Electronic Supplementary Information

Modular synthesis of optically active lactones by Ru-catalyzed asymmetric allylic carboxylation and ring-closing metathesis reaction
Koichiro Takii, Naoya Kanbayashi, and Kiyotaka Onitsuka Department of Macromolecular Science, Graduate School of Science, Osaka University.

Experimental Procedures

General.

All reactions were carried out under argon atmosphere using standard Schlenk techniques, and the workup was performed in air. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Mercury 300, JEOL JNM-GSX 400, JEOL JNM-ECS 400 and JEOL JNM-ECA 500 spectrometers. Enantiomeric excess was determined by HPLC analysis using Hitachi L-2130/L-2455 and Shimadzu LC -10/SPD-10AV equipped with DAICEL Chiralcel OJ-H, OD-H, OB-H and Chiralpak AS-H columns. Optical rotation was measured on JASCO DIP-100. HRMS measurements were carried out on Thermo Fisher Scientific LTQ-Orbitrap XL.

Materials.

All solvents used for reactions were passed through purification columns just before use. Planar-chiral Cp'Ru complex 1a-1c were synthesized as reported previously. ${ }^{1,2}$ Cinnamyl chloride 2a was purchased from TCI. Allylic chlorides $\mathbf{2 b}$-2d, $\mathbf{2 f}$ and $\mathbf{2 g}$ were prepared by Corey-Kim chlorination of the corresponding allylic alcohols, ${ }^{3}$ whereas 2 e was prepared by the method according to that for analogous bromide. ${ }^{4}$ All allylic chlorides were purified by distillation ($\mathbf{2 a}, \mathbf{2 c}, \mathbf{2 f}$ and $\mathbf{2 g}$) or recrystallization from n-hexane ($\mathbf{2 b}, \mathbf{2 d}$ and $\mathbf{2 e}$) prior to use. Unsaturated carboxylic acids were available from commercial source and used without any purification. Sodium carboxylate was synthesized by the reaction of the corresponding unsaturated carboxylic acid with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in acetone/water (ca.v/v=1/1). 2nd generation Grubbs' catalyst (G-II) was purchased from Sigma-Aldrich.

Standard Procedure for Asymmetric Allylic Carboxylation.

Method A.
To a THF solution $(1 \mathrm{~mL})$ of $(R)-1 \mathbf{c}(5 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%)$, allylic chloride $(1.0 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.5$ mmol) was added a THF solution (1 mL) of unsaturated carboxylic acid (0.5 mmol), and the resulting mixture was stirred for 4 h at $25^{\circ} \mathrm{C}$. After dilution with n-hexane, the insoluble parts were filtered off through Celite and the filtrate was concentrated under reduced pressure. The residue was purified by SiO_{2} column chromatography using a mixture of n-hexane and $\mathrm{Et}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=20 / 1)$ as the eluent. Evaporation of the solvent gave branched allylic ester as colorless oil.

Method B.

To a THF solution $(1 \mathrm{~mL})$ of $(R)-\mathbf{1 c}(5 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%)$, allylic chloride $(1.0 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.5$ mmol) was added a THF solution (1 mL) of unsaturated carboxylic acid (0.5 mmol), and the resulting mixture was stirred for 4 h at $25^{\circ} \mathrm{C}$. After dilution with n-hexane, the insoluble parts were filtered off through Celite and the filtrate was concentrated under reduced pressure. Acetone (5 mL) and diethylamine $(5 \mathrm{~mL})$ were added, and the mixture was stirred for 6 h at room temperature. After removal of the solvent under reduced pressure, the resulting crude material was purified by SiO_{2} column chromatography to give branched allylic ester as colorless oil.

Method C.

To a THF solution (2 mL) of $(R)-\mathbf{1 c}(15 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%)$ and allylic chloride (2.5 mmol) was added sodium carboxylate $(0.5 \mathrm{mmol})$ portionwise, and the resulting mixture was stirred for 4 h at $25^{\circ} \mathrm{C}$. Workup was performed by the same method as Method A.

Characterization of Allylic Esters.

(E)-1-phenylallyl but-2-enoate (4ab, Method A)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.40-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.02(\mathrm{dq}, 1 \mathrm{H}, J=15.5,7.0$ $\mathrm{Hz}, \mathrm{CHCH}_{3}$), 6.32 (ddd, $\left.1 \mathrm{H}, J=5.8,1.4,1.4 \mathrm{~Hz}, \mathrm{PhC} H\right), 6.03(\mathrm{ddd}, 1 \mathrm{H}, J=17.0,10.3$, $5.8 \mathrm{~Hz}, \mathrm{CH}=), 5.91(\mathrm{dq}, 1 \mathrm{H}, J=15.5,1.7 \mathrm{~Hz}, \mathrm{COCH}), 5.30(\mathrm{ddd}, 1 \mathrm{H}, J=17.0,1.4,1.4$ $\left.\mathrm{Hz},=\mathrm{CH}_{2}\right), 5.24\left(\mathrm{ddd}, 1 \mathrm{H}, J=10.3,1.4,1.4 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 1.88(\mathrm{dd}, 3 \mathrm{H}, J=7.0,1.7 \mathrm{~Hz}$,
$\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 165.3,145.1,139.1,136.4,128.5,128.0,127.1,122.7,116.7,75.8$, 17.9. HPLC analysis: Chiralcel OJ-H column, n-hexane $/^{i} \operatorname{PrOH}=98 / 2(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=20.1 \mathrm{~min}$, minor enantiomer $t=16.9 \mathrm{~min}, 97 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{28}=-38.2\left(c 0.27, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$225.0886, found: $\mathrm{m} / z=225.0889$.

