Supporting Information

A facile route to flavone and neoflavone backbones via a regioselective palladium catalyzed oxidative Heck reaction

Mehdi Khoobi, Masoumeh Alipour, Samaneh Zarei, Farnaz Jafarpour* and Abbas Shafiee*

Table of Contents

1 General remarks	S2
2 General experimental details	S2
2-1 Synthesis of coumarin 1g	S2
2-2 Synthesis of chromenones	S 3
3 Oxidative Heck Reaction	
3-1 Screening of reaction conditions	S4
3-2 General procedure for direct arylation of coumarins and chromenones	S8
4 Experimental characterization data	S9
4-1 Starting materials	S9
4-2 Coumarins 3a-3n	S10
4-3 Chromenones 7a-7i	S15
5 ¹ H and ¹³ C NMR Spectra	S19

1 General remarks

All commercially available reagents were used without further purification. Solvents were dried and distilled by standard procedures. Coumarines, Palladium (II) and other reagents were purchased from Acros Organics. 6-Chlorocoumarin and chromenone derivatives were synthesized according to the reported methods.^{1,2} Column chromatography was carried out on silica gel. TLC was conducted on silica gel 250 micron, F_{254} plates. ¹H NMR spectra were recorded on a Bruker 500 MHz NMR instrument. Chemical shifts are reported in ppm with TMS as an internal standard (TMS: δ 0.0 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), integration and coupling constants (Hz). ¹³C NMR spectra were recorded on a Bruker 125 MHz NMR spectrometer with complete proton decoupling. Chemical shifts are reported in ppm with the solvent as internal standard (CDCl₃: δ = 77.0 ppm; DMSO-d₆: δ = 39.5 ppm).

2 General experimental details

2-1 Synthesis of coumarin 1g

6-chloro-2*H*-chromen-2-one **1g** was synthesized by the Wittig reaction of 6-chloro-2hydroxybenzaldehyde with the Wittig reagent, ethyl(triphenylphosphoranylidene)acetate in N,N'-diethylaniline under reflux. 6-chloro-2-hydroxybenzaldehyde (1 mmol) and ethyl(triphenylphosphoranylidene)acetate (1.2 mmol) were dissolved in N,N'-diethylaniline (15 ml) and the resulting mixture was stirred at reflux for 4 h. The solvent was removed under reduced pressure and the resulting brown oil was purified by column chromatography (EtOAc/hexanes)¹.

¹ D. Maes, M. Eugenia Riveiro, C. Shayo, C. Davio, S. Debenedetti, N. De Kimpe, Tetrahedron 64 (**2008**) 4438-4443.

2-2 Synthesis of chromenones

A mixture of 2-hydroxyacetophenone (5 mmol, 0.6 mL) and *N*,*N*-dimethylformamidedimethylacetal (1 equiv, 0.66 mL) was irradiated under microwave for 15 s (300 W max, T=115 $^{\circ}$ C). The resulting mixture was cooled at room temperature and crystallized in hexane to give the enamine intermediate **9** (red crystals). When the reaction was performed in the presence of 2,4dihydroxyacetophenone, an additional O-methylation of hydroxyl group was happened².

To the solution of the enamine **9** (1 g, 5.24 mmol) in methylene chloride (40 mL) was added concentrated HCl (4 mL). The resulting mixture was refluxed for 1 h. After cooling, the mixture was extracted with methylene chloride (3×40 mL). The combined organic layers were washed with saturated NaHCO₃ solution, then with brine, dried over MgSO₄, filtered and concentrated to afford corresponding chromenone **6**.²

² M. Spadafora, V. Y. Postupalenko, V. V. Shvadchak, A. S. Klymchenko, Y. Me'ly, A. Burger, R. Benhida, Tetrahedron 65 (**2009**) 7809–7816

3 Oxidative Heck Reaction

3-1 Screening of reaction conditions

H H H - - - - -	phenylboro Pd(OAc) ₂ L (20 C DMF, 10	nic acid (2 a) (10 mol%) mol%) D ₂ 0°C, 24h	Jan State St	Ph H D O O O	Ph + Ph ⁺ 4	H Ph 5
	Entry	Ligand		Yield		
	Епиу	20 mol%	3a	5	4	
	1	phen.	85	0	10	
	2	dmphen	15	0	70	
	3	dmap	40	0	20	
	4	bpy	62	0	30	
	5	PPh ₃	10	0	25	
	6	NH ₂ NH ₂ .	0	0	73	
	7	S N H H H	0	0	8	
	8	NH ₂ NH ₂	0	0	64	

