High-performance supercapacitor material based on Ni(OH)₂ nanowire-MnO₂ nanoflakes

core/shell nanostructures

Hao Jiang, a Chunzhong Li,*, a Ting Sun, b Jan Mab

^a Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and

Engineering, East China University of Science & Technology, Shanghai 200237, China

^b School of Materials Science and Engineering, Nanyang Technological University, Singapore

639798, Singapore

* Electronic mail: czli@ecust.edu.cn (Prof. Chunzhong Li)

Part I: Experimental

Synthesis of Ni(OH)₂ nanowire-MnO₂ nanoflakes core/shell nanostructures: All the reagents were

analytical grade (Sigma-Aldrich) and used without further purification. Ni(OH)2 nanowires have

first been synthesized according to the method reported by Chu et al. (Chem.-Eur. J., 2008, 14,

5064). In a typical procedure of the synthesis of Ni(OH)₂ nanowire-MnO₂ nanoflakes core/shell

nanostructures, 50 mg of the as-synthesized Ni(OH)2 nanowires were firstly dispersed in 30 mL of

deionized water. Then, 10 mL of 0.08 M KMnO₄ aqueous solution was added into the above

suspension and the mixed solution was stirred by magnetic bar for about 3 h. After that, the mixed

solution was transferred to a 50 mL Teflon-lined stainless autoclave. The autoclave was sealed and

put in an electronic oven at 160 °C for 3 h and then naturally cooled down to room temperature.

The precipitates were collected by filtration, washed with deionized water and absolute ethanol, and

finally dried at 60 °C for 6 h. Furthermore, the content of MnO₂ in hybrid can easily be tuned only by changing the KMnO₄ concentration.

Synthesis of MnO₂ nanowires: The MnO₂ nanowires with diameters of ~ 25 nm have been synthesized according to our previous work (*Energy Environ. Sci.*, 2011, **4**, 1813). In a typical process, Mn(NO₃)₂·4H₂O (0.2685 g) and sodium dodecyl benzene sulfonate (SDBS, 0.3845 g) were first dissolved in 30 mL of deionized water. When the solution turned clear, KMnO₄ (0.2 M, 5 mL) was added to the above solution with continuous stirring for about 30 min. The resulting cloudy solution was transferred into a 50 mL Teflon-lined stainless steel autoclave, then heated at 180 °C for 4~6 h, and followed by natural cooling to room temperature. The precipitates, i.e. MnO₂ nanowires, were collected by filtration, washed with deionized water and absolute ethanol, and finally dried at 60 °C for 6 h.

Characterization: The as-prepared products were characterized with X-ray powder diffractometer (XRD; Shimadzu XRD-6000, Cu Kα radiation) at a scan rate of 1 °C min⁻¹, scanning electron microscopy (FESEM; JEOL, JSM-7600F) equipped with an energy dispersive X-ray spectrometer (EDS), and transmission electron microscopy (TEM; JEOL, JEM-2100F) operated at 200 kV. N₂ adsorption/desorption was determined by Brunauer-Emmett-Teller (BET) measurements using a Tristar-3000 surface area analyzer.

Electrochemical measurements: The electrochemical measurements (Autolab PGSTAT30 potentiostat) were conducted using a three-electrode mode in a 1 M Na₂SO₄ aqueous solution. The working electrodes were prepared by mixing the active materials (80 wt%), acetylene black (15 wt%) and polyvinylidene fluoride (PVDF, 5 wt%) in NMP (N-methyl-2-pyrrolidone). A small amount of absolute ethanol was then added to the mixture to promote homogeneity. After that, the

mixture was coated onto the graphite paper (1 cm 2) to form the electrode layer by drying at 120 $^{\circ}$ C for around two hours. The reference electrode and counter electrode were Ag/AgCl electrode and platinum foil, respectively. Typical CV curves were measured between -0.1 and 0.9 V.

Part II: Supplementary Figures

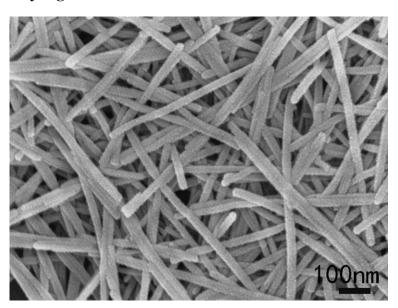


Fig. S1 SEM image of the as-synthesized Ni(OH)₂ nanowires

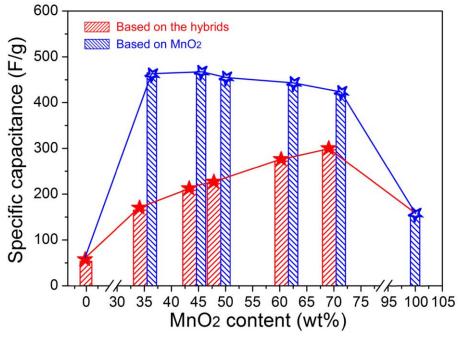


Fig. S2 The specific capacitance calculated based on MnO₂ content and the hybrid nanostructures,

respectively.

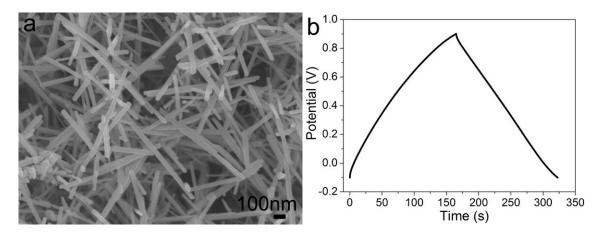
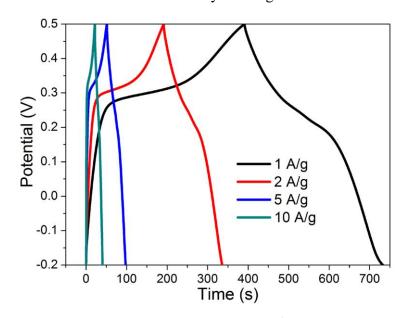



Fig. S3 (a) SEM image of MnO_2 nanowires, (b) the corresponding charge-discharge curve at a current density of 1 A g^{-1} .

Fig. S4 Charge-discharge curves of the hybrids at 1-10 A g⁻¹ in 1 M KOH aqueous solution. The hybrids show a high specific capacitance of 487.4 F g-1 at 1 A g⁻¹. Even at 10 g⁻¹, a specific capacitance of 269 F g⁻¹ still can be reached.