(E)-1-(4-bromophenyl)allyl but-2-enoate (4bb, Method A)

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.50-7.43$ (m, 2H, Ar), 7.26-7.21 (m, 2H, Ar), $7.02\left(\mathrm{dq}, J=15.7,6.9 \mathrm{~Hz},=\mathrm{CHCH}_{3}\right), 6.28-6.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArCH}), 5.98(\mathrm{ddd}, 1 \mathrm{H}, J=$ $17.7,10.4,5.8 \mathrm{~Hz}, \mathrm{CH}=$), 5.90 (dq, $1 \mathrm{H}, J=15.7,1.7 \mathrm{~Hz}, \mathrm{COCH}=$), $5.33-5.22$ (m, 2H, $\left.=\mathrm{CH}_{2}\right), 1.89\left(\mathrm{dd}, 3 \mathrm{H}, J=6.9,1.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 147.6$, 131.8, 125.8, 124.0, 120.6, 118.4, 113.3, 113.0, 109.1, 75.4, 29.7. HPLC analysis: Chiralcel OD-H column, n-hexane $/{ }^{i} \operatorname{PrOH}=100 / 1(\mathrm{v} / \mathrm{v}), 0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=13.2 \mathrm{~min}$, minor enantiomer $t=12.2 \mathrm{~min}, 96 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{29}=-21.3\left(c \quad 0.19, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{BrNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 302.9991$, found: $m / z=302.9996$.

(E)-1-(4-trifluoromethylphenyl)allyl but-2-enoate (4cb, Method A)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.61(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}), 7.47(\mathrm{~d}, 2 \mathrm{H}, J=$

$8.3 \mathrm{~Hz}, \mathrm{Ar}), 7.04\left(\mathrm{dq}, J=15.5,6.9 \mathrm{~Hz},=\mathrm{CHCH}_{3}\right), 6.36-6.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArCH}), 6.00$ (ddd, $1 \mathrm{H}, J=17.3,10.4,5.9 \mathrm{~Hz}, \mathrm{CH}=), 5.92(\mathrm{dq}, 1 \mathrm{H}, J=15.5,1.7 \mathrm{~Hz}, \mathrm{COCH}=$), $5.36-5.25\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 1.90\left(\mathrm{dd}, 3 \mathrm{H}, J=6.9,1.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}): \delta 166.2,145.8,143.1(\mathrm{q}, J=1.3 \mathrm{~Hz}), 135.7,130.2(\mathrm{q}, J=32.5 \mathrm{~Hz}), 127.3,125.5(\mathrm{q}, J=3.8 \mathrm{~Hz})$, $124.0(\mathrm{q}, J=272.1 \mathrm{~Hz}), 122.3,117.6,75.2$, 17.9. HPLC analysis: Chiralcel OD-H column, n-hexane $/{ }^{i} \operatorname{PrOH}=200 / 1(\mathrm{v} / \mathrm{v}), 0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=15.4 \mathrm{~min}$, minor enantiomer $t=$ $13.9 \min , 98 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{30}=-11.9\left(c \quad 0.28, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 293.0765, found: $m / z=293.0760$.
(E)-1-(naphthalene-1-yl)allyl but-2-enoate (4db, Method B)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.16-8.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.89-7.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$ 7.63-7.57 (m, 1H, Ar) 7.56-7.42 (m, 3H, Ar), 7.10-6.98 (m, 2H, ArCH and $=\mathrm{CHCH}_{3}$), 6.21 (ddd, $1 \mathrm{H}, J=17.0,9.8,5.2 \mathrm{~Hz}, \mathrm{CH}=$), 5.93 (dq, $1 \mathrm{H}, J=15.6,1.7 \mathrm{~Hz}, \mathrm{COCH}=$), 5.36-5.25 (m, 2H, $\left.=\mathrm{CH}_{2}\right), 1.88\left(\mathrm{dd}, 3 \mathrm{H}, J=6.9,1.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126\right.$ $\mathrm{MHz}): \delta 147.7,131.6,124.2,123.1,122.5,112.0,118.5,118.4,116.3,115.9,115.6$, 115.5, 114.4, 113.4, 109.0, 74.0, 29.7. HPLC analysis: Chiralcel OD-H column, n-hexane $/{ }^{\prime} \operatorname{PrOH}=200 / 1$ (v/v), $0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=30.7 \mathrm{~min}$, minor enantiomer $t=28.9 \mathrm{~min}, 96 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{29}=-24.4\left(c 0.27, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 275.1043$, found: $m / z=$ 275.1047

(\boldsymbol{E})-methyl 4-(1-(but-2-enyloxy)allyl)benzoate (4eb, Method B)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.04-7.99$ (m, 2H, Ar), 7.45-7.39 (m, 2H, Ar), 7.04 (dq, $J=15.7,6.9 \mathrm{~Hz},=\mathrm{CHCH}_{3}$), $6.37-6.31$ (m, 1H, ArCH), 6.00 (ddd, $1 \mathrm{H}, J=17.7,10.4,5.8 \mathrm{~Hz}, \mathrm{CH}=$), $5.92(\mathrm{dq}, 1 \mathrm{H}, J=15.7,1.7 \mathrm{~Hz}, \mathrm{COCH})$, 5.36-5.23 (m, 2H, $\left.=\mathrm{CH}_{2}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.90\left(\mathrm{dd}, 3 \mathrm{H}, \mathrm{J}=6.9,1.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 148.7,147.5,131.9,130.6,124.0,119.2,116.9,113.3,109.4,75.6,57.0$, 29.8, 16.2. HPLC analysis: Chiralcel OJ-H column, n-hexane $/{ }^{i} \operatorname{PrOH}=98 / 2(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=39.8 \mathrm{~min}$, minor enantiomer $t=22.1 \mathrm{~min} .95 \%$ ee. $\quad[\alpha]_{\mathrm{D}}{ }^{29}=-18.4\left(c 0.28, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$283.0941, found: $m / z=283.0945$.

