Electronic Supplementary Information

Modular synthesis of optically active lactones by Ru-catalyzed asymmetric allylic carboxylation and ring-closing metathesis reaction

Koichiro Takii, Naoya Kanbayashi, and Kiyotaka Onitsuka

Department of Macromolecular Science, Graduate School of Science, Osaka University.

Experimental Procedures

General.

All reactions were carried out under argon atmosphere using standard Schlenk techniques, and the workup was performed in air. ¹H and ¹³C NMR spectra were recorded on Varian Mercury 300, JEOL JNM-GSX 400, JEOL JNM-ECS 400 and JEOL JNM-ECA 500 spectrometers. Enantiomeric excess was determined by HPLC analysis using Hitachi L-2130/L-2455 and Shimadzu LC -10/SPD-10AV equipped with DAICEL Chiralcel OJ-H, OD-H, OB-H and Chiralpak AS-H columns. Optical rotation was measured on JASCO DIP-100. HRMS measurements were carried out on Thermo Fisher Scientific LTQ-Orbitrap XL.

Materials.

All solvents used for reactions were passed through purification columns just before use. Planar-chiral Cp'Ru complex **1a-1c** were synthesized as reported previously. Cinnamyl chloride **2a** was purchased from TCI. Allylic chlorides **2b-2d**, **2f** and **2g** were prepared by Corey-Kim chlorination of the corresponding allylic alcohols, whereas **2e** was prepared by the method according to that for analogous bromide. All allylic chlorides were purified by distillation (**2a**, **2c**, **2f** and **2g**) or recrystallization from *n*-hexane (**2b**, **2d** and **2e**) prior to use. Unsaturated carboxylic acids were available from commercial source and used without any purification. Sodium carboxylate was synthesized by the reaction of the corresponding unsaturated carboxylic acid with Na₂CO₃ in acetone/water (*ca*. v/v = 1/1). 2nd generation Grubbs' catalyst (**G-II**) was purchased from Sigma-Aldrich.

Standard Procedure for Asymmetric Allylic Carboxylation.

Method A.

To a THF solution (1 mL) of (R)-1c (5 µmol, 1 mol%), allylic chloride (1.0 mmol) and Na₂CO₃ (1.5 mmol) was added a THF solution (1 mL) of unsaturated carboxylic acid (0.5 mmol), and the resulting mixture was stirred for 4 h at 25 °C. After dilution with n-hexane, the insoluble parts were filtered off through Celite and the filtrate was concentrated under reduced pressure. The residue was purified by SiO₂ column chromatography using a mixture of n-hexane and Et₂O (v/v = 20/1) as the eluent. Evaporation of the solvent gave branched allylic ester as colorless oil.

Method B.

To a THF solution (1 mL) of (R)-1c (5 µmol, 1 mol%), allylic chloride (1.0 mmol) and Na₂CO₃ (1.5 mmol) was added a THF solution (1 mL) of unsaturated carboxylic acid (0.5 mmol), and the resulting mixture was stirred for 4 h at 25 °C. After dilution with n-hexane, the insoluble parts were filtered off through Celite and the filtrate was concentrated under reduced pressure. Acetone (5 mL) and diethylamine (5 mL) were added, and the mixture was stirred for 6 h at room temperature. After removal of the solvent under reduced pressure, the resulting crude material was purified by SiO₂ column chromatography to give branched allylic ester as colorless oil.

Method C.

To a THF solution (2 mL) of (R)-1c (15 μ mol, 3 mol%) and allylic chloride (2.5 mmol) was added sodium carboxylate (0.5 mmol) portionwise, and the resulting mixture was stirred for 4 h at 25 °C. Workup was performed by the same method as **Method A**.

Characterization of Allylic Esters.

(E)-1-phenylallyl but-2-enoate (4ab, Method A)

¹H NMR (CDCl₃, 500 MHz): δ 7.40–7.26 (m, 5H, Ph), 7.02 (dq, 1H, J = 15.5, 7.0 Hz, CHCH₃), 6.32 (ddd, 1H, J = 5.8, 1.4, 1.4 Hz, PhCH), 6.03 (ddd, 1H, J = 17.0, 10.3, 5.8 Hz, CH=), 5.91 (dq, 1H, J = 15.5, 1.7 Hz, COCH), 5.30 (ddd, 1H, J = 17.0, 1.4, 1.4 Hz, =CH₂), 5.24 (ddd, 1H, J = 10.3, 1.4, 1.4 Hz, =CH₂), 1.88 (dd, 3H, J = 7.0, 1.7 Hz, CH₃). ¹³C NMR (CDCl₃, 75 MHz): δ 165.3, 145.1, 139.1, 136.4, 128.5, 128.0, 127.1, 122.7, 116.7, 75.8, 17.9. HPLC analysis: Chiralcel OJ-H column, n-hexane/ i PrOH = 98/2 (v/v), 1.0 mL/min, 220 nm; major enantiomer t = 20.1 min, minor enantiomer t = 16.9 min, 97% ee. [α]_D²⁸ = -38.2 (c 0.27, CHCl₃). HRMS (ESI): Calcd for C₁₃H₁₄O₂Na [M+Na⁺]: 225.0886, found: m/z = 225.0889.

