Supporting Information

Weijian Xue, Qi Li, Yanping Zhu, Jungang Wang and Anxin Wu * Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China and ^bDepartment of Chemistry, Wuhan University, Wuhan 430072, P. R. China

E-mail: chwuax@mail.ccnu.edu.cn

Tal	ble of Contents	Pages
1.	General	S2
2.	General procedure for the synthesis of polysubstituted oxazoles (3)	S2-S7
3.	The X-ray crystal structures	S8-S9
4.	Mechanism for the for the formation of two types of oxazoles	S10
5.	Intermediates reaction	S11
6.	The spectra of GC-MS	S12-S13
7.	NMR analysis	S14
8.	¹ H and ¹³ C NMR spectra	S15-S35
9.	HRMS spectra	S36-S56

1. General

All starting materials and catalysts were obtained commercially, and used without further purification. Whenever possible, reactions were monitored by thin-layer chromatography using polygram SIL G/UV254 0.2 mm silica gel plates with fluorescent indicator. Column chromatography: silica gel 200–300 mesh.

NMR spectra were measured on Varian Mercury 400 spectrometer operating at 400 MHz for ¹H and 100 MHz for ¹³C relative to tetramethylsilane as internal standard. NMR spectra were measured on Varian NMR System 600MHz operating at 600 MHz for ¹H and 125 MHz for ¹³C relative to tetramethylsilane as internal standard. HRMS were carried out on an apex-Ultra spectrometer. IR spectra were recorded on a Tensor 27 infrared spectrometer as KBr pellets with absorption reported in cm⁻¹. The X-ray crystal structures were obtained on a Bruker SMART APEX CCD system. GC-MS were recorded on a Termo DSQ II. Melting points were determined using a melting point apparatus and are uncorrected.

2. General procedure for the synthesis of polysubstituted oxazoles (3)

(4,5-diphenyloxazol-2-yl)(phenyl)methanone (3a). To a stirred solution of acetophenone (120mg, 1mmol), benzoin (233mg, 1.1mmol) and CH₃COONH₄ (154 mg, 2mmol) in DMSO (3mL) were added I₂ (635mg, 2.5mmol). The reaction mixture was stirred at 120 for 5 h. EtOAc and H₂O/Na₂S₂O₃ saturated solution were added, and the organic layer was separated, dried (Na₂SO₄), and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, 100/1=petroleum ether/ethylacetate) to give **3a** (237mg, 73% yield): mp=121.2-124.8; IR spectrum (KBr cm⁻¹) 1655, 1513, 1477, 1335, 1204, 1181, 913, 767; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.70 (d, *J* = 8 Hz, 2H), 8.71 (q, *J* = 2.4 Hz, 4H), 7.61 (t, *J* = 7.2 Hz, 1H), 7.51 (t, *J* = 8 Hz, 2H), 7.38 (t, *J* = 5.6 Hz, 6H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 178.5, 155.8, 148.5, 137.2, 135.2, 133.7, 131.5, 130.9, 129.8, 128.7, 128.6 128.4, 128.1, 127.6, 127.3. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₁₆NO₂: 326.11756; found: 326.11734.

(4,5-diphenyloxazol-2-yl)(p-tolyl)methanone (3b) (251mg, 74% yield): mp=

157.7-160.2; IR spectrum (KBr cm⁻¹) 1650, 1604, 1510, 1477, 1445, 1334, 1178, 911, 767; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.49 (d, J = 8 Hz, 2H), 7.75-7.72 (m, 4H), 7.42(t, J = 6 Hz, 6H), 7.33 (d, J = 8 Hz, 2H), 2.45(s, 3H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 178.3, 156.1, 148.4, 144.9, 137.2, 132.8, 131.6, 131.1, 129.7, 129.2, 128.8, 128.7, 128.2, 127.7, 127.3, 21.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₁₈NO₂: 340.13321; found: 340.13296.

(4,5-diphenyloxazol-2-yl)(4-nitrophenyl)methanone (3c) (259mg, 70%

yield): mp=154.6-158.8; IR spectrum (KBr cm⁻¹) 1657, 1599, 1580, 1521, 1445, 1346, 1333, 1207, 916, 850, 769, 696; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.77 (d, *J* = 8 Hz, 2H), 8.37 (d, *J* = 8 Hz, 2H) 7.76-7.70 (m, 4H), 7.44(q, *J* = 4.8 Hz, 6H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 176.6, 155.4, 150.5, 149.5, 139.9, 137.8, 132.0, 131.1, 130.2, 129.1, 128.9, 128.8, 128.2, 127.4, 127.2, 123.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₁₅N₂O₄: 371.10263; found: 371.10230.

(4,5-diphenyloxazol-2-yl)(4-fluorophenyl)methanone (3d) (257mg, 75%

yield): mp=149.6-152.4; IR spectrum (KBr cm⁻¹) 1656, 1593, 1502, 1477, 1336, 1202, 1155, 915, 767, 693; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.70-8.66 (m, 2H), 7.75-7.71 (m, 4H) 7.46-7.40 (m, 6H), 7.21 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 176.9, 167.6, 165.0, 155.7, 148.7, 137.3, 133.9, 133.8, 131.6, 131.4, 129.9, 128.8, 128.7, 128.2, 127.6, 127.3, 115.8, 115.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₁₅FNO₂: 344.10813; found: 344.10793.