(E)-1-(benzyloxy)but-3-en-2-yl but-2-enoate (4fb, Method A)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.37-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.01(\mathrm{dq}, 1 \mathrm{H}, J=15.7,6.9$

$\left.\mathrm{Hz},=\mathrm{CHCH}_{3}\right), 5.93-5.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}=$ and $\mathrm{CH}=), 5.57-5.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}=), 5.32$ (ddd, $1 \mathrm{H}, J=17.3,1.5,1.4 \mathrm{~Hz},=\mathrm{CH}_{2}$), $5.23\left(\mathrm{ddd}, 1 \mathrm{H}, J=10.7,1.4,1.2 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 4.59$ $\left(\mathrm{d}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.54\left(\mathrm{~d}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 3.61\left(\mathrm{dd}, 1 \mathrm{H}, J=10.7,4.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right)$, $3.59\left(\mathrm{dd}, 1 \mathrm{H}, J=10.7,2.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.89\left(\mathrm{dd}, 3 \mathrm{H}, J=6.9,1.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}): \delta 165.5,144.9,137.9,133.5,128.3,127.5,122.6,117.6,73.1,72.8,71.3,17.9$. One carbon signal could not be detected probably due to overlapping. HPLC analysis: Chiralcel OJ-H column, $2 \%{ }^{i} \operatorname{PrOH}$, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=18.3 \mathrm{~min}$, minor enantiomer $t=15.1 \mathrm{~min} .90 \%$ ee. $\quad[\alpha]_{\mathrm{D}}{ }^{28}=$ $-11.0\left(c 0.22, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 269.1148$, found: $\mathrm{m} / z=269.1152$.

(E)-1-phenylallyl methacrylate (4ac, Method A)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.41-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.32(\mathrm{ddd}, 1 \mathrm{H}, J=5.8,1.7,1.5$
 $\mathrm{Hz}, \mathrm{PhCH}), 6.22-6.17\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 6.04(\mathrm{ddd}, 1 \mathrm{H}, J=17.1,10.5,5.8 \mathrm{~Hz}, \mathrm{CH}=), 5.59(\mathrm{dq}$, $\left.1 \mathrm{H}, J=1.6,1.6 \mathrm{~Hz}, \mathrm{CCH}_{3}=\mathrm{CH}_{2}\right), 5.32\left(\mathrm{ddd}, 1 \mathrm{H}, J=17.1,1.7,1.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.25(\mathrm{ddd}$, $\left.1 \mathrm{H}, J=10.5,1.5,1.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 1.98\left(\mathrm{dd}, 3 \mathrm{H}, J=1.6,0.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}): \delta 166.3,139.1,136.5,136.4,128.6,128.1,127.0,125.7,116.8,76.3,18.3$. HPLC analysis: Chiralcel OJ-H column, n-hexane $/^{i} \operatorname{PrOH}=100 / 2(\mathrm{v} / \mathrm{v}), 0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=15.6$
\min, minor enantiomer $t=12.8 \mathrm{~min}, 94 \%$ ee. $\quad[\alpha]_{\mathrm{D}}{ }^{29}=-25.4\left(c \quad 0.23, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 225.0886$, found: $m / z=225.0889$.

(E)-1-phenylallyl pent-3-enoate (4ad, Method C)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.40-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.26(\mathrm{ddd}, 1 \mathrm{H}, J=6.0,1.7$, $1.5 \mathrm{~Hz}, \mathrm{PhCH}), 6.00(\mathrm{ddd}, 1 \mathrm{H}, J=17.1,10.4,6.0 \mathrm{~Hz}, \mathrm{CH}=), 5.64-5.49(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}), 5.28\left(\mathrm{ddd}, 1 \mathrm{H}, J=17.1,1.7,1.3 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 5.24(\mathrm{ddd}, 1 \mathrm{H}, J=10.4,1.5,1.3$ $\mathrm{Hz},=\mathrm{CH}_{2}$), 3.10-3.05 (m, 2H, CH2 $)$, 1.71-1.66 (m, 3H, CH $)_{3}$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ MHz): $\delta 171.1,138.9,136.3,129.6,128.5,128.1,127.1,122.5,116.9,76.2,38.2,17.9$. HPLC analysis: Chiralcel OJ-H column, n-hexane $/{ }^{i} \operatorname{PrOH}=98 / 2(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=9.7 \mathrm{~min}$, minor enantiomer $t=7.5 \mathrm{~min}, 97 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{29}=-27.2$ (c 0.23, CHCl_{3}). HRMS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 239.1043$, found: $m / z=239.1047$.

1-phenylallyl pent-4-enoate (4ae, Method C)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.40-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.32(\mathrm{ddd}, 1 \mathrm{H}, J=5.9,1.6$,
 $1.4 \mathrm{~Hz}, \mathrm{PhCH}), 6.00$ (ddd, $1 \mathrm{H}, J=17.1,10.4,5.9 \mathrm{~Hz}, \mathrm{CH}=$), $5.86-5.76(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}=$), $5.30\left(\mathrm{ddd}, 1 \mathrm{H}, J=17.1,1.6,1.3 \mathrm{~Hz},=\mathrm{CH}_{2}\right.$), $5.23(\mathrm{ddd}, 1 \mathrm{H}, J=10.4,1.4,1.3$ $\left.\mathrm{Hz},=\mathrm{CH}_{2}\right), 5.09-4.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.51-2.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH} \mathrm{H}_{2} \mathrm{CH}=\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 152.9,126.5,124.6,124.4,118.2,117.8,117.0,108.9,107.8,76.3,42.4,38.4$. HPLC analysis: Chiralcel OJ-H column, n-hexane $/^{i} \operatorname{PrOH}=98 / 2(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=8.7 \mathrm{~min}$, minor enantiomer $t=7.9 \mathrm{~min} .95 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{29}=-34.7\left(c 0.25, \mathrm{CHCl}_{3}\right) . \quad$ HRMS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 239.1043$, found: $m / z=239.1046$.

Standard Procedure for Ring-Closing Metathesis (RCM) of Branched Allylic Ester.

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (5 mL) of G-II ($6 \mu \mathrm{~mol}$, $2 \mathrm{~mol} \%$) was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (1 mL) of branched allylic ester (0.3 mmol) and the mixture was stirred for 16 h at $25{ }^{\circ} \mathrm{C}$. After $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under reduced pressure, the residue was purified by SiO_{2} column chromatography using a mixture of n-hexane and $\operatorname{AcOEt}(\mathrm{v} / \mathrm{v}=7 / 3)$ as the eluent. Concentration of the resulting solution gave optically active lactones.