(E)-1-(4-bromophenyl)allyl but-2-enoate (4bb, Method A)

¹H NMR (CDCl₃, 400 MHz): δ 7.50–7.43 (m, 2H, Ar), 7.26–7.21 (m, 2H, Ar), 7.02 (dq, J = 15.7, 6.9 Hz, =CHCH₃), 6.28–6.23 (m, 1H, ArCH), 5.98 (ddd, 1H, J = 17.7, 10.4, 5.8 Hz, CH=), 5.90 (dq, 1H, J = 15.7, 1.7 Hz, COCH=), 5.33-5.22 (m, 2H, =CH₂), 1.89 (dd, 3H, J = 6.9, 1.7 Hz, CH₃). ¹³C NMR (CDCl₃, 126 MHz): δ 147.6, 131.8, 125.8, 124.0, 120.6, 118.4, 113.3, 113.0, 109.1, 75.4, 29.7. HPLC analysis: Chiralcel OD-H column, n-hexane/ⁱPrOH = 100/1 (v/v), 0.5 mL/min, 220 nm; major enantiomer t = 13.2 min, minor enantiomer t = 12.2 min, 96% ee. [α]_D²⁹ = -21.3 (c 0.19, CHCl₃). HRMS (ESI): Calcd for C₁₃H₁₃O₂BrNa [M+Na⁺]: 302.9991, found: m/z = 302.9996.

(E)-1-(4-trifluoromethylphenyl)allyl but-2-enoate (4cb, Method A)

¹H NMR (CDCl₃, 400 MHz): δ 7.61 (d, 2H, J = 8.3 Hz, Ar), 7.47 (d, 2H, J = 8.3 Hz, Ar), 7.04 (dq, J = 15.5, 6.9 Hz, =CHCH₃), 6.36–6.31 (m, 1H, ArCH), 6.00 (ddd, 1H, J = 17.3, 10.4, 5.9 Hz, CH=), 5.92 (dq, 1H, J = 15.5, 1.7 Hz, COCH=), 5.36–5.25 (m, 2H, =CH₂), 1.90 (dd, 3H, J = 6.9, 1.7 Hz, CH₃). ¹³C NMR (CDCl₃, 75 MHz): δ 166.2, 145.8, 143.1 (q, J = 1.3 Hz), 135.7, 130.2 (q, J = 32.5 Hz), 127.3, 125.5 (q, J = 3.8 Hz), 124.0 (q, J = 272.1 Hz), 122.3, 117.6, 75.2, 17.9. HPLC analysis: Chiralcel OD-H column, n-hexane/ⁱPrOH = 200/1 (v/v), 0.5 mL/min, 220 nm; major enantiomer t = 15.4 min, minor enantiomer t = 13.9 min, 98% ee. [α]_D³⁰ = -11.9 (c 0.28, CHCl₃). HRMS (ESI): Calcd for C₁₄H₁₃O₂F₃Na [M+Na⁺]: 293.0765, found: m/z = 293.0760.

(E)-1-(naphthalene-1-yl)allyl but-2-enoate (4db, Method B)

¹H NMR (CDCl₃, 400 MHz): δ 8.16–8.11 (m, 1H, Ar), 7.89–7.79 (m, 2H, Ar) 7.63–7.57 (m, 1H, Ar) 7.56–7.42 (m, 3H, Ar), 7.10–6.98 (m, 2H, ArCH and =CHCH₃), 6.21 (ddd, 1H, J = 17.0, 9.8, 5.2 Hz, CH=), 5.93 (dq, 1H, J = 15.6, 1.7 Hz, COCH=), 5.36–5.25 (m, 2H, =CH₂), 1.88 (dd, 3H, J = 6.9, 1.7 Hz, CH₃). ¹³C NMR (CDCl₃, 126 MHz): δ 147.7, 131.6, 124.2, 123.1, 122.5, 112.0, 118.5, 118.4, 116.3, 115.9, 115.6, 115.5, 114.4, 113.4, 109.0, 74.0, 29.7. HPLC analysis: Chiralcel OD-H column, n-hexane/ⁱPrOH =200/1 (v/v), 0.5 mL/min, 220 nm; major enantiomer t = 30.7 min, minor enantiomer t = 28.9 min, 96% ee. [α]_D²⁹ = –24.4 (c 0.27, CHCl₃). HRMS (ESI): Calcd for C₁₇H₁₆O₂Na [M+Na⁺]: 275.1043, found: m/z = 275.1047.

(E)-methyl 4-(1-(but-2-enyloxy)allyl)benzoate (4eb, Method B)

¹H NMR (CDCl₃, 500 MHz): δ 8.04–7.99 (m, 2H, Ar), 7.45–7.39 (m, 2H, Ar), 7.04 (dq, J = 15.7, 6.9 Hz, =CHCH₃), 6.37–6.31 (m, 1H, ArCH), 6.00 (ddd, 1H, J = 17.7, 10.4, 5.8 Hz, CH=), 5.92 (dq, 1H, J = 15.7, 1.7 Hz, COCH), 5.36–5.23 (m, 2H, =CH₂), 3.91 (s, 3H, OCH₃), 1.90 (dd, 3H, J = 6.9, 1.7 Hz, CH₃). ¹³C NMR (CDCl₃, 126 MHz): δ 148.7, 147.5, 131.9, 130.6, 124.0, 119.2, 116.9, 113.3, 109.4, 75.6, 57.0, 29.8, 16.2. HPLC analysis: Chiralcel OJ-H column, n-hexane/ⁱPrOH = 98/2 (v/v), 1.0 mL/min, 220 nm; major enantiomer t = 39.8 min, minor enantiomer t = 22.1 min. 95% ee. α _D²⁹ = -18.4 (α _D 0.28, CHCl₃). HRMS (ESI): Calcd for C₁₅H₁₆O₄Na [M+Na⁺]: 283.0941, found: m/z = 283.0945.