(4-chlorophenyl)(4,5-diphenyloxazol-2-yl)methanone (3e) (273mg, 76%

yield): mp=155.2-157.5; IR spectrum (KBr cm⁻¹) 1649, 1584, 1476, 1335, 1210, 1090, 910, 768, 698; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.56 (d, *J* = 8 Hz, 2H), 7.74-7.70 (m, 4H), 7.50 (d, *J* = 8 Hz, 2H), 7.45-7.40 (m, 6H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 177.2, 155.7, 148.8, 140.5, 137.4, 133.5, 132.4, 131.4, 129.9, 128.8, 128.8, 128.7, 128.2, 127.5, 127.3. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₁₅ClNO₂: 360.07858; found: 360.07840.

(4-bromophenyl)(4,5-diphenyloxazol-2-yl)methanone (3f) (323mg, 80%

yield): mp=149.5-152.6; IR spectrum (KBr cm⁻¹) 1648, 1581, 1476, 1335, 1211, 909, 767, 698; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.48 (d, J = 8 Hz, 2H), 7.75-7.67 (m, 6H), 7.45-7.41 (m, 6H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 177.4, 155.7, 148.9, 137.4, 133.9, 132.4, 131.8, 131.4, 129.9, 129.4, 128.8, 128.7, 128.2, 127.5, 127.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₁₅BrNO₂: 404.02807; found: 404.02773.

(3,4-dichlorophenyl)(4,5-diphenyloxazol-2-yl)methanone (3g) (264mg, 67%

yield): mp=138.7-141.3; IR spectrum (KBr cm⁻¹) 1650, 1552, 1509, 1445, 1337, 1206, 1187, 928, 768, 697; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.71 (d, *J* = 2 Hz, 1H), 8.51 (q, *J* = 2 Hz, 1H), 7.72 (t, *J* = 8 Hz, 4H), 7.61 (d, *J* = 8 Hz, 1H), 7.43 (t, *J* = 6 Hz, 6H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 175.9, 155.3, 149.2, 138.5, 137.5, 134.8, 134.7, 133.1, 132.7, 131.2, 130.6, 130.1, 129.9, 128.9, 128.8, 128.7, 128.4, 128.2, 127.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₁₄Cl₂NO₂: 394.03961; found: 394.03928.

(4,5-diphenyloxazol-2-yl)(furan-2-yl)methanone (3h) (268mg, 85% yield):mp=167.1-169.4; IR spectrum (KBr cm⁻¹) 1648, 1519, 1460, 1393, 1022, 864, 772, 696; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.24 (d, J = 3.2 Hz, 1H), 7.80 (s, 1H), 7.75-7.72 (m, 4H), 7.42 (t, J = 6.4 Hz, 6H), 6.66 (q, J = 1.6 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 165.6, 155.1, 150.2, 148.8, 148.7, 137.3, 131.4, 129.8, 128.8, 128.7, 128.1, 127.5, 127.3, 124.1, 112.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₄NO₃: 316.09682; found: 316.09656.

(4,5-diphenyloxazol-2-yl)(thiophen-2-yl)methanone (3i) (275mg, 83% yield): mp=163.7-165.8; IR spectrum (KBr cm⁻¹) 1631, 1514, 1412, 1356, 1215, 1048, 831, 772, 697; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.70 (d, *J* = 4 Hz, 1H), 7.79 (d, *J* = 4.8 Hz, 1H), 7.75 (d, *J* = 6.4 Hz, 4H), 7.43 (q, *J* = 6 Hz, 6H), 7.23 (t, *J* = 4 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 170.6, 155.5, 148.8, 140.8, 137.3, 137.0, 136.2, 131.5, 129.9, 128.8, 128.7, 128.5, 128.1, 127.7, 127.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₄NO₂S: 332.07398; found: 332.07382.

benzofuran-2-yl(4,5-diphenyloxazol-2-yl)methanone (3j) (183mg, 50% yield): mp=181.3-186.2; IR spectrum (KBr cm⁻¹) 1649, 1547, 1519, 1445, 1340, 1120, 890, 753, 664; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.65 (s, 1H), 7.79 (d, J = 4.8 Hz, 1H), 7.81 (d, J = 8 Hz, 1H), 7.72 (d, J = 6 Hz, 4H), 7.67 (d, J = 8 Hz, 1H), 7.40 (t, J = 8 Hz, 1H), 7.49-7.42 (m, 6H), 7.36 (t, J = 8 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 167.3, 156.4, 155.2, 150.3, 149.2, 137.5, 131.4, 130.0, 129.2, 128.9, 128.8, 128.7, 128.2, 127.5, 127.4, 127.3, 124.1, 124.0, 120.1, 112.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₆NO₃: 366.11247; found: 366.11189.

(4,5-diphenyloxazol-2-yl)(naphthalen-2-yl)methanone (3l) (233mg, 64% yield): mp=178.1-181.7; IR spectrum (KBr cm⁻¹) 1646, 1513, 1443, 1332, 1180, 1119, 763, 691; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.33 (s, 1H), 8.48 (q, J = 1.6 Hz, 1H), 8.50 (d, J = 8 Hz, 1H), 7.96 (d, J = 8 Hz, 1H), 7.90 (d, J = 8 Hz, 1H), 7.77(q, J = 2 Hz, 4H), 7.63(t, J = 8 Hz, 1H), 7.57 (d, J = 8 Hz, 1H), 7.47-7.42 (m, 6H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 178.4, 156.1, 148.6, 137.3, 135.9, 133.9, 132.5, 132.4, 131.6, 130.2, 129.8, 128.9, 128.8, 128.7, 128.6, 128.2, 127.7, 127.4,

126.7, 125.6. HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{26}H_{18}NO_2$: 376.13321; found: 376.13307.