Table S1. Effect of Ligands on the Cross-Coupling Reaction of Phenylboronic acid with Coumarin 1a

	phenylbord Pd(OAc); phen(2 bas DMF, 1	onic acid (2a) 2 (10 mol%) 20 mol%) 50 mol%) 5	Ph O 3a	H +	Ph + Ph 4	H Ph 5
-	F (Base		Yield		
	Entry	(2.0 equiv)	3 a	5	4	
-	1		85	0	10	
	2	K ₂ CO ₃	5	0	85	
	3	KOAc	5	0	90	
	4	Na ₂ CO ₃	0	0	80	
	5	KF	0	0	92	
	6	K ₂ HPO ₄	5	0	90	
	7	DABCO	5	0	80	

Table S2. Effect of Bases on the Cross-Coupling Reaction of Phenylboronic acid with Coumarin 1a

H 1a	H H H H H H H H H H H H H H		Ph H 3a	5	H Ph	
	Entry	Solvent	3a	Yield 5	4	
	1	DMF	85	0	10	
	2	Dioxone	68	0	15	
	3	toluene	Ν	lo Reaction	1	
	4	TFA	No Reaction			
	5	ACN	14	0	0	
	6	DMF/TFA	λ	No Ponation		
0	0	2.5/0.5	ľ		1	
	7	AcOH	Ν	lo Reaction	1	
	4	TFA	Ν	lo Reaction	1	
	8	DMF/TFA	0	0	73	
		2.5/0.5	U		15	

Table S3. Effect of Solvents on the Cross-Coupling Reaction of Phenylboronic acid with Coumarin 1a

phenylk H Pd(O/ phe	xoronic acid (2a) Ac) ₂ (10 mol%) n (20 mol%) [O] [₹] , 100°C, 24h	Ph J J J J	.H Ph + I Ph O 4	+	H Ph O 5
			Yield		
Entry	Oxidant	3 a	5	4	
1	O ₂	85	0	10	
2	$Na_2S_2O_8(3 eq)$	0	0	90	
3	BQ (3 eq)	0	0	20	
4	$Cu(OAc)_2$ (3 eq)	15	0	10	
	H Phenylk Pd(O/ phe O DMF Entry 1 2 3 4	H H $Phenylboronic acid (2a) Pd(OAc)_2 (10 mol%) phen (20 mol%) [O] DMF, 100°C, 24h Entry Oxidant 1 O2 2 Na2S2O8 (3 eq) 3 BQ (3 eq) 4 Cu(OAc)_2 (3 eq)$	$H = \frac{\begin{array}{c} \begin{array}{c} \text{phenylboronic acid (2a)} \\ Pd(OAc)_2 (10 \text{ mol}\%) \\ phen (20 \text{ mol}\%) \\ \hline \text{phen (20 \text{ mol}\%)} \\ \hline $	$H Phenylboronic acid (2a) Pd(OAc)_2 (10 mol%) phen (20 mol%) p$	$H \xrightarrow{Phenylboronic acid (2a) Phenylboronic acid (2a) phen (20 mol%) phen (20 mol%) (O DMF, 100°C, 24h) (IO) DMF, 100°C, 24h} + H + H + H + H + H + H + H + H + H + $

Table S4. Effect of Oxidant on the Cross-Coupling Reaction of Phenylboronic acid with Coumarin 1a

3-2 General procedure for direct arylation of coumarins and chromenones

Coumarin (0.20 mmol), Pd(OAc)₂ (10 mol%) and 1,10-phenanthroline (6 mg, 0.02 mmol) were combined in dried DMF (0.15 mL) under O₂ and stirred for 5 min (*Note: DMF was dried over calcium hydride for 24 hours and then distilled under vacuum*). The reaction mixture was heated to 100 °C and the aryl boronic acid (0.1 mmol) in DMF (0.10 mL) was added slowly over 2 h (every 30 minutes) to reduce the homo-coupling product of aryl boronic acid. The reaction was stirred and monitored by TLC using EtOAc: petroleum ether (2:8) as the mobile phase. After completion, the reaction mixture was diluted with EtOAc (8 mL). After stirring this mixture for 5 min the precipitate was filtered over Celite using EtOAc as the eluent. The filtrate was concentrated and purified by chromatography on silica gel (EtOAc/hexanes).