For the syntheses of $\mathbf{6 d b}, \mathbf{6 f b}, \mathbf{6 a c}$, and 7, the reactions were performed under reflux, whereas $\mathbf{8}$ was prepared by the reaction at $30^{\circ} \mathrm{C}$.

Charactarization of Lactones.

5-phenylfuran-2(5H)-one (6ab). ${ }^{5}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.52(\mathrm{dd}, 1 \mathrm{H}, J=5.5,2.0 \mathrm{~Hz}, \mathrm{CH}=), 7.43-7.32(\mathrm{~m}$,
 $3 \mathrm{H}, \mathrm{Ph}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 6.23(\mathrm{dd}, 1 \mathrm{H}, J=5.5,1.8 \mathrm{~Hz}, \mathrm{PhCH}), 6.01(\mathrm{dd}, 1 \mathrm{H}, J=$ $2.0,1.8 \mathrm{~Hz}, \mathrm{COCH}=) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 76 \mathrm{MHz}\right): \delta 173.0,155.8,134.3,129.3,129.0$, 126.5, 121.0, 84.3. HPLC analysis: Chiralcel OJ-H column, n-hexane $/^{i} \operatorname{PrOH}=9 / 1(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 220$ nm ; major enantiomer $t=31.1 \mathrm{~min}$, minor enantiomer $t=34.5 \mathrm{~min}, 97 \%$ ee.

5-(4-bromophenyl)furan-2(5H)-one (6bb). ${ }^{5}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.54(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 7.50(\mathrm{dd}, 1 \mathrm{H}, J=$ $5.6,1.8 \mathrm{~Hz}, \mathrm{CH}=), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 6.24(\mathrm{dd}, 1 \mathrm{H}, J=5.6,2.2 \mathrm{~Hz}, \mathrm{ArCH})$, 5.97 (dd, $1 \mathrm{H}, J=2.2,1.8 \mathrm{~Hz}, \mathrm{COCH}=) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 172.6,155.2$, 133.3, 132.3, 128.1, 123.4, 121.3, 83.5. HPLC analysis: Chiralpak AS-H column, n-hexane $/{ }^{i} \operatorname{PrOH}=4 / 1$ $(\mathrm{v} / \mathrm{v}), 0.4 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=62.7 \mathrm{~min}$, minor enantiomer $t=60.9 \mathrm{~min}, 98 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{27}=-31.2\left(c 0.28, \mathrm{CHCl}_{3}\right)$.

5-(4-trifluoromethylphenyl)furan-2(5H)-one (6cb).

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 7.67(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{Ar}), 7.54$ (dd, $1 \mathrm{H}, 7.6$, $1.7 \mathrm{~Hz}, \mathrm{CH}=$), 7.42 (d, 2H, 8.2 Hz, Ar), 6.27 (dd, $1 \mathrm{H}, J=7.6,2.2 \mathrm{~Hz}, \mathrm{ArCH}), 6.07$ (br, $1 \mathrm{H}, \mathrm{COCH}=) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 172.6,155.2,138.3(\mathrm{q}, J=1.4 \mathrm{~Hz})$, $131.5(\mathrm{q}, ~ J=32.8 \mathrm{~Hz}), 122.6,126.0,(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.7(\mathrm{q}, J=272.3 \mathrm{~Hz}), 121.3,88.3$. HPLC analysis: Chiralpak AS-H column, n-hexane $/{ }^{i} \operatorname{PrOH}=9 / 1(\mathrm{v} / \mathrm{v}), 0.3 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$; major enantiomer $t=77.3 \mathrm{~min}$, minor enantiomer $t=74.0 \mathrm{~min}, 95 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{29}=-140.6\left(c 0.12, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): Calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 251.0290$, found: $m / z=251.0293$.

5-(naphthalene-1-yl)furan-2(5H)-one (6db)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.91-7.81$ (m, 3H, Ar), 7.79 (br, 1H Ar), 7.60 (dd, $1 \mathrm{H}, J=5.6,1.6 \mathrm{~Hz}, \mathrm{CH}=), 7.57-7.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.31(\mathrm{dd}, 1 \mathrm{H}, J=8.5,1.7 \mathrm{~Hz}, \mathrm{Ar})$, 6.28 (br, $1 \mathrm{H}, J=5.6,2.0 \mathrm{~Hz}, \mathrm{COCH}=), 6.18(\mathrm{br}, 1 \mathrm{H}, \mathrm{ArCH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}): \delta 173.1,155.8,133.6,133.2,131.6,129.1,128.0,127.8,126.9,126.8,126.2,123.3,121.2,84.5$. HPLC analysis: Chiralpak AS-H column, n-hexane $/^{i} \mathrm{PrOH}=4 / 1(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=29.4 \mathrm{~min}$, minor enantiomer $t=24.1 \mathrm{~min}, 99 \%$ ee. $\quad[\alpha]_{\mathrm{D}}{ }^{30}=-196.6\left(c 0.14, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 233.0573$, found: $\mathrm{m} / \mathrm{z}=233.0577$.

5-(benzyloxymethyl)furan-2(5H)-one (6fb). ${ }^{6}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.50(\mathrm{dd}, 1 \mathrm{H}, J=5.8,1.6 \mathrm{~Hz}, \mathrm{CH}=), 7.41-7.27(\mathrm{~m}$, Bno $\left.\mathcal{Y}^{\circ}=0 \quad 5 \mathrm{H}, \mathrm{Ph}\right), 6.17(\mathrm{dd}, 1 \mathrm{H}, J=5.8,2.1 \mathrm{~Hz}, \mathrm{CH}=), 5.17(\mathrm{tdd}, 1 \mathrm{H}, J=5.2,2.1,1.6 \mathrm{~Hz}, \mathrm{CHCH}=)$, $4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.75\left(\mathrm{dd}, 1 \mathrm{H}, J=10.4,5.2, \mathrm{OCH}_{2} \mathrm{CH}\right) 3.67\left(\mathrm{dd}, 1 \mathrm{H}, J=10.4,5.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 172.7,153.8,137.3,128.5,128.0,127.7,122.6,82.1,73.8,69.5$. HPLC analysis: Chiralpak AS-H column, n-hexane $/^{i} \operatorname{PrOH}=4 / 1(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=$ 24.1 min , minor enantiomer $t=20.4 \mathrm{~min}, 95 \%$ ee.