(4,5-diphenyloxazol-2-yl)(9H-fluoren-2-yl)methanone (3m) (214mg, 52% yield): mp=201.8-203.7; IR spectrum (KBr cm⁻¹) 1645, 1611, 1511, 1476, 1444, 1334, 1203, 1124, 766, 693; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.71 (q, *J* = 8 Hz, 2H), 7.87 (q, *J* = 8 Hz, 2H), 7.74 (s, 4H), 7.58 (d, *J* = 7.2 Hz, 1H), 7.40 (d, *J* = 6.4 Hz, 8H), 3.98 (s, 2H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 178.3, 156.2, 148.5, 147.2, 144.8, 143.1, 140.4, 137.2, 133.6, 131.7, 130.6, 129.7, 128.8, 128.7, 128.6, 127.7, 127.5, 127.3, 127.0, 125.2, 121.1, 119.6, 37.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₉H₂₀NO₂: 414.14886; found: 414.14872.

[1,1'-biphenyl]-4-yl(4,5-diphenyloxazol-2-yl)methanone (3n) (208mg, 52% yield): mp=166.8-171.3; IR spectrum (KBr cm⁻¹) 1646, 1601, 1512, 1477, 1444, 1336, 1181, 913, 771, 749, 694; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.67 (d, *J* = 8 Hz, 2H), 7.76 (t, *J* = 8 Hz, 6H), 7.67 (d, *J* = 8 Hz, 2H), 7.51-7.43 (m, 9H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 178.1, 156.0, 148.6, 146.4, 139.8, 137.3, 134.0 131.6, 129.8, 128.9, 128.8, 128.7, 128.3, 128.2, 127.7, 127.3, 127.1. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₈H₂₀NO₂: 402.14886; found: 402.14862.

(E)-1-(4,5-diphenyloxazol-2-yl)-3-phenylprop-2-en-1-one (30) (246mg, 70% yield): mp=154.0-157.5; IR spectrum (KBr cm⁻¹) 1665, , 1605, 1574, 1511, 1475, 1444, 1352, 1077, 1049, 771, 693; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.05 (d, J = 16 Hz, 1H), 7.91 (d, J = 16 Hz, 1H), 7.73 (t, J = 6 Hz, 6H), 7.47-7.40 (m, 9H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 176.1, 157.2, 149.0, 145.8, 137.5, 134.4, 131.5, 131.1, 130.4, 129.8, 128.9, 128.8, 128.7, 128.2, 127.6, 127.3, 121.3. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₈NO₂: 352.13321; found: 352.13298.

(E)-1-(4,5-diphenyloxazol-2-yl)-3-(4-nitrophenyl)prop-2-en-1-one (3p) (293mg, 74% yield): mp=162.1-166.1; IR spectrum (KBr cm⁻¹) 1669, 1612, 1593, 1519, 1476, 1445, 1342, 1048, 778,691; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.29 (d, *J* = 8 Hz, 2H), 8.03 (s, 2H), 7.86 (d, *J* = 8 Hz, 2H), 7.72 (t, *J* = 8 Hz, 4H), 7.47-7.41(m, 6H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 175.4, 156.8, 149.6, 148.7, 142.2, 140.4, 137.8, 131.2, 130.1, 129.4, 129.0, 128.9, 128.8, 128.2, 127.3, 127.2, 125.1, 124.1. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₇N₂O₄: 397.11828 ; found: 397.11771.

(4,5-diphenyloxazol-2-yl)(4-methoxyphenyl)methanone (3q) (188mg, 53%

yield): mp=144.2-148.4; IR spectrum (KBr cm⁻¹) 1646, 1592, 1506, 1338, 1260, 1213, 1169, 913, 771, 697; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.64 (d, *J* = 8 Hz, 2H), 7.73 (d, *J* = 5.2 Hz, 4H), 7.45-7.40 (m, 6H), 7.01 (d, *J* = 8 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 177.0, 164.2, 156.1, 148.2, 137.0, 133.4, 131.6, 129.7, 128.7, 128.6, 128.2, 127.7, 127.3, 113.7, 55.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₁₈NO₃: 356.12812 ; found: 356.12787.

(4q) (59mg, 38% yield): mp=151.0-153.5; IR spectrum (KBr cm⁻¹) 1644, 1599, 1566, 1482, 1424, 1306, 1248, 1158, 1023, 905, 828, 634; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.53 (d, J = 8.8 Hz, 2H), 7.76 (d, J = 8.8 Hz, 2H), 7.47 (s, 1H), 7.00 (t, J = 8.8 Hz, 4H), 3.90 (s, 3H), 3.86(s, 3H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 177.0, 164.1, 160.1, 156.8, 154.0, 133.2, 128.3, 127.0, 122.3, 119.5, 114.5, 113.7, 55.5, 55.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₆NO₄: 310.10738 ; found: 310.10709.