4 Experimental characterization data

4-1 Starting materials

6-chloro-2*H***-chromen-2-one (1g).** mp 153–155 °C. ¹H NMR (CDCl₃, 500 MHz) δ 6.48 (d, 1H, *J*= 9.5 Hz, H₃), 7.29 (d, 1H, *J*=7.0 Hz, H₈), 7.48-7.50 (m, 2H, H_{5,7}), 7.65 (d, 1H, *J*= 9.5 Hz, H₄). ¹³C NMR (CDCl₃, 125 MHz) δ 117.3, 117.8, 119.3, 126.6, 129.2, 131.3, 141.7, 151.9, 159.5.

(E)-3-(dimethylamino)-1-(2-hydroxyphenyl)-prop-2-en-1-one (9)

mp 130–131 °C. ¹H NMR (CDCl₃, 400 MHz) δ 2.95 (s, 3H, N-Me), 3.17 (s, 3H, N-Me), 5.76 (d, 1H, *J*= 12.1 Hz), 6.81 (dt, 1H, *J*=1.0 and 7.1 Hz), 6.92 (dd, 1H, *J*= 0.9 and 8.4 Hz), 7.30 (dt, 1H, *J*= 1.5 and 8.4 Hz), 7.69 (dd, 1H, *J*= 1.4 and 8.0 Hz), 7.87 (d, 1H, *J*= 12.0 Hz), 13.99 (s, 1H, OH). ¹³C NMR (CDCl₃, 100 MHz) δ 7.5, 45.5, 90.1, 118.1, 118.3, 120.4, 128.3, 134.0, 154.9, 163.0, 191.6.

(E)-3-dimethylamino-1-(2-hydroxy-4-methoxy)-phenylpropenone (10)

mp 130–133 °C.¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, 1H, *J* = 12.0 Hz, CH=CH), 7.61 (d, 1H, *J* = 9.2 Hz, Ph), 6.41 (d, 1H, *J* = 2.4 Hz, Ph), 6.38 (dd, 1H, *J* = 2.4 and 9.2 Hz, Ph), 5.68 (d, 1H, *J* = 12.0 Hz, CH=CH), 3.82 (s, 3H, O-CH₃), 3.18 (s, 3H, N-CH₃), 2.96 (s, 3H, N-CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 37.4, 45.4, 55.4, 89.8, 101.0, 106.4, 113.8, 129.7, 154.0, 164.3, 165.5, 190.6.

4*H***-chromen-4-one (6a).** Yield 90%; mp $5\overline{2-54}$ °C. ¹H NMR (CDCl₃, 400 MHz) δ 6.31 (d, 1H, J= 6.0 Hz), 7.33–7.44 (m, 2H), 7.63 (ddd, 1H, J= 1.8, 7.1 and 8.4 Hz), 7.83 (d, 1H, J= 6.0 Hz), 8.18 (dd, 1H, J= 1.5 and 7.9 Hz). ¹³C NMR (CDCl₃, 100 MHz) δ 113.1, 118.3, 125.0, 125.3, 125.9, 133.8, 155.4, 156.6, 177.7.

4-2 Coumarins 3a-3n

4-phenyl-2*H***-chromen-2-one (3a).** Yield 75%; Oil. ¹H NMR (500 MHz, CDCl₃) δ 6.39 (s, 1H, H₃ coumarin), 7.24 (t, 1H, *J* = 7.4 Hz, H₆ coumarin), 7.40-7.57 (m, 8H, H Ph and H coumarin); ¹³C NMR (125 MHz, CDCl₃) δ 115.1, 117.3, 124.2, 126.9, 128.4, 128.9, 129.7, 130.9, 131.9, 135.2, 154.2, 155.7, 160.8; IR (KBr): 1730 (C=O) cm⁻¹. Anal.Calcd for C₁₅H₁₀O₂: C, 81.07; H, 4.54. Found: C, 81.31; H, 4.20.