3-methyl-5-phenylfuran-2(5H)-one (6ac). ${ }^{7}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.43-7.32(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.12$ (dq, $1 \mathrm{H}, J=1.7,1.7 \mathrm{~Hz}, \mathrm{CH}=$), $5.88-5.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}), 1.99(\mathrm{dd}, 3 \mathrm{H}, J=1.7,1.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 174.3,148.4,135.4,129.5,129.0,128.9,126.4$, 82.1, 10.6. HPLC analysis: Chiralpak AS-H column, n-hexane $/^{i} \operatorname{PrOH}=9 / 1(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$;
major enantiomer $t=21.7 \mathrm{~min}$, minor enantiomer $t=17.1 \mathrm{~min}, 97 \%$ ee.

Methyl 4-(5-oxo-4,5-dihydrofuran-2-yl)benzoate (7).

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{~Hz}\right): \delta 8.08(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 7.67(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.7 \mathrm{~Hz}, \mathrm{Ar}), 5.93(\mathrm{t}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz},=\mathrm{CH}), 3.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.46(\mathrm{~d}, 2 \mathrm{H}, J=2.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 175.2,166.4,153.2,132.3,130.9,130.0$, 124.6, 100.2, 52.2, 34.7. HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 241.0471$, found: $m / z=241.0475$.

6-phenyl-3,6-dihydro-2H-pyran-2-one (8). ${ }^{8}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.07-5.97(\mathrm{~m}, 3 \mathrm{H}, \mathrm{PhCH}$ and
 $\mathrm{CH}=\mathrm{C} H), 3.19-3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 168.23,138.20$, $128.89,126.83,126.18,121.80,81.28,29.91$. One carbon signal could not be detected probably due to overlapping. HPLC analysis: Chiralpak AS-H column, n-hexane $/{ }^{i} \operatorname{PrOH}=4 / 1(\mathrm{v} / \mathrm{v}), 1.0$ $\mathrm{mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=27.6 \mathrm{~min}$, minor enantiomer $t=25.1 \mathrm{~min}, 93 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{28}=$ $-125.0\left(c 0.12, \mathrm{CHCl}_{3}\right)$.

Procedure for Tandem RCM-Olefin Isomerization.

To a 1,2-dichloroethane solution (5 mL) of G-II ($6 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%$) was added a 1,2-dichloroethane solution (1 mL) of $\mathbf{4 a d}(0.3 \mathrm{mmol})$, and the mixture was stirred for 16 h at $50{ }^{\circ} \mathrm{C}$. After addition of 2-propanol (0.2 mL), the mixture was refluxed for 48 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was purified by SiO_{2} column chromatography using a mixture of n-hexane and AcOEt $(\mathrm{v} / \mathrm{v}=7 / 3)$ as the eluent. Evaporation of the solvent under reduced pressure gave 9 as white solid.

6-phenyl-5,6-dihydro-2H-pyran-2-one (9). ${ }^{9}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.46-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.97$ (ddd, $1 \mathrm{H}, J=9.7,5.5$, $\left.3.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\right), 6.15(\mathrm{ddd}, 1 \mathrm{H}, J=9.7,2.4,1.3 \mathrm{~Hz}, \mathrm{COCH}=), 5.46(\mathrm{dd}, 1 \mathrm{H}, J=10.5,5.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH}), 2.76-2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 164.0,144.8$, 138.5, 128.7, 128.6, 126.0, 121.7, 79.2, 31.6. HPLC analysis: Chiralpak AS-H column, n-hexane $/^{i} \operatorname{PrOH}=$ $4 / 1(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$; major enantiomer $t=31.1 \mathrm{~min}$, minor enantiomer $t=20.4 \mathrm{~min}, 94 \%$ ee.

Procedure for Tandem RCM - Hydrogenation.

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (5 mL) of \mathbf{G}-II ($6 \mu \mathrm{~mol}$, $2 \mathrm{~mol} \%$) was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (1 mL) of 4ad $(0.3 \mathrm{mmol})$. After stirring for 12 h at $30^{\circ} \mathrm{C}$, the mixture was transferred to autoclave through cannula, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The mixture was stirred for 24 h at $70{ }^{\circ} \mathrm{C}$ under H_{2} pressure (1 MPa). After cooling to room temperature, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under reduced pressure, and the residue was purified by SiO_{2} column chromatography using a mixture of n-hexane and $\mathrm{AcOEt}(\mathrm{v} / \mathrm{v}=7 / 3)$ as the eluent. Recrystallization from n-hexane gave $\mathbf{1 0}$ as colorless needle.

6-phenyltetrahydro-2H-pyran-2-one (10). ${ }^{10}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.41-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.36(\mathrm{dd}, 1 \mathrm{H}, J=10.1,3.4$ $\mathrm{Hz}, \mathrm{PhCH}), 2.79-2.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.25-2.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.07-1.80(\mathrm{~m}, 3 \mathrm{H}$, CHCH_{2} and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 171.2,139.7,128.6,128.2$, 125.7, 81.5, 30.5, 29.5, 18.6. HPLC analysis: Chiralcel OB-H column, hexane $/{ }^{i} \operatorname{PrOH}=4 / 1(\mathrm{v} / \mathrm{v}), 1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$; major enantiomer $t=20.3 \mathrm{~min}$, minor enantiomer $t=24.7 \mathrm{~min},>99 \%$ ee.

Metathesis Reaction of 4ae.

The reaction was performed according to the standard procedure. The resulting brown oil was analyzed by mass spectrometry.