(4,5-diphenyloxazol-2-yl)(4-ethoxyphenyl)methanone (3r) (203mg, 55% yield): mp=141.8-144.7; IR spectrum (KBr cm⁻¹) 1649, 1601, 1572, 1259, 1171, 1156, 913, 772, 694; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.63 (d, J = 8.8 Hz, 2H), 7.73 (d, J = 5.6 Hz, 4H), 7.44-7.40 (m, 6H), 7.00 (d, J = 8.8 Hz, 2H), 4.15 (d, J = 7.6 Hz, 2H), 1.47 (t, J = 6.8 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 177.0, 163.7, 156.2, 148.2, 137.0, 133.5, 131.7, 129.7, 128.8, 128.7, 128.2, 128.0, 127.8, 127.3, 114.2, 63.8, 14.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₂₀NO₃: 370.14377; found: 370.14344.

(4-ethoxyphenyl)(5-(4-ethoxyphenyl)oxazol-2-yl)methanone (4r) (67mg,

40% yield): mp=128.1-135.4; IR spectrum (KBr cm⁻¹) 1638, 1613, 1590, 1476, 1360, 1248, 1157, 1046, 1027, 1004, 829, 636; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.43 (d, *J* = 8.4 Hz, 2H), 7.64 (d, *J* = 8.8 Hz, 2H), 6.87 (t, *J* = 8.8 Hz, 4H), 4.04-3.97 (m, 4H), 1.34(q, *J* = 6.4 Hz, 6H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 176.9, 163.5, 160.2, 156.7, 154.0, 133.2, 128.0, 126.9, 122.2, 119.2, 114.9, 114.1, 63.7, 63.5, 14.6, 14.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₂₀NO₄: 338.13868 ; found: 338.13844.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2012

(4,5-diphenyloxazol-2-yl)(3,4,5-trimethoxyphenyl)methanone (3s) (207mg,

50% yield): mp=155.1-159.4; IR spectrum (KBr cm⁻¹) 1656, 1582, 1503, 1474, 1416, 1372, 1344, 1244, 1167, 1126, 995, 771, 698; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.01 (s, 2H), 7.73 (t, *J* = 9 Hz, 4H), 7.35 (t, *J* = 7.8 Hz, 6H), 3.97 (d, *J* = 3 Hz, 9H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm)177.0, 156.0, 152.8, 148.5, 143.4, 137.0, 131.6, 130.1, 129.9, 128.8, 128.7, 128.0, 127.9, 127.7, 127.5, 127.3, 108.6, 60.9, 56.3, 56.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₂₂NO₅: 416.14925 ; found: 416.15032.

(3,4,5-trimethoxyphenyl)(4-(3,4,5-trimethoxyphenyl)oxazol-2-yl)methanone (4s) (88mg, 41% yield): mp=192.9-194.4; IR spectrum (KBr cm⁻¹) 1644, 1583, 1486, 1454, 1416, 1356, 1321, 1238, 1131, 991, 770, 662; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.89 (s, 2H), 7.55 (s, 1H), 7.03 (s, 2H), 3.97 (t, *J* = 6 Hz, 12H), 3.92 (s, 6H); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 177.0, 156.9, 154.0, 153.8, 152.8, 143.4, 139.7, 130.1, 123.5, 122.1, 108.4, 102.6, 61.0, 56.3, 56.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₂₄NO₈: 430.14964 ; found: 430.15036.

3. The X-ray crystal structures

Figure S 1. Crystal structure of 3a (some disordered parts were omitted for clarity).

Figure S 2. Crystal structure of 31.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Figure S 3. Crystal structure of 4r.

4. Mechanism for the for the formation of two types of oxazoles

Figure S 4 Mechanism for the for the formation of two types of oxazoles.

When the aromatic rings bind electron-donating groups, aryl methyl ketones are faster to transform into phenylglyoxal than the formation of 7. Phenylglyoxal can react with itself and 7 for the formation of oxazoles 4 and 3. Contrary to this, when the aromatic rings don't bind electron-donating groups, the formation of 7 is faster than phenylglyoxal. Phenylglyoxal can react with 7 for the formation of oxazoles 3. Yet 4 is less for isolated.

5. Intermediates reaction

Figure S 5 Intermediates reaction

In order to prove that the reaction mechanism, we used **1a** with **5**, **6a** and **5**, **6a** with **2**, **8a** with **2** and **8a** with **7** to synthesize **3a**. Fortunately, we get **3a** from the above reactions.

The reaction mixture was stirred at 120 for 0.5h, CHCl₃ and H_2O/NaS_2O_3 saturated solution were added, and the organic layer was separated to detect intermediates. From the spectrogram, we get the peaks of 4a, 6a and 5 which prove the reaction mechanism.

Figure S 7 GC-MS of the reaction.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2012

Figure S 8 GC-MS of the reaction.

Figure S 9 GC-MS of the reaction.

7. NMR analysis

Figure S 10 NMR of the reaction.

From the NMR of the reaction, we also get the peaks of 6a and 8a which prove the reaction mechanism.