6-methyl-4-phenyl-2*H***-chromen-2-one (3b).** Yield 88%; Oil. ¹H NMR (500 MHz, CDCl₃) δ 2.35 (s, 3H, CH₃), 6.37 (s, 1H, H₃ coumarin), 7.27 (d, 1H, *J* = 1.8 Hz, H₅ coumarin), 7.31 (d, 1H, *J* = 8.4 Hz, H₈ coumarin), 7.36 (dd, 1H, *J* = 1.8, *J* = 8.4 Hz, H₇ coumarin), 7.48-7.43 (m, 2H, H Ph), 7.56-7.53 (m, 3H, H Ph); ¹³C NMR (125 MHz, CDCl₃) δ 20.9, 115.1, 117.0, 118.6, 126.7, 128.4, 128.8, 129.6, 132.9, 133.9, 135.3, 152.3, 155.6, 160.9; IR (KBr): 1732 (C=O) cm⁻¹. Anal. Calcd for C₁₆H₁₂O₂: C, 81.34; H, 5.12. Found: C, 81.19; H, 5.38.

6-nitro-4-phenyl-2*H***-chromen-2-one (3c).** Yield 72%, mp 208-210 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.53 (s, 1H, H₃ coumarin), 7.47-7.49 (m, 3H, H Ph), 7.47-7.49 (m, 5H, H Ph), 7.60 (dd, 1H, J = 2.2, J = 6.0 Hz, H₈ coumarin), 8.42-8.44 (m, 2H, H_{5,7} coumarin); ¹³C NMR (125 MHz,

CDCl₃) δ 158.0, 157.7, 154.6, 143.9, 133.7, 130.5, 129.4, 128.2, 126.7, 123.0, 118.5, 116.7; IR (KBr): 1731 (C=O), 1333 and 1516 (NO₂); MS, *m*/*z* (%) 267 (M⁺⁺, 100), 239 (66), 193 (40), 165 (98); Anal. Calcd for C₁₅H₉NO₄: C, 67.42; H, 3.39; N, 5.24. Found: C, 67.13; H, 3.54; N, 5.06.

7-hydroxy-4-phenyl-2*H*-chromen-2-one (3d)

Yield 68%, mp 210-212 °C; ¹H NMR (DMSO-d₆, 500 MHz) δ 6.15 (s, 1H, H₃ coumarin), 6.79 (m, 2H, H₆ and H₈ coumarin), 7.27 (d, 1H, *J* = 7.8 Hz, H₅ coumarin), 7.51-7.56 (m, 5H, H Ph), 10.64 (s, 1H, OH); ¹³C NMR (125 MHz, DMSO-d₆) δ 102.6, 110.3, 110.6, 113.2, 128.0, 128.3, 128.7, 129.5, 135.1, 155.3, 155.5, 160.0, 161.3; IR (KBr): 3445 (OH), 1694 (C=O) cm⁻¹. Anal. Calcd for C₁₅H₁₀O₃: C, 75.62; H, 4.23. Found: C, 75.37; H, 4.59.

7-methoxy-4-phenyl-2*H***-chromen-2-one (3e).** Yield 70%, mp 114-116 °C; ¹H NMR (500 MHz, CDCl₃) δ 3.89 (s, 3H, O-CH₃), 6.22 (s, 1H, H₃ coumarin), 6.79 (dd, 1H, *J* = 2.6, 8.8 Hz, H₆ coumarin), 6.90 (d, 1H, *J*= 2.6 Hz, H₈ coumarin), 7.38 (d, 1H, *J* = 8.8 Hz, H₅ coumarin), 7.45-7.42 (m, 2H, H Ph), 7.53-7.50 (m, 3H, H Ph); ¹³C NMR (125 MHz, CDCl₃) δ 55.8. 101.1, 111.8, 112.3, 127.9, 128.3, 128.8, 129.6, 130.9, 132.3, 135.6, 155.8, 161.2, 162.8; IR (KBr): 1731 (C=O) cm⁻¹. Anal. Calcd for C₁₆H₁₂O₃: C, 76.18; H, 4.79. Found: 76.32; H, 4.56.