ESI MS: $\mathrm{m} / \mathrm{z}=189.2(10.5), 399.3(100), 400.3(24.0), 427.3(15.2), 587.2(10.1), 775.3(9.6)$. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}[\mathbf{1 1 + H}]^{+}$, 189.1; $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathbf{1 2 a}+\mathrm{Na}]^{+}$, 399.2; $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathbf{1 3}+\mathrm{Na}]^{+}$, 427.2; $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Na}$ $[\mathbf{1 2 b}+\mathrm{Na}]^{+}, 587.2 ; \mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{8} \mathrm{Na}[\mathbf{1 2 c}+\mathrm{Na}]^{+}, 775.3$.

One-Pot Sequential Asymmetric Allylic Carboxylation-Ring-Closing Metathesis.

To a THF solution $(1 \mathrm{~mL})$ of $(R)-1 \mathbf{c}(5 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%)$, allylic chloride (1.0 mmol) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.5$ mmol) was added a 1 mL of THF solution of crotonic acid $\mathbf{3 b}(0.5 \mathrm{mmol})$, and the resulting mixture was stirred for 4 h at $25^{\circ} \mathrm{C}$. G-II ($10 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ were added, and the mixture was stirred for 16 h . After removal of the solvent under reduced pressure, the residue was purified by SiO_{2} column chromatography using a mixture of n-hexane and $\operatorname{AcOEt}(v / v=7 / 3)$ as the eluent.

Enantioselective Synthesis of (R)-(-)-Massoialactone (14).

To a THF solution (2 mL) of $(R) \mathbf{- 1 c}(10 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%)$ and allylic chloride $\mathbf{2 g}(1.0 \mathrm{mmol})$ was added sodium pent-3-enoate $\mathbf{3 d}(0.5 \mathrm{mmol})$, and the resulting mixture was stirred for 11 h at $25^{\circ} \mathrm{C}$. After dilution with hexane, insoluble parts were removed by filtration. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography on SiO_{2} using the mixture of n-hexane and $\mathrm{Et}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=20 / 1)$ as the eluent. Evaporation of the solvent gave the ester $\mathbf{4 g d}$ as colorless oil ($81 \mathrm{mg}, 77 \%$ yield).

G-II ($6 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%$) was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (6 mL) of $\mathbf{4 g d}(63 \mathrm{mg}, 0.3 \mathrm{mmol})$, and the mixture was stirred for 16 h at $45{ }^{\circ} \mathrm{C}$. After removal of the solvent under reduced pressure, a THF
solution (2 mL) of 1,8-diazabicyclo-[5,4,0]-undec-7-ene ($30 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) was added and the mixture was stirred for 24 h at $25^{\circ} \mathrm{C}$. The resulting mixture was poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{NH}_{4} \mathrm{Cl}$ aq., and the organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ aq., water and brine successively. The solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by SiO_{2} column chromatography using a mixture of n-hexane and $\operatorname{AcOEt}(\mathrm{v} / \mathrm{v}=7 / 3)$ as the eluent to give $\mathbf{1 4}$ as colorless oil $(36.8 \mathrm{mg}, 73 \%$ yield).

(E)-oct-1-en-3-yl pent-3-enoate (4gd).

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.77$ (ddd, $1 \mathrm{H}, J=17.0,10.6,6.4 \mathrm{~Hz}, \mathrm{CHCH}=$),
 5.65-5.50 (m, $\left.2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.27-5.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}\right.$ and $\left.=\mathrm{CH}_{2}\right), 5.15(\mathrm{ddd}$, $\left.1 \mathrm{H}, J=10.6,1.3,1.3 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 3.04-2.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 1.69(\mathrm{~d}, 3 \mathrm{H}, J=4.9 \mathrm{~Hz}$, $\left.=\mathrm{CHCH}_{3}\right), 1.67-1.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.38-1.21\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. ${ }^{13}{ }^{2}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 171.4,136.7,129.3,122.8,116.5,74.9,38.3,34.1,31.5,24.7,22.5,17.9$, 13.9. $[\alpha]_{\mathrm{D}}{ }^{26}=+4.1\left(c 0.07, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 233.1512$, found: $m / z=233.1516$.
(R)-(-)-6-pentyl-5,6-dihydro-2H-pyran-2-one, (\boldsymbol{R})-(-)-massoialactone (14). ${ }^{11}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.89-6.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right), 6.01$ (ddd, $1 \mathrm{H}, J=9.7$,
 $2.4,1.4 \mathrm{~Hz}, \mathrm{COCH}=$), 4.45-4.38 (m, 1H, OCH), 2.39-2.28 (m, 2H, CH2 $\mathrm{CH}=$), 1.86-1.74 (m, 1H, CH $\mathrm{H}_{2} \mathrm{CH}$), 1.69-1.59 (m, 1H, CH2CH), 1.54-1.47 (m, 1H, CHCH CH_{2}), 1.46-1.25 (m, 5H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $0.90\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta 164.5,144.9,121.5$, 78.0, 34.8, 31.5, 29.4, 24.5, 22.4, 13.9. HPLC analysis: Chiralpak AS-H column, hexane $/{ }^{\prime} \operatorname{PrOH}=9 / 1$ $(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$; major enantiomer $t=18.8 \mathrm{~min}$, minor enantiomer $t=22.4 \mathrm{~min} .90 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{27}=-103.7\left(c 0.20, \mathrm{CHCl}_{3}\right)$.

References

1. (a) N. Dodo, Y. Matsushima, M. Uno, K. Onitsuka and S. Takahashi, J. Chem. Soc. Dalton Trans., 2000, 35; (b) Y. Matsushima, N. Komatsuzaki, Y. Ajioka, M. Yamamoto, H. Kikuchi, Y. Takata, N. Dodo, K. Onitsuka, M. Uno and S. Takahashi, Bull. Chem. Soc. Jpn., 2001, 74, 527.
2. N. Kanbayashi and K. Onitsuka, Angew. Chem., Int. Ed., 2011, 50, 5197.
3. E. J. Corey, C. U. Kim and M. Takeda, Tetrahedron Lett., 1972, 42, 4339.
4. A. W. van Ziji, L. A. Arnold, A. J. Minnaard and B. L. Feringa, Adv. Synth. Catal., 2004, 346, 413.
5. D. M. Browne, O. Niyomura and T. Wirth, Org. Lett., 2007, 9, 3169.
6. A. K. Ghosh, S. Leshchenko and M. Noetzel, J. Org. Chem., 2004, 69, 7822.
7. E. Yoneda, S.-W. Zhang, D.-Y. Zhou, K. Onitsuka and S. Takahashi, J. Org. Chem., 2003, 68, 8571.
8. J. Qi, X. Xie, J. He, L. Zhang, D. Ma and X. She, Org. Biomol. Chem., 2011, 9, 5948.
9. P. V. Ramachandran, B. Prabhudas, J. S. Chandra and M. V. R. Reddy, J. Org. Chem., 2004, 69, 6294.
10. T. Dohi, N. Takenaga, A. Goto, A. Maruyama and Y. Kita, Org. Lett., 2007, 9, 3129.
11. A. Harbindu and P. Kumar, Synthesis, 2011, 12, 1954.