(E)-1-(benzyloxy)but-3-en-2-yl but-2-enoate (4fb, Method A)

¹H NMR (CDCl₃, 400 MHz): δ 7.37–7.25 (m, 5H, Ph), 7.01 (dq, 1H, J = 15.7, 6.9 Hz, =CHCH₃), 5.93–5.91 (m, 2H, COCH= and CH=), 5.57–5.50 (m, 1H, CHCH=), 5.32 (ddd, 1H, J = 17.3, 1.5, 1.4 Hz, =CH₂), 5.23 (ddd, 1H, J = 10.7, 1.4, 1.2 Hz, =CH₂), 4.59 (d, 1H, J = 12.2 Hz, PhCH₂), 4.54 (d, 1H, J = 12.2 Hz, PhCH₂), 3.61 (dd, 1H, J = 10.7, 4.0 Hz, CH₂CH), 3.59 (dd, 1H, J = 10.7, 2.8 Hz, CH₂CH), 1.89 (dd, 3H, J = 6.9, 1.7 Hz, CH₃). ¹³C NMR (CDCl₃, 75 MHz): δ 165.5, 144.9, 137.9, 133.5, 128.3, 127.5, 122.6, 117.6, 73.1, 72.8, 71.3, 17.9. One carbon signal could not be detected probably due to overlapping. HPLC analysis: Chiralcel OJ-H column, 2% ⁱPrOH, 1.0 mL/min, 220 nm; major enantiomer t = 18.3 min, minor enantiomer t = 15.1 min. 90% ee. [α]_D²⁸ = -11.0 (c 0.22, CHCl₃). HRMS (ESI): Calcd for C₁₅H₁₈O₃Na [M+Na⁺]: 269.1148, found: m/z = 269.1152.

(E)-1-phenylallyl methacrylate (4ac, Method A)

¹H NMR (CDCl₃, 500 MHz): δ 7.41–7.27 (m, 5H, Ph), 6.32 (ddd, 1H, J = 5.8, 1.7, 1.5 Hz, PhCH), 6.22–6.17 (m, 1H, =CH₂), 6.04 (ddd, 1H, J = 17.1, 10.5, 5.8 Hz, CH=), 5.59 (dq, 1H, J = 1.6, 1.6 Hz, CCH₃=CH₂), 5.32 (ddd, 1H, J = 17.1, 1.7, 1.4 Hz, CH=CH₂), 5.25 (ddd, 1H, J = 10.5, 1.5, 1.4 Hz, CH=CH₂), 1.98 (dd, 3H, J = 1.6, 0.9 Hz, CH₃). ¹³C NMR (CDCl₃, 126 MHz): δ 166.3, 139.1, 136.5, 136.4, 128.6, 128.1, 127.0, 125.7, 116.8, 76.3, 18.3. HPLC analysis: Chiralcel OJ-H column, n-hexane/ i PrOH = 100/2 (v/v), 0.5 mL/min, 220 nm; major enantiomer t = 15.6

min, minor enantiomer t = 12.8 min, 94% ee. $\left[\alpha\right]_{D}^{29} = -25.4$ (c = 0.23, CHCl₃). HRMS (ESI): Calcd for $C_{14}H_{16}O_{2}Na$ [M+Na⁺]: 225.0886, found: m/z = 225.0889.

(E)-1-phenylallyl pent-3-enoate (4ad, Method C)

¹H NMR (CDCl₃, 400 MHz): δ 7.40–7.26 (m, 5H, Ph), 6.26 (ddd, 1H, J = 6.0, 1.7, 1.5 Hz, PhCH), 6.00 (ddd, 1H, J = 17.1, 10.4, 6.0 Hz, CH=), 5.64–5.49 (m, 2H, CH=CH), 5.28 (ddd, 1H, J = 17.1, 1.7, 1.3 Hz, =CH₂), 5.24 (ddd, 1H, J = 10.4, 1.5, 1.3 Hz, =CH₂), 3.10–3.05 (m, 2H, CH₂), 1.71–1.66 (m, 3H, CH₃). ¹³C NMR (CDCl₃, 75 MHz): δ 171.1, 138.9, 136.3, 129.6, 128.5, 128.1, 127.1, 122.5, 116.9, 76.2, 38.2, 17.9. HPLC analysis: Chiralcel OJ-H column, n-hexane/ i PrOH = 98/2 (v/v), 1.0 mL/min, 220 nm; major enantiomer t = 9.7 min, minor enantiomer t = 7.5 min, 97% ee. [α]_D²⁹ = -27.2 (c 0.23, CHCl₃). HRMS (ESI): Calcd for C₁₄H₁₆O₂Na [M+Na⁺]: 239.1043, found: m/z = 239.1047.