7-ethoxy-4-phenyl-2*H***-chromen-2-one (3f).**Yield 74%, mp 146-148 °C; ¹H NMR (500 MHz, CDCl₃) δ 1.47 (t, 3H, *J* = 4.5 Hz, CH₃), 4.11 (q, 2H, *J* = 4.5 Hz, O-CH₂), 6.23 (s, 1H, H₃ coumarin), 6.79 (dd, 1H, *J* = 2.5, 8.9 Hz, H₆ coumarin), 6.88 (d, 1H, *J*= 2.5 Hz, H₈ coumarin), 7.39 (d, 1H, *J* = 8.9 Hz, H₅ coumarin), 7.46-7.44 (m, 2H, H Ph), 7.53-7.52 (m, 3H, H Ph); ¹³C NMR (125 MHz, CDCl₃) δ 14.6, 64.2, 101.5, 111.7, 112.3, 112.7, 127.9, 128.4, 128.8, 129.5, 135.6, 155.9, 156.0, 161.3, 162.2; IR (KBr): 1730 (C=O) cm⁻¹; MS, *m/z* (%) 266 (M⁺⁺, 98), 238 (40), 210 (100), 181 (32); Anal. Calcd for C₁₇H₁₄O₃ (266.29): C, 76.68; H, 5.30. Found: 76.44; H, 5.19.

4-*p***-tolyl-2***H***-chromen-2-one (3g). Yield 73%, mp 79-81 °C; ¹H NMR (500 MHz, CDCl₃) \delta 2.46 (s, 3H, CH₃), 6.38 (s, 1H, H₃ coumarin), 7.24 (t, 1H,** *J* **= 7.5 Hz, H₆ coumarin), 7.33-7.37 (m, 4H, H Ph), 7.42 (d, 1H,** *J* **= 8.1 Hz, H₈ coumarin), 7.53-7.57 (m, 2H, H₅ and H₇ coumarin); ¹³C NMR (125 MHz, CDCl₃) \delta 21.3, 114.8, 117.3, 119.0, 124.1, 127.0, 128.4, 129.5, 131.8, 132.3, 139.9, 154.2, 155.7, 160.8; IR (KBr): 1733 (C=O) cm⁻¹. Anal.Calcd for C₁₆H₁₂O₂ (236.27): C, 81.34; H, 5.12. Found: C, 81.63; H, 5.32.**

4-(4-ethylphenyl)-2*H***-chromen-2-one (3h).** Yield 76%; Oil. ¹H NMR (500 MHz, CDCl₃) δ 1.30 (t, 3H, *J*= 7.6 Hz, CH₃), 2.77 (q, 2H, *J*= 7.6 Hz, CH₂), 6.38 (s, 1H, H₃ coumarin), 7.24 (dt, 1H, *J*= 1.2, *J* = 8.4 Hz, H₆ coumarin), 7.35-7.41 (m, 4H, H Ph), 7.42 (dd, 1H, *J* = 1.2, *J* = 8.4 Hz, H₈ coumarin), 7.54-7.57 (m, 2H, H₅ and H₇ coumarin); ¹³C NMR (125 MHz, CDCl₃) δ 15.4, 28.7, 114.9, 117.3, 119.0, 124.0, 127.0, 128.3, 128.5, 131.8, 132.5, 146.2, 154.2, 155.7, 160.9; IR (KBr): 1733 (C=O) cm⁻¹. Anal. Calcd for C₁₇H₁₄O₂: C, 81.58; H, 5.64. Found: C, 81.37; H, 5.38.

4-(4-ethylphenyl)-6-nitro-2*H***-chromen-2-one (3i).** Yield 68%; Oil. ¹H NMR (500 MHz, CDCl₃) δ 1.33 (t, 3H, *J*= 7.6 Hz, CH₃), 2.80 (q, 2H, *J*= 7.6 Hz, CH₂), 6.51 (s, 1H, H₃ coumarin), 7.39-7.44 (m, 4H, H Ph), 7.54 (d, 1H, *J* = 9.0 Hz, H₈ coumarin), 8.42 (dd, 1H, *J* = 2.6, 9.0 Hz, H₇ coumarin), 8.49 (d, 1H, *J* = 2.6 Hz, H₅ coumarin); ¹³C NMR (125 MHz, CDCl₃) δ 15.3, 28.7, 116.3, 118.4, 119.4, 123.1, 126.5, 128.3, 128.9, 131.0, 143.9, 147.1, 154.7, 157.7, 159.0; IR (KBr): 1730 (C=O), 1337 and 1505 (NO₂) cm