



A stirring solution of (2R, 3R)-**3b** (99% ee) (25.0 mg, 0.064 mmol) and TfOH (5.7 µL, 0.064 mmol, 1.0 equiv) in MeOH (0.5 mL) was heated under reflux for 48 h. After cooling to room temperature, the reaction mixture was quenched with sat. NaHCO<sub>3</sub> aq., the whole reaction mixture was extracted three times with CH<sub>2</sub>Cl<sub>2</sub>, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by column chromatography (*n*-hexane/ethyl acetate = 95/5) on silica gel to give methylester (2*R*, 3*R*)-7 (15.9 mg, 92%, 99% ee) as a white solid.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 3.23 (dd, J = 5.6, 17.3 Hz, 1H), 3.45 (ddd, J = 2.0, 10.4, 17.7 Hz, 1H), 3.53-3.67 (m, 1H), 5.08 (d, J = 4.8 Hz, 1H), 7.41-7.52 (m, 3H), 7.86 (d, J = 6.9 Hz, 2H); <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282 MHz) δ -71.7 (d, J = 9.9 Hz, 3F); IR (KBr) 2968, 1745, 1618, 1576, 1441, 1402, 1340, 1276, 1211, 1152, 1113, 1043, 951, 923, 846, 764, 691, 555, 514 cm<sup>-1</sup>; MS (ESI, *m/z*) 294 [(M+Na)<sup>+</sup>]; The ee of the product was determined by HPLC using an AD-3 column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min,  $\lambda = 254$  nm,  $\tau_{maj} = 15.1$  min,  $\tau_{min} = 18.5$  min). X-ray crystallographic structure of (2R, 3R)-7









Figure S1

ESI-47