1-phenylallyl pent-4-enoate (4ae, Method C)

¹H NMR (CDCl₃, 500 MHz): δ 7.40–7.26 (m, 5H, Ph), 6.32 (ddd, 1H,
$$J$$
 = 5.9, 1.6, 1.4 Hz, PhC H), 6.00 (ddd, 1H, J = 17.1, 10.4, 5.9 Hz, CH=), 5.86-5.76 (m, 1H, CH₂C H =), 5.30 (ddd, 1H, J = 17.1, 1.6, 1.3 Hz, =CH₂), 5.23 (ddd, 1H, J = 10.4, 1.4, 1.3 Hz, =CH₂), 5.09–4.90 (m, 2H, CH₂CH=C H ₂), 2.51–2.35 (m, 4H, C H ₂C H ₂CH=). ¹³C NMR (CDCl₃, 126 MHz): δ 152.9, 126.5, 124.6, 124.4, 118.2, 117.8, 117.0, 108.9, 107.8, 76.3, 42.4, 38.4. HPLC analysis: Chiralcel OJ-H column, n -hexane/ i PrOH = 98/2 (v/v), 1.0 mL/min, 220 nm; major enantiomer t = 8.7 min, minor enantiomer t = 7.9 min. 95% ee. [α]_D²⁹ = –34.7 (c 0.25, CHCl₃). HRMS (ESI): Calcd for C₁₄H₁₆O₂Na [M+Na⁺]: 239.1043, found: m/z = 239.1046.

Standard Procedure for Ring-Closing Metathesis (RCM) of Branched Allylic Ester.

To a CH_2Cl_2 solution (5 mL) of **G-II** (6 µmol, 2 mol%) was added a CH_2Cl_2 solution (1 mL) of branched allylic ester (0.3 mmol) and the mixture was stirred for 16 h at 25 °C. After CH_2Cl_2 was removed under reduced pressure, the residue was purified by SiO_2 column chromatography using a mixture of *n*-hexane and AcOEt (v/v = 7/3) as the eluent. Concentration of the resulting solution gave optically active lactones.

For the syntheses of **6db**, **6fb**, **6ac**, and **7**, the reactions were performed under reflux, whereas **8** was prepared by the reaction at 30 °C.

Charactarization of Lactones.

5-phenylfuran-2(5H)-one (6ab).⁵

¹H NMR (CDCl₃, 400 MHz): δ 7.52 (dd, 1H,
$$J = 5.5$$
, 2.0 Hz, CH=), 7.43–7.32 (m, 3H, Ph), 7.29–7.24 (m, 2H, Ph), 6.23 (dd, 1H, $J = 5.5$, 1.8 Hz, PhCH), 6.01 (dd, 1H, $J = 2.0$, 1.8 Hz, COCH=). ¹³C NMR (CDCl₃, 76 MHz): δ 173.0, 155.8, 134.3, 129.3, 129.0, 126.5, 121.0, 84.3. HPLC analysis: Chiralcel OJ-H column, n -hexane/ ^{i} PrOH = 9/1 (v/v), 1.0 mL/min, 220 nm; major enantiomer $t = 31.1$ min, minor enantiomer $t = 34.5$ min, 97% ee.

5-(4-bromophenyl)furan-2(5H)-one (6bb).⁵

¹H NMR (CDCl₃, 500 MHz): δ 7.54 (d, 2H, J = 8.4 Hz, Ar), 7.50 (dd, 1H, J = 5.6, 1.8 Hz, CH=), 7.15 (d, 2H, J = 8.4 Hz, Ar), 6.24 (dd, 1H, J = 5.6, 2.2 Hz, ArCH), 5.97 (dd, 1H, J = 2.2, 1.8 Hz, COCH=). ¹³C NMR (CDCl₃, 75 MHz): δ 172.6, 155.2, 133.3, 132.3, 128.1, 123.4, 121.3, 83.5. HPLC analysis: Chiralpak AS-H column, n-hexane/ⁱPrOH = 4/1 (v/v), 0.4 mL/min, 220 nm; major enantiomer t = 62.7 min, minor enantiomer t = 60.9 min, 98% ee. $[\alpha]_D^{27} = -31.2$ (c = 0.28, CHCl₃).

5-(4-trifluoromethylphenyl)furan-2(5H)-one (6cb).

¹H NMR (CDCl₃, 300 MHz): δ 7.67 (d, 2H, J = 8.2 Hz, Ar), 7.54 (dd, 1H, 7.6, 1.7 Hz, CH=), 7.42 (d, 2H, 8.2 Hz, Ar), 6.27 (dd, 1H, J = 7.6, 2.2 Hz, ArCH), 6.07 (br, 1H, COCH=). ¹³C NMR (CDCl₃, 75 MHz): δ 172.6, 155.2, 138.3 (q, J = 1.4 Hz), 131.5 (q, J = 32.8 Hz), 122.6, 126.0, (q, J = 3.8 Hz), 123.7 (q, J = 272.3 Hz), 121.3, 88.3. HPLC analysis: Chiralpak AS-H column, n-hexane/ⁱPrOH = 9/1 (v/v), 0.3 mL/min, 210 nm; major enantiomer t = 77.3 min, minor enantiomer t = 74.0 min, 95% ee. [α]_D²⁹ = -140.6 (c 0.12, CHCl₃). HRMS (ESI): Calcd for C₁₁H₇F₃O₂Na [M+Naⁱ]: 251.0290, found: m/z = 251.0293.