8. ¹H and ¹³C NMR spectra ¹H and ¹³C NMR spectra

S18

S28

S31

9. HRMS spectra

Acquisition Paramete	r								
Polarity	Positive	Source		ESI	No. of	Laser Shots		20	
Averaged Scans	4	No. of Cell F	ills	1	Laser F	Power		51.0 %	
Broadband Low Mass Broadband High Mass	100.3 m/z 2000.0 m/z	End Plate	tranco	3500.0 V	MALDI	Plate a Spot Diam	otor	300.0 V	
Acquisition Mode	Single MS	Skimmer 1	uance	20 0 V	inagin	y Spot Diam	etei	2000.0 µm	
Pulse Program	basic	Drying Gas	Temperature	180.0 °C	Calibra	tion Date		Mon Sep 1	9 06:39:58
Source Accumulation	0.0 sec	Drying Gas	Flow Rate	4.0 L/min	Data A	cquisition Si	ze	201072	
Ion Accumulation Time	0.0 sec	Nebulizer G	as Flow Rate	1.0 L/min	Apodiz	ation		Sine-Bell N	lultiplication
Flight Time to Acq. Cell	0.0 Sec								
Intens.									+MS
x10 ⁸									
1.25									
1.00	326.1	1734							
0.75	020.1								
0.75									
0.50									
0.25			34	9 00021					
	318.30007		340.25930	0.09921	364.073	817			393.20926
300 310	320	330	340	350	360	370	39	30	
000 010	020	000	040	000	000	010			000 11/2
Meas. m/z #	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	ej¥Conf	N-Rule
326.11734 1	C 22 H 16 N O 2	100.00	326.11756	0.2	0.7	3.9	15.5	even	ok
2	C 17 H 16 N 3 O	4 4.26	326.11353	-3.8	-11.7	23.3	11.5	even	ok
3	C 16 H 16 N 5 O	3 0.01	326.12477	7.4	22.8	25.6	11.5	even	ok
4	C 15 H 20 N O 7	0.12	326.12343	6.1	18.7	39.9	6.5	even	ok
5	C 15 H 18 N O 7	2 0.00	324.10778	-4.2	-12.9	97.1	12.5	even	OK
6	C 15 H 14 N 7 O	2 0.00	324.12035	1.9	24.1	109.2	12.5	even	OK
1	C 10 H 14 N 5 U	3 0.00	324.10912	-3.0	-9.3	111.4	12.5	even	OK
8	C 10 H 17 N 2 U	4 0.00	325.11020	4.1	12.0	117.7	11.5	even	OK
9	0 ZZ H 14 N U Z	0.00	324.10191	-9.2	-20.1	140.7	10.5	even	OK

Acquisition Par	ameter
Polarity	Positive

Polarity	Positive	Source	ESI	No. of Laser Shots	20
Averaged Scans	4	No. of Cell Fills	1	Laser Power	51.0 %
Broadband Low Mass	100.3 m/z	End Plate	3500.0 V	MALDI Plate	300.0 V
Broadband High Mass	2000.0 m/z	Capillary Entrance	4000.0 V	Imaging Spot Diameter	2000.0 µm
Acquisition Mode	Single MS	Skimmer 1	20.0 V		
Pulse Program	basic	Drying Gas Temperature	180.0 °C	Calibration Date	Mon Sep 19 06:39:58
Source Accumulation	0.0 sec	Drying Gas Flow Rate	4.0 L/min	Data Acquisition Size	201072
Ion Accumulation Time	0.0 sec	Nebulizer Gas Flow Rate	1.0 L/min	Apodization	Sine-Bell Multiplication
Flight Time to Acg. Cell	0.0 sec			-	-

Molecular Weight: 370.36

Chemical Formula: C₂₂H₁₄FNO₂ Molecular Weight: 343.35

Acquisition Parameter										
Polarity	Positive	Source	ESI	No. of Laser Shots	20					
Averaged Scans	4	No. of Cell Fills	1	Laser Power	51.0 %					
Broadband Low Mass	100.3 m/z	End Plate	3500.0 V	MALDI Plate	300.0 V					
Broadband High Mass	2000.0 m/z	Capillary Entrance	4000.0 V	Imaging Spot Diameter	2000.0 µm					
Acquisition Mode	Single MS	Skimmer 1	20.0 V							
Pulse Program	basic	Drying Gas Temperature	180.0 °C	Calibration Date	Mon Sep 19 06:39:58					
Source Accumulation	0.0 sec	Drying Gas Flow Rate	4.0 L/min	Data Acquisition Size	201072					
Ion Accumulation Time	0.0 sec	Nebulizer Gas Flow Rate	1.0 L/min	Apodization	Sine-Bell Multiplication					
Flight Time to Acq. Cell	0.0 sec									

Molecular Weight: 359.81

Acquisition Parameter Source No. of Cell Fills End Plate 20 51.0 % 300.0 V Polarity Positive ESI No. of Laser Shots Polarity Averaged Scans Broadband Low Mass Broadband High Mass Acquisition Mode Pulse Program Source Accumulation Iso Accumulation Time 4 100.3 m/z Laser Power MALDI Plate 1 3500.0 V 2000.0 m/z Single MS basic 0.0 sec 0.0 sec 0.0 sec 4000.0 V 20.0 V 180.0 °C 4.0 L/min 1.0 L/min Capillary Entrance Skimmer 1 Drying Gas Temperature Drying Gas Flow Rate Nebulizer Gas Flow Rate 2000.0 µm Imaging Spot Diameter Mon Sep 19 06:39:58 201072 Calibration Date Data Acquisition Size Ion Accumulation Time Flight Time to Acq. Cell Sine-Bell Multiplication Apodization Intens. x10⁷ +MS 6 360.07840 4-2 382.06035 330.33663 340.25969 349.18325 318.30023 374.36239 0+-300 44 320