NMR Spectra

(E)-1-phenylallyl but-2-enoate (4ab)

（E）－1－（4－bromophenyl）allyl but－2－enoate（4bb）．

（E）－1－（4－trifluoromethylphenyl）allyl but－2－enoate（4cb）．

File $C: \neq D O C U M E N T S$ AND SETTINGS\＃
TAKII\＃デスクトップ～NMRZLITER
ATUREFESTERき（E）－1－（4－（TRIFLU
OROMETHYL）PHENYL）ALLYL BUT－2
Date 09／Sep／2010
Date 09／Sep／2010 21：40：09

ObsNuc
ExMode
0 ObFreq
ObsSet
0 bsFine
Point
Frequecy（Span）
Scan
RoqTime
PD
Pulse
Pulsel
IrrNue
ProbeHeaD
Instrument
Pulse Program
Gradient Prozram
Temperature
Solvent
Broad．Factor
Window
RGain

Operator

\qquad
(E)-1-(naphthalene-1-yl)allyl but-2-enoate (4db).

(E)-methyl 4-(1-(but-2-enyloxy)allyl)benzoate (4eb)

File C: $\because D O C U M E N T S$ AND SETTINGS\#TAKIIZ
 L) BENZOATE1H.RM1

Date $11 / 0 \mathrm{ct} / 2011$ 09:47:02
Comment
ObsNuc
ExMode
ExMode
ObsFreq
ObsSet
ObsFine
Point
Frequeoy (Span)
Sequ
SoqTime
AoqTi
PD
PD
Pulse1
IrrNuc
ProbeHeal
Instrument
Pulse Prozram
Gradient Program
Temperature
Solvent $\quad{ }^{30}$
Reference
Reference
Broad.Factor
$\begin{array}{lr}\text { Window } & \text { Exponential } \\ \text { RGain } & 48\end{array}$
0perator

（E）－1－（benzyloxy）but－3－en－2－yl but－2－enoate（4fb）．

File C：¥DOCUMENTS AND SETTINGS¥TAKII¥ デスクトップ¥NMR¥LITERATURE $¥$ ESTER羊
Date 14／Dec／2011 18：42：49
Comment
Std Carbon experiment

(E)-1-phenylallyl methacrylate (4ac).

(E)-1-phenylallyl pent-3-enoate (4ad).

File c: $¥ \mathrm{ZDOCUMENTS}$ AND SETTINGS¥TAKI
 $\underset{\text { H. RM1 }}{\text { H }}$ Date ${ }^{28 / J u n / 2010 ~ 09: 55: 16 ~}$ Comment
$100628-2$

100628-2	
ObsNuc	$1{ }^{1}$
ExMode	NON
ObsFreq	399.65 MHz
ObsSet	124.0 kHz
ObsFine	10500.0 Hz
Point	32768
Frequecy (Span)	7993.6 Hz
Soan	8
AoqTime	4.0993 s
PD	2.901 s
Pulse1	$5.7 \mu \mathrm{~s}$
IrrNucProbehead	
Instrument	ALICE
Pulse Program	
Gradient Program	
Temperature	$30.4{ }^{\circ} \mathrm{C}$
Solvent	CDCL_{3}
Reference	0.0 ppm
Broad.Factor	0.122 Hz
Window Expo	ential
RGain	23

perator \qquad

 ENYLALLYLPENT-3-ENOATE¥13C-2.RM1
Date 21/Jul/2011 01:51:13
Comment
Std Carbon experiment

ObsNuc	${ }^{19} \mathrm{C}$
ExMode	PROTON
ObsFreq	75.45 MHz
ObsSet	$-1.0 \mathrm{kHz}$
ObsFine	998.4988 Hz
Point	65536
Frequecy (Span)	n) 18115.94 Hz
Scan	4400
SoqTime	2.0 s
PD	4.0 s
Pulse1	$6.9 \mu \mathrm{~s}$
IrrNuc	1 H
ProbeHea D	
Pulse Program	
Gradient Program	
Temperature	$30.0{ }^{\circ} \mathrm{C}$
Solvent	cdels
Reference	77.0 ppm
Broad.Factor	0.1382 Hz
Window Expon	Exponential
RGain	36

Operator

1-phenylallyl pent-4-enoate (4ae).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

5-phenylfuran-2(5H)-one (6ab).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

5-(4-bromophenyl)furan-2(5H)-one (6bb).

File C:\#DOCUMENTS AND SETTINGS¥TA
 E¥LACTONE¥5-(4-BROMOPHENYL)FUR $\mathrm{AN}-2(5 \mathrm{H})-0 \mathrm{NE} 13 \mathrm{C}$. RM1
Date 28/0ct/2011 00:17:04
Std Carbon experiment

5-(4-trifluoromethylphenyl)furan-2(5H)-one (6cb)

5-(naphthalene-1-yl)furan-2(5H)-one (6db).

5-(benzyloxymethyl)furan-2(5H)-one (6fb).

3-methyl-5-phenylfuran-2(5H)-one (6ac).

Methyl 4-(5-oxo-4,5-dihydrofuran-2-yl)benzoate (7).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

6-phenyl-3,6-dihydro-2H-pyran-2-one (8).