5-(naphthalene-1-yl)furan-2(5H)-one (6db)

¹H NMR (CDCl₃, 300 MHz): δ 7.91–7.81 (m, 3H, Ar), 7.79 (br, 1H Ar), 7.60 (dd, 1H, J = 5.6, 1.6 Hz, CH=), 7.57–7.48 (m, 2H, Ar), 7.31 (dd, 1H, J = 8.5, 1.7 Hz, Ar), 6.28 (br, 1H, J = 5.6, 2.0 Hz, COCH=), 6.18 (br, 1H, ArCH). ¹³C NMR (CDCl₃, 75 MHz): δ 173.1, 155.8, 133.6, 133.2, 131.6, 129.1, 128.0, 127.8, 126.9, 126.8, 126.2, 123.3, 121.2, 84.5. HPLC analysis: Chiralpak AS-H column, n-hexane/ⁱPrOH = 4/1 (v/v), 1.0 mL/min, 220 nm; major enantiomer t = 29.4 min, minor enantiomer t = 24.1 min, 99% ee. $[\alpha]_D^{30} = -196.6$ (c = 0.14, CHCl₃). HRMS (ESI): Calcd for C₁₄H₁₀O₂Na [M+Na⁺]: 233.0573, found: m/z = 233.0577.

5-(benzyloxymethyl)furan-2(5H)-one (6fb).

¹H NMR (CDCl₃, 300 MHz): δ 7.50 (dd, 1H, J = 5.8, 1.6 Hz, CH=), 7.41–7.27 (m, 5H, Ph), 6.17 (dd, 1H, J = 5.8, 2.1 Hz, CH=), 5.17 (tdd, 1H, J = 5.2, 2.1, 1.6 Hz, CHCH=), 4.57 (s, 2H, PhCH₂), 3.75 (dd, 1H, J = 10.4, 5.2, OCH₂CH) 3.67 (dd, 1H, J = 10.4, 5.2 Hz, OCH₂CH). ¹³C NMR (CDCl₃, 75 MHz): δ 172.7, 153.8, 137.3, 128.5, 128.0, 127.7, 122.6, 82.1, 73.8, 69.5. HPLC analysis: Chiralpak AS-H column, n-hexane/ⁱPrOH = 4/1 (v/v), 1.0 mL/min, 220 nm; major enantiomer t = 24.1 min, minor enantiomer t = 20.4 min, 95% ee.

3-methyl-5-phenylfuran-2(5H)-one (6ac).

¹H NMR (CDCl₃, 500 MHz): δ 7.43–7.32 (m, 3H, Ph), 7.28–7.23 (m, 2H, Ph), 7.12 (dq, 1H, *J* = 1.7, 1.7 Hz, CH=), 5.88–5.83 (m, 1H, PhC*H*), 1.99 (dd, 3H, *J* = 1.7, 1.7 Hz, CH₃). ¹³C NMR (CDCl₃, 75 MHz): δ 174.3, 148.4, 135.4, 129.5, 129.0, 128.9, 126.4, 82.1, 10.6. HPLC analysis: Chiralpak AS-H column, *n*-hexane/^{*i*}PrOH = 9/1 (v/v), 1.0 mL/min, 220 nm;

major enantiomer t = 21.7 min, minor enantiomer t = 17.1 min, 97% ee.

Methyl 4-(5-oxo-4,5-dihydrofuran-2-yl)benzoate (7).

¹H NMR (CDCl₃, 500 Hz): δ 8.08 (d, 2H, J = 8.7 Hz, Ar), 7.67 (d, 2H, J = 8.7 Hz, Ar), 5.93 (t, 1H, J = 2.8 Hz, =CH), 3.94 (s, 3H, Me), 3.46 (d, 2H, J = 2.8 Hz, CH₂). ¹³C NMR (CDCl₃, 75 MHz): δ 175.2, 166.4, 153.2, 132.3, 130.9, 130.0, 124.6, 100.2, 52.2, 34.7. HRMS (ESI) Calcd for C₁₂H₁₀O₄Na [M+Na⁺]: 241.0471, found: m/z = 241.0475.

6-phenyl-3,6-dihydro-2*H*-pyran-2-one (8).⁸

¹H NMR (CDCl₃, 500 MHz): δ 7.43–7.31 (m, 5H, Ph), 6.07–5.97 (m, 3H, PhC*H* and C*H*=C*H*), 3.19–3.15 (m, 2H, CH₂). ¹³C NMR (CDCl₃, 126 MHz): δ 168.23, 138.20, 128.89, 126.83, 126.18, 121.80, 81.28, 29.91. One carbon signal could not be detected probably due to overlapping. HPLC analysis: Chiralpak AS-H column, *n*-hexane/^{*i*}PrOH = 4/1 (v/v), 1.0 mL/min, 220 nm; major enantiomer t = 27.6 min, minor enantiomer t = 25.1 min, 93% ee. $[\alpha]_D^{28} = -125.0$ (c = 0.12, CHCl₃).

Procedure for Tandem RCM - Olefin Isomerization.

To a 1,2-dichloroethane solution (5 mL) of **G-II** (6 μ mol, 2 mol%) was added a 1,2-dichloroethane solution (1 mL) of **4ad** (0.3 mmol), and the mixture was stirred for 16 h at 50 °C. After addition of 2-propanol (0.2 mL), the mixture was refluxed for 48 h. After cooling to room temperature, the solvent was removed under reduced pressure and the residue was purified by SiO₂ column chromatography using a mixture of *n*-hexane and AcOEt (v/v = 7/3) as the eluent. Evaporation of the solvent under reduced pressure gave **9** as white solid.

6-phenyl-5,6-dihydro-2*H*-pyran-2-one (9).