0++++++++++++++++++++++++++++++++++++++			· · · · ·	العبدان بالجار	لحبد مرحبه مجافي				A 44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 M
300	310	320 330	3	40 3	50 3	860	370	380	390	m/z
Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	ej¥Conf	N-Rule
360.07840	1	C 22 H 15 CI N O 2	100.00	360.07858	0.2	0.5	21.5	15.5	even	ok
	2	C 17 H 15 CI N 3 O 4	5.31	360.07456	-3.8	-10.7	26.0	11.5	even	ok
	3	C 16 H 15 CI N 5 O 3	0.02	360.08579	7.4	20.5	26.4	11.5	even	ok
	4	C 15 H 19 CI N O 7	0.18	360.08446	6.1	16.8	37.0	6.5	even	ok
	5	C 15 H 20 CI 2 N 3 O 3	0.00	360.08762	9.2	25.6	153.8	6.5	even	ok
	6	C 16 H 20 CI 2 N O 4	0.10	360.07639	-2.0	-5.6	154.9	6.5	even	ok

Chemical Formula: C₂₂H₁₄BrNO₂ Molecular Weight: 404.26

Acquisition Param	eter									
Polarity Averaged Scans Broadband Low Mass Broadband High Mass Acquisition Mode Pulse Program Source Accumulation Ion Accumulation Time Flight Time to Acq. Ce	Positive 4 100.3 m/z 5 2000.0 m/z 5 3 single MS basic 0.0 sec 0.0 sec e 0.0 sec 4 0.0 sec	Source No. of C End Pla Capillar Skimme Drying (Drying (Nebulize	ell Fills te y Entrance r 1 Gas Tempera Gas Flow Rat er Gas Flow I	ESI 1 3500 20.0 ture 180. e 4.0 L Rate 1.0 L	0.0 V 0.0 V V 0 °C /min	No. of Las Laser Pow MALDI Pla Imaging S Calibratior Data Acqu Apodizatio	er Shots ver ate pot Diameter n Date iisition Size m	20 51 30 20 Mo 10 Sir	.0 % 0.0 V 00.0 µm on Sep 19 0 10 72 ne-Bell Mult	06:39:58 tiplication
Intens x10 ⁷										+MS
2.0-						40	02585			
1.0		349.1	8305			393.20940			437.	.23509
0.5 310.1072	24	340.25961	365	.15740				4	28.00823	لالم السام
300	320	340	360		380	400	·	420		440 m/z
Meas. m/z 404.02773	 # Formula 1 C 22 H 15 2 C 17 H 15 3 C 16 H 15 4 C 15 H 19 	8 Br N O 2 1 Br N 3 O 4 Br N 5 O 3 Br N O 7	Core 00.00 404 5.13 404 0.01 404 0.10 404	m/z ei 02807 02405 03528 03394	rr [mDa] 0.3 -3.7 7.5 6.2	err [ppm] 0.8 -9.1 18.7 15.4	mSigma 14.4 31.7 33.8 48.0	rdb 15.5 11.5 11.5 6.5	ej¥Conf even even even even	N-Rule ok ok ok ok

Chemical Formula: C₂₂H₁₃Cl₂NO₂ Molecular Weight: 394.25

Acquisition Parameter

Chemical Formula: C₂₀H₁₃NO₃ Molecular Weight: 315.32

Acquisit Polarity Averaged Broadban Broadban Acquisition Pulse Pro Source Ac Ion Accun Flight Tim	Polarity Positive Averaged Scans 4 Broadband Low Mass 100.3 m/z Broadband High Mass 2000.0 m/z Acquisition Mode Single MS Pulse Program basic Source Accumulation 0.0 sec Ion Accumulation Time 0.0 sec Flight Time to Acq. Cell 0.0 sec			Source No. of Cell End Plate Capillary E Skimmer 1 Drying Gas Drying Gas Nebulizer (Fills intrance s Temperature s Flow Rate Gas Flow Rate	ESI 1 3500.0 V 4000.0 V 20.0 V 180.0 °C 4.0 L/min 1.0 L/min	No. of Laser I MALD Imagin Calibra Data A Apodiz	Laser Shots Power Plate g Spot Diam ation Date cquisition Siz	eter ze	20 51.0 % 300.0 V 2000.0 µm Mon Sep 1 20107 2 Sine-Bell M	9 06:39:58 Iultiplicatio	} 2011
Intens. x10 ⁶⁻												+MS
6-												
4-	316	6.096	656									
-			338.0 [°]	7865								
2-				354	.05214		202.04.02				27 22512	
				المراجع والمراجع		1	393.2103	+ 41	6.0200	9	37.23512	L_
30	0	3	320 3	340	360	380		400	42	20	440	m/z
N	leas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	ej¥Conf	N-Rule	
	510.05050	2	C 15 H 14 N 3 O	5 4.46	316.09280	-3.8	-11.9	35.1	10.5	even	ok	
		3	C 16 H 15 N 2 O	5 0.00	315.09755	4.1	13.1	105.2	10.5	even	ok	
		4	C 18 H 11 N 4 O	2 0.00	315.08765	-6.0 1 7	-18.9	121.8	15.5 15.5	even	ok	
		6	C 20 H 12 N O 3	0.00	314.08117	-9.3	-29.5	128.1	15.5	even	ok	