File $\mathrm{C}: \neq \mathrm{DOCUMENTS}$ AND SETTINGS¥TAKII¥
 E¥13C.RM1 Date 26/Dec/2011 08:40:57
Comment

ExMode
ObsFreq
single_pulse
125.77 MHz

PD
Pulse1
IrrNuc
IrrNuc
ProbeHead
$\begin{array}{ll}\text { Probehead } \\ \text { Instrument } & \text { ECA } 500\end{array}$
Pulse Progran
ECA 500
Gradient Progr
Temperature $\quad 30.0{ }^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Solvent } & \text { CHLOROFORM-D } \\ \text { Reference } & 77.0 \mathrm{ppm} \\ \text { Rred } & \\ & 0.25 \mathrm{~Hz}^{2}\end{array}$
$\begin{array}{lr}\text { Broad.Factor } & \\ \text { Window } & \text { Exponential } \\ \text { RGain } & 50\end{array}$
Operator

6-phenyl-5,6-dihydro-2H-pyran-2-one (9).

6-phenyltetrahydro-2H-pyran-2-one (10).

(E)-oct-1-en-3-yl pent-3-enoate (4gd).

(R)-6-pentyl-5,6-dihydro-2H-pyran-2-one ((R)-(-)-massoialactone) (14).

HPLC data

（E）－1－phenylallyl but－2－enoate（4ab）

1 Det．A Ch1／220nm

検出器A Ch1 220nm

Peak	Retention Time	Area	Area\％
1	15.696	25277961	50.841
2	22.199	24441514	49.159
合計		49719475	100.000

	Retention Time	Area	Area\％
1	16.91	319441	1.600
2	20.13	19639764	98.400
		19959205	100.000

（E）－1－（4－bromophenyl）allyl but－2－enoate（4bb）．

1 Det．A Ch1／220nm

検出器A Ch1 220nm

Peak	Retention Time	Area	Area\％
1	12.492	34361132	49.776
2	13.572	34670327	50.224
合計		69031459	100.000

1 Det．A Ch1／220nm

検出器A Ch1 220nm

Peak	Retention Time	Area	Area\％
1	12.169	1113180	1.841
2	13.226	59364144	98.159
合計		60477324	100.000

（E）－1－（4－trifluoromethylphenyl）allyl but－2－enoate（4cb）．

1 Det．A Ch1／220nm

検出器A Ch1 220nm

Peak	Retention Time	Area	Area\％
1	13.905	8574623	50.389
2	15.450	8442226	49.611
合計		17016849	100.000

mV

1 Det．A Ch1／220nm

検出器A Ch1 220nm

Peak	Retentin Time	Area	Area\％
1	13.894	427370	1.181
2	15.351	35762861	98.819
合計		36190232	100.000

（E）－1－（naphthalene－1－yl）allyl but－2－enoate（4db）．

1 Det．A Ch1／220nm

検出器A Ch1 220nm

Peak	Retention Time	Area	Area\％
1	35.369	79658155	49.102
2	37.619	82572388	50.898
合計		162230544	100.000

mV

1 Det．A Ch1／220nm

検出器A Ch1 220 nm

Peak	Retention Time	Area	Area\％
1	28.927	2075457	1.804
2	30.743	112965443	98.196
合計		115040900	100.000

(E)-methyl 4-(1-(but-2-enyloxy)allyl)benzoate (4eb)

(E)-1-(benzyloxy)but-3-en-2-yl but-2-enoate (4fb)

（E）－1－phenylallyl methacrylate（4ac）．

1 Det．A Ch1／220nm

UV－Vis Ch1 220nm

Peak	Retention Time	Area	Area\％
1	12.805	2619011	46.047
2	15.655	3068721	53.953
合計		5687732	100.000

mV

1 Det．A Ch1／220nm

UV－Vis Ch1 220 nm

Peak	Retention Time	Area	Area\％
1	12.769	103542	3.245
2	15.552	3087444	96.755
合計		3190986	100.000

（E）－1－phenylallyl pent－3－enoate（4ad）．

1 Det．A Ch1／220nm

検出器A Ch1 220nm

Peak	Retention Time	Area	Area\％
1	7.513	13362232	48.855
2	9.703	13988448	51.145
合計		27350680	100.000

mv

1 Det．A Ch1／220nm

検出器A Ch1 220nm

Peak	Retention Time	Area	Area\％
1	7.512	53148	1.435
2	9.706	3650678	98.565
合計		3703826	100.000

1－phenylallyl pent－4－enoate（4ae）．

1 Det．A Ch1／220nm

検出器A Ch1 220 nm

Peak	Retention Time	Area	Area\％
1	7.874	2055447	48.861
2	8.780	2151307	51.139
合計		4206753	100.000

mV

1 Det．A Ch1／220nm

検出器A Ch1 220 nm

Peak	Retention Time	Area	Area\％
1	7.855	25338	2.604
2	8.740	947785	97.396
合計		973123	100.000

5－phenylfuran－2（5H）－one（6ab）．

1 Det．A Ch1／220nm

検出器A Ch1 220 nm

Peak	Retention Time	Area	Area\％
1	30.476	6285087	50.013
2	33.356	6281706	49.987
合計		12566794	100.000

	Retention Time	Area	Area\％
1	31.09	4217922	98.584
2	34.50	60568	1.416
		4278490	100.000

5-(4-bromophenyl)furan-2(5H)-one (6bb).

5-(4-trifluoromethylphenyl)furan-2(5H)-one (6cb).

	Retention Time	Area	Area\%
1	73.95	546325	2.323
2	77.28	22970352	97.677
	23516677	100.000	

5-(naphthalene-1-yl)furan-2(5H)-one (6db).

5-(benzyloxymethyl)furan-2(5H)-one (6fb).

3-methyl-5-phenylfuran-2(5H)-one (6ac).

6-phenyl-3,6-dihydro-2H-pyran-2-one (8).

6-phenyl-5,6-dihydro-2H-pyran-2-one (9).

6-phenyltetrahydro-2H-pyran-2-one (10).

(R)-6-pentyl-5,6-dihydro-2H-pyran-2-one, (R)-(-)-massoialactone, (14).