¹H NMR (CDCl₃, 300 MHz): δ 7.46–7.30 (m, 5H, Ph), 6.97 (ddd, 1H, J = 9.7, 5.5, 3.0 Hz, CH₂CH=), 6.15 (ddd, 1H, J = 9.7, 2.4, 1.3 Hz, COCH=), 5.46 (dd, 1H, J = 10.5, 5.5 Hz, 1H, PhCH), 2.76–2.54 (m, 2H, CH₂). ¹³C NMR (CDCl₃, 126 MHz): δ 164.0, 144.8, 138.5, 128.7, 128.6, 126.0, 121.7, 79.2, 31.6. HPLC analysis: Chiralpak AS-H column, n-hexane/ⁱPrOH = 4/1 (v/v), 1.0 mL/min, 220 nm; major enantiomer t = 31.1 min, minor enantiomer t = 20.4 min, 94% ee.

<u>Procedure for Tandem RCM — Hydrogenation.</u>

To a CH_2Cl_2 solution (5 mL) of **G-II** (6 µmol, 2 mol%) was added a CH_2Cl_2 solution (1 mL) of **4ad** (0.3 mmol). After stirring for 12 h at 30 °C, the mixture was transferred to autoclave through cannula, rinsing with CH_2Cl_2 (3 × 2 mL). The mixture was stirred for 24 h at 70 °C under H_2 pressure (1 MPa). After cooling to room temperature, CH_2Cl_2 was removed under reduced pressure, and the residue was purified by SiO_2 column chromatography using a mixture of n-hexane and AcOEt (v/v = 7/3) as the eluent. Recrystallization from n-hexane gave **10** as colorless needle.

6-phenyltetrahydro-2*H*-pyran-2-one (10).¹⁰

¹H NMR (CDCl₃, 300 MHz): δ 7.41–7.27 (m, 5H, Ph), 5.36 (dd, 1H, *J* = 10.1, 3.4 Hz, PhC*H*), 2.79–2.49 (m, 2H, COCH₂), 2.25–2.11 (m, 1H, CHC*H*₂), 2.07–1.80 (m, 3H, CHC*H*₂ and CH₂CH₂CH₂). ¹³C NMR (CDCl₃, 75 MHz): δ 171.2, 139.7, 128.6, 128.2, 125.7, 81.5, 30.5, 29.5, 18.6. HPLC analysis: Chiralcel OB-H column, hexane/ⁱPrOH = 4/1 (v/v), 1.0 mL/min, 254 nm; major enantiomer *t* = 20.3 min, minor enantiomer *t* = 24.7 min, >99% ee.

Metathesis Reaction of 4ae.

The reaction was performed according to the standard procedure. The resulting brown oil was analyzed by mass spectrometry.

ESI MS: m/z = 189.2(10.5), 399.3(100), 400.3(24.0), 427.3(15.2), 587.2(10.1), 775.3(9.6). Calcd for $C_{12}H_{12}O_2$ [11+H]⁺, 189.1; $C_{24}H_{24}O_4Na$ [12a+Na]⁺, 399.2; $C_{24}H_{24}O_4Na$ [13+Na]⁺, 427.2; $C_{36}H_{36}O_6Na$ [12b+Na]⁺, 587.2; $C_{48}H_{48}O_8Na$ [12c+Na]⁺, 775.3.

One-Pot Sequential Asymmetric Allylic Carboxylation — Ring-Closing Metathesis.

To a THF solution (1 mL) of (R)-1c (5 µmol, 1 mol%), allylic chloride (1.0 mmol) and Na₂CO₃ (1.5 mmol) was added a 1 mL of THF solution of crotonic acid **3b** (0.5 mmol), and the resulting mixture was stirred for 4 h at 25 °C. **G-II** (10 µmol, 2 mol%) and CH₂Cl₂ (8 mL) were added, and the mixture was stirred for 16 h. After removal of the solvent under reduced pressure, the residue was purified by SiO₂ column chromatography using a mixture of n-hexane and AcOEt (v/v = 7/3) as the eluent.

Enantioselective Synthesis of (R)-(-)-Massoialactone (14).

To a THF solution (2 mL) of (R)-1c (10 μ mol, 2 mol%) and allylic chloride 2g (1.0 mmol) was added sodium pent-3-enoate 3d (0.5 mmol), and the resulting mixture was stirred for 11 h at 25 °C. After dilution with hexane, insoluble parts were removed by filtration. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography on SiO₂ using the mixture of n-hexane and Et₂O (v/v = 20/1) as the eluent. Evaporation of the solvent gave the ester 4gd as colorless oil (81 mg, 77% yield).

G-II (6 μ mol, 2 mol%) was added to a CH₂Cl₂ solution (6 mL) of 4gd (63 mg, 0.3 mmol), and the mixture was stirred for 16 h at 45 °C. After removal of the solvent under reduced pressure, a THF

solution (2 mL) of 1,8-diazabicyclo-[5,4,0]-undec-7-ene (30 μ mol, 10 mol%) was added and the mixture was stirred for 24 h at 25 °C. The resulting mixture was poured into a mixture of Et₂O (20 mL) and NH₄Cl aq., and the organic layer was washed with NH₄Cl aq., water and brine successively. The solution was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by SiO₂ column chromatography using a mixture of *n*-hexane and AcOEt (v/v = 7/3) as the eluent to give **14** as colorless oil (36.8 mg, 73% yield).

(E)-oct-1-en-3-yl pent-3-enoate (4gd).