Chemical Formula: C₂₀H₁₃NO₂S Molecular Weight: 331.39

Chemical Formula: C₂₄H₁₅NO₃ Molecular Weight: 365.38

Acquisi	tion Param	eter											
Polarity	Scone	ļ	Positive	S	Source	lle	ESI 1	No. of	Laser Shots		20 51.0 %		
Broadbar	id Low Mass		100.3 m/z	E	End Plate	10	3500.0 V	MALDI	Plate		300.0 V		
Acquisitio	id High Mass in Mode		Single MS	z (Skimmer 1	ance	20.0 V	imagin	g Spot Diame	eter	2000.0 µm		
Pulse Pro	gram	l	basic D 0 sec		Drying Gas T Drying Gas F	emperature	180.0 °C 4.0 L/min	Calibra Data A	tion Date	6	Mon Sep 19 1/81/872	06:39:58	
Ion Accur	nulation Tim	e (0.0 sec	N	Vebulizer Ga	s Flow Rate	1.0 L/min	Apodiz	ation		Sine-Bell M	ultiplication	n
Flight Lin	ne to Acq. Ce	ell (0.0 sec										
Intens.													+MS
×10/ 1.0-													
-													
0.8-													
						366.111	89						
0.4-													
-							20	00204					
0.2-	3	18.20	033				30	0.09361	404.06764			7 02 470	
0.0-	ں معمود میں اس	10.28		340.25	5926						4.	1.23470	
30	00	32	20	340	D	360	380	4	ióo	42	0	440	m/z
n	Meas. m/z	#	Formul	а	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	ei¥Conf	N-Rule	
	366.11189	1	C 24 H 1	16 N O 3	100.00	366.11247	0.6	1.6	24.0	17.5	even	ok	
		2	C 19 H	16 N 3 O 5	5 10.29	366.10845	-3.4	-9.4	26.9	13.5	even	ok	
		3	C 18 H	16 N 5 O 4	4 0.01	366.11968	7.8	21.3	27.3	13.5	even	ok	
		4	C 1/ H	20 N O 8 17 N 2 O 6	0.11	366.11834	0.5	17.0	40.7	12.5	even	OK	
		6	C 17 H	13 N 6 O /	1 0.00	365,00028	-9.0	-27.0	741.4	14.5	even	ok	
		7	C 16 H	13 N 8 O 3	3 0.00	365 11051	-5.5	-27.0	749.2	14.5	even	ok	
		8	C 17 H	18 N O 8	0.00	364.10269	-3.8	-10.3	810.4	9.5	even	ok	
		9	C 16 H	18 N 3 O 7	7 0.00	364.11393	7.2	19.8	811.2	9.5	even	ok	
		10	C 18 H	14 N 5 O 4	4 0.00	364.10403	-2.6	-7.1	813.8	14.5	even	ok	
		11	C 17 H	14 N 7 O 3	3 0.00	364.11526	8.3	22.8	814.7	14.5	even	ok	
		12	C 24 H	14 N O 3	0.00	364.09682	-8.9	-24.2	814.9	18.5	even	ok	

Molecular Weight: 375.42

Polarity	Positive	Source	ESI	No. of Laser Shots	20
Averaged Scans	4	No. of Cell Fills	1	Laser Power	51.0 %
Broadband Low Mass	100.3 m/z	End Plate	3500.0 V	MALDI Plate	300.0 V
Broadband High Mass	2000.0 m/z	Capillary Entrance	4000.0 V	Imaging Spot Diameter	2000.0 µm
Acquisition Mode	Single MS	Skimmer 1	20.0 V		
Pulse Program	basic	Drying Gas Temperature	180.0 °C	Calibration Date	Mon Sep 19 06:39:58
Source Accumulation	0.0 sec	Drying Gas Flow Rate	4.0 L/min	Data Acquisition Size	201072
Ion Accumulation Time	0.0 sec	Nebulizer Gas Flow Rate	1.0 L/min	Apodization	Sine-Bell Multiplication
Flight Time to Acq. Cell	0.0 sec				

Chemical Formula: C₂₄H₁₇NO₂ Molecular Weight: 351.40

Acquisition Parameter

Polarity Averaged Broadbar Broadbar Acquisitio Pulse Pro Source A Ion Accur Flight Tin	I Scans nd Low Mass nd High Mass on Mode ogram ccumulation mulation Tim ne to Acq. Ce	e e	Positive 4 100.3 m/z 2000.0 m/z Single MS basic 0.0 sec 0.0 sec 0.0 sec	So No En Ca Sk Dr Ne	urce . of Cell f d Plate pillary En immer 1 ying Gas ying Gas bulizer G	Fills ttrance Temperature Flow Rate sas Flow Rate	ESI 1 3500.0 V 4000.0 V 20.0 V 180.0 °C 4.0 L/min 1.0 L/min	No. of Laser I MALDI Imagin Calibra Data A Apodiz	Laser Shots Power I Plate Ig Spot Diam Ig Sp	neter ze	20 51.0 % 300.0 V 2000.0 µm Mon Sep 1 2010 72 Sine-Bell M) 19 06:39:58 Multiplicatio	; n
Intens. x10 ⁷ -													+MS
0.8-													
0.6-					352.13	3298							
0.4-							274 11501						
0.2-							574.11501	390.08850	400.195	70	4	137.23438	
0.0-	3	18.2	9851	340.257	27	360			409.185	170 1		440	
5	00		520	340		360	360		400	42	20	440	m/z
I	Meas. m/z	#	Formula		Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	ej¥Conf	N-Rule	
	352.13298	1	C 19 H 18 I	NU2 N304	100.00	352.13321	0.2	-10.8	7.8	16.5	even	ok	
		3	C 18 H 18 I	N503	0.01	352.12310	-5.0	21.1	32.2	12.5	even	ok	
		4	C 17 H 22 I	NO7	0.10	352.13908	6.1	17.3	45.6	7.5	even	ok	

Chemical Formula: C₂₄H₁₆N₂O₄ Molecular Weight: 396.39

Acquisition Paramete	r				
Polarity	Positive	Source	ESI	No. of Laser Shots	20
Averaged Scans	4	No. of Cell Fills	1	Laser Power	51.0 %
Broadband Low Mass	100.3 m/z	End Plate	3500.0 V	MALDI Plate	300.0 V
Broadband High Mass	2000.0 m/z	Capillary Entrance	4000.0 V	Imaging Spot Diameter	2000.0 µm
Acquisition Mode	Single MS	Skimmer 1	20.0 V		
Pulse Program	basic	Drying Gas Temperature	180.0 °C	Calibration Date	Mon Sep 19 06:39:58
Source Accumulation	0.0 sec	Drying Gas Flow Rate	4.0 L/min	Data Acquisition Size	201072
Ion Accumulation Time	0.1 sec	Nebulizer Gas Flow Rate	1.0 L/min	Apodization	Sine-Bell Multiplication
Flight Time to Acq. Cell	0.0 sec				-

Chemical Formula: C₂₃H₁₇NO₃ Molecular Weight: 355.39

Acquisition Parameter Polarity Positive ESI No. of Laser Shots Source 20 Polarity Averaged Scans Broadband Low Mass Broadband High Mass Acquisition Mode Pulse Program Source Accumulation No. of Cell Fills End Plate 20 51.0 % 300.0 V Laser Power MALDI Plate 4 100.3 m/z 1 3500.0 ∨ 4000.0 V 20.0 V 180.0 °C 4.0 L/min Capillary Entrance Skimmer 1 Drying Gas Temperature Drying Gas Flow Rate Nebulizer Gas Flow Rate 2000.0 m/z Single MS Imaging Spot Diameter 2000.0 µm basic 0.0 sec Calibration Date Data Acquisition Size Mon Sep 19 06:39:58 201072 Ion Accumulation Time Flight Time to Acq. Cell Sine-Bell Multiplication 1.0 L/min 0.0 sec Apodization 0.0 sec Intens. x10⁷ +MS 2.5 2.0 356.12787 1.5 401.18575 318.29995 378.10989 1.0-330.33628 0.5 415.20252 429.21633 0.0⁴-1 300 320 340 360 380 400 420 440 m/z Formula C 23 H 18 N O 3 C 18 H 18 N 3 O 5 Score 100.00 3.96 mSigma 0.7 26.7 rdb 15.5 11.5 Meas. m/z 356.12787 m/z 356.12812 err [mDa] 0.3 err [ppm] 0.7 # 1 ej¥Conf N-Rule even ok ż 356.12410 -3.8 -10.6 even ok C 17 H 18 N 5 O 4 C 16 H 22 N O 8 3 4 21.0 17.2 28.9 43.3 ok ok 0.01 356.13533 7.5 11.5 even 0.10 356.13399 6.1 6.5 even

Chemical Formula: C₁₈H₁₅NO₄ Molecular Weight: 309.32

Acquisition Parameter

Polarity	Positive	Source	ESI	No. of Laser Shots	20
Averaged Scans	4	No. of Cell Fills	1	Laser Power	51.0 %
Broadband Low Mass	100.3 m/z	End Plate	3500.0 V	MALDI Plate	300.0 V
Broadband High Mass	2000.0 m/z	Capillary Entrance	4000.0 V	Imaging Spot Diameter	2000.0 µm
Acquisition Mode	Single MS	Skimmer 1	20.0 V	001	·
Pulse Program	basic	Drying Gas Temperature	180.0 °C	Calibration Date	Mon Sep 19 06:39:58
Source Accumulation	0.0 sec	Drying Gas Flow Rate	4.0 L/min	Data Acquisition Size	201072
Ion Accumulation Time	0.0 sec	Nebulizer Gas Flow Rate	1.0 L/min	Apodization	Sine-Bell Multiplication
Flight Time to Acq. Cell	0.0 sec				

Chemical Formula: C₂₄H₁₉NO₃ Molecular Weight: 369.41

Chemical Formula: C₂₀H₁₉NO₄ Molecular Weight: 337.37

Chemical Formula: C₂₅H₂₁NO₅ Exact Mass: 415.14

Acquisition Paramet	er				
Polarity	Positive	Source	ESI	No. of Laser Shots	20
Averaged Scans	4	No. of Cell Fills	1	Laser Power	51.0 %
Broadband Low Mass	100.3 m/z	End Plate	3500.0 V	MALDI Plate	300.0 V
Broadband High Mass	1600.0 m/z	Capillary Entrance	4000.0 V	Imaging Spot Diameter	2000.0 µm
Acquisition Mode	Single MS	Skimmer 1	20.0 V		
Pulse Program	basic	Drying Gas Temperature	180.0 °C	Calibration Date	Wed Dec 7 10:47:13 2011
Source Accumulation	0.0 sec	Drying Gas Flow Rate	4.0 L/min	Data Acquisition Size	131072
Ion Accumulation Time	0.1 sec	Nebulizer Gas Flow Rate	1.0 L/min	Apodization	Sine-Bell Multiplication
Flight Time to Acq. Cell	0.0 sec				
Intens.					+MS
×10/3					
_1					
51					

ok

4s Chemical Formula: C₂₂H₂₃NO₈ Exact Mass: 429.14