¹H NMR (CDCl₃, 500 MHz): δ 5.77 (ddd, 1H, J = 17.0, 10.6, 6.4 Hz, CHCH=), 5.65–5.50 (m, 2H, COCH₂CH=CH), 5.27–5.19 (m, 2H, OCH and =CH₂), 5.15 (ddd, 1H, J = 10.6, 1.3, 1.3Hz, =CH₂), 3.04–2.99 (m, 2H, COCH₂), 1.69 (d, 3H, J = 4.9 Hz, =CHCH₃), 1.67–1.54 (m, 1H, CHCH₂CH₂), 1.38–1.21 (m, 7H, CH₂CH₂), 0.88 (t, 3H, J = 6.9 Hz, CH₂CH₃). ¹³C NMR (CDCl₃, 75 MHz): δ 171.4, 136.7, 129.3, 122.8, 116.5, 74.9, 38.3, 34.1, 31.5, 24.7, 22.5, 17.9, 13.9. [α]_D²⁶ = +4.1 (c 0.07, CHCl₃). HRMS (ESI): Calcd for C₁₃H₂₂O₂Na [M+Na⁺]: 233.1512, found: m/z = 233.1516.

(R)-(-)-6-pentyl-5,6-dihydro-2*H*-pyran-2-one, (R)-(-)-massoialactone (14). 11

¹H NMR (CDCl₃, 500 MHz): δ 6.89–6.83 (m, 1H, CH₂CH=), 6.01 (ddd, 1H, J = 9.7, 2.4, 1.4 Hz, COCH=), 4.45–4.38 (m, 1H, OCH), 2.39–2.28 (m, 2H, CH₂CH=), 1.86–1.74 (m, 1H, CH₂CH), 1.69–1.59 (m, 1H, CH₂CH), 1.54–1.47 (m, 1H, CHCH₂CH₂), 1.46–1.25 (m, 5H, CH₂CH₂), 0.90 (t, 3H, J = 7.0 Hz, CH₃). ¹³C NMR (CDCl₃, 126 MHz): δ 164.5, 144.9, 121.5, 78.0, 34.8, 31.5, 29.4, 24.5, 22.4, 13.9. HPLC analysis: Chiralpak AS-H column, hexane/ⁱPrOH = 9/1 (v/v), 1.0 mL/min, 210 nm; major enantiomer t = 18.8 min, minor enantiomer t = 22.4 min. 90% ee. $[\alpha]_D^{27} = -103.7$ (c = 0.20, CHCl₃).

References

- (a) N. Dodo, Y. Matsushima, M. Uno, K. Onitsuka and S. Takahashi, *J. Chem. Soc. Dalton Trans.*,
 2000, 35; (b) Y. Matsushima, N. Komatsuzaki, Y. Ajioka, M. Yamamoto, H. Kikuchi, Y. Takata, N. Dodo, K. Onitsuka, M. Uno and S. Takahashi, *Bull. Chem. Soc. Jpn.*, 2001, 74, 527.
- 2. N. Kanbayashi and K. Onitsuka, *Angew. Chem.*, *Int. Ed.*, 2011, **50**, 5197.
- 3. E. J. Corey, C. U. Kim and M. Takeda, Tetrahedron Lett., 1972, 42, 4339.
- 4. A. W. van Ziji, L. A. Arnold, A. J. Minnaard and B. L. Feringa, Adv. Synth. Catal., 2004, 346, 413.
- 5. D. M. Browne, O. Niyomura and T. Wirth, Org. Lett., 2007, 9, 3169.
- 6. A. K. Ghosh, S. Leshchenko and M. Noetzel, J. Org. Chem., 2004, 69, 7822.
- 7. E. Yoneda, S.-W. Zhang, D.-Y. Zhou, K. Onitsuka and S. Takahashi, J. Org. Chem., 2003, 68, 8571.
- 8. J. Qi, X. Xie, J. He, L. Zhang, D. Ma and X. She, Org. Biomol. Chem., 2011, 9, 5948.
- P. V. Ramachandran, B. Prabhudas, J. S. Chandra and M. V. R. Reddy, J. Org. Chem., 2004, 69, 6294.

- 10. T. Dohi, N. Takenaga, A. Goto, A. Maruyama and Y. Kita, Org. Lett., 2007, 9, 3129.
- 11. A. Harbindu and P. Kumar, Synthesis, 2011, 12, 1954.

NMR Spectra

(E)-1-phenylallyl but-2-enoate (4ab)

(E)-1-(4-bromophenyl)allyl but-2-enoate (4bb).

(E)-1-(4-trifluoromethylphenyl)allyl but-2-enoate (4cb).

(E)-1-(naphthalene-1-yl)allyl but-2-enoate (4db).

(E)-methyl 4-(1-(but-2-enyloxy)allyl)benzoate (4eb)

(E)-1-(benzyloxy)but-3-en-2-yl but-2-enoate (4fb).

(E)-1-phenylallyl methacrylate (4ac).

(E)-1-phenylallyl pent-3-enoate (4ad).

1-phenylallyl pent-4-enoate (4ae).

5-phenylfuran-2(5H)-one (6ab).

5-(4-bromophenyl)furan-2(5H)-one (6bb).

5-(4-trifluoromethylphenyl)furan-2(5H)-one (6cb).

5-(naphthalene-1-yl)furan-2(5H)-one (6db).

5-(benzyloxymethyl)furan-2(5H)-one (6fb).

3-methyl-5-phenylfuran-2(5H)-one (6ac).

Methyl 4-(5-oxo-4,5-dihydrofuran-2-yl)benzoate (7).

6-phenyl-3,6-dihydro-2*H*-pyran-2-one (8).

6-phenyl-5,6-dihydro-2*H*-pyran-2-one (9).

6-phenyltetrahydro-2H-pyran-2-one (10).

(E)-oct-1-en-3-yl pent-3-enoate (4gd).

(*R*)-6-pentyl-5,6-dihydro-2H-pyran-2-one ((*R*)-(-)-massoialactone) (14).

HPLC data

(E)-1-phenylallyl but-2-enoate (4ab)

検出器A Ch1 220nm			
Peak	Retention Time	Area	Area%
1	15.696	25277961	50.841
2	22.199	24441514	49.159
승화		49719475	100,000

	Retention Time	Area	Area%
1 2	16. 91 20. 13	319441 19639764	1. 600 98. 400
		19959205	100. 000

(E)-1-(4-bromophenyl)allyl but-2-enoate (4bb).

1 Det.A Ch1/220nm

検出器A Ch1 220nm

Peak	Retention Time	Area	Area%
1	12.492	34361132	49.776
2	13.572	34670327	50.224
合計		69031459	100.000

1 Det.A Ch1/220nm

検出器A Ch1 220nm

Peak	Retention Time	Area	Area%
1	12.169	1113180	1.841
2	13.226	59364144	98.159
合計		60477324	100.000

(E)-1-(4-trifluoromethylphenyl)allyl but-2-enoate (4cb).

1 Det.A Ch1/220nm

検出器A Ch1 220nn	検は	出器	A Chi	1 220nm
----------------	----	----	-------	---------

Peak	Retention Time	Area	Area%
1	13.905	8574623	50.389
2	15.450	8442226	49.611
合計		17016849	100.000

1 Det.A Ch1/220nm

検出器A Ch1 220nm

Peak	Retentin Time	Area	Area%
1	13.894	427370	1.181
2	15.351	35762861	98.819
合計		36190232	100.000

(E)-1-(naphthalene-1-yl)allyl but-2-enoate (4db).

1 Det.A Ch1/220nm

検出器A Ch1 220nm

Peak	Retention Time	Area	Area%
1	35.369	79658155	49.102
2	37.619	82572388	50.898
合計		162230544	100.000

1 Det.A Ch1/220nm

検出器A Ch1 220nm

Peak	Retention Time	Area	Area%
1	28.927	2075457	1.804
2	30.743	112965443	98.196
合計		115040900	100.000

(E)-methyl 4-(1-(but-2-enyloxy)allyl)benzoate (4eb)

(E)-1-(benzyloxy)but-3-en-2-yl but-2-enoate (4fb).

(E)-1-phenylallyl methacrylate (4ac).

1 Det.A Ch1/220nm

UV-Vis Ch1 220nm

Peak	Retention Time	Area	Area%
1	12.805	2619011	46.047
2	15.655	3068721	53.953
合計		5687732	100.000

1 Det.A Ch1/220nm

UV-Vis Ch1 220nm

Peak	Retention Time	Area	Area%
1	12.769	103542	3.245
2	15.552	3087444	96.755
合計		3190986	100.000

(E)-1-phenylallyl pent-3-enoate (4ad).

1 Det.A Ch1/220nm

検出器A	Ch1 220nm		
Peak	Retention Time	Area	Area%
1	7.513	13362232	48.855
2	9.703	13988448	51.145
合計		27350680	100.000

1 Det.A Ch1/220nm

4	更出	忝Α	Ch1	220nr	n
г	_	_	Б.		_

Peak	Retention Time	Area	Area%
1	7.512	53148	1.435
2	9.706	3650678	98.565
合計		3703826	100.000

1-phenylallyl pent-4-enoate (4ae).

検出器A Ch1 220nm

Peak	Retention Time	Area	Area%
1	7.874	2055447	48.861
2	8.780	2151307	51.139
合計		4206753	100.000

1 Det.A Ch1/220nm

検出器A Ch1 220nm

IX HI HILL COLL ELECTRIC			
Peak	Retention Time	Area	Area%
1	7.855	25338	2.604
2	8.740	947785	97.396
合計		973123	100.000

5-phenylfuran-2(5H)-one (6ab).

1 Det.A Ch1/220nm

検出器A Ch1 220nm

IX III III CONTECTION				
	Peak	Retention Time	Area	Area%
	1	30.476	6285087	50.013
	2	33.356	6281706	49.987
	合計		12566794	100.000

	Retention Time	Area	Area%
1 2	31.09 34.50	4217922 60568	98. 584 1. 416
		4278490	100. 000

5-(4-bromophenyl)furan-2(5H)-one (6bb).

	Retention Time	Area	Area%
1 2	62. 85 65. 64	146131 151360	49. 121 50. 879
		297491	100.000

	Retention Time	Area	Area%
1 2	60. 91 62. 72	111406 12117867	0. 911 99. 089
		12229273	100.000

5-(4-trifluoromethylphenyl)furan-2(5H)-one (6cb).

5-(naphthalene-1-yl)furan-2(5H)-one (6db).

5-(benzyloxymethyl)furan-2(5H)-one (6fb).

	Retention Time	Area	Area%
1 2	20. 49 24. 50	1445719 1477660	49. 454 50. 546
		2923379	100. 000

3-methyl-5-phenylfuran-2(5H)-one (6ac).

6-phenyl-3,6-dihydro-2*H*-pyran-2-one (8).

6-phenyl-5,6-dihydro-2*H*-pyran-2-one (9).

6-phenyltetrahydro-2*H*-pyran-2-one (10).

(R)-6-pentyl-5,6-dihydro-2H-pyran-2-one, (R)-(-)-massoialactone, (14).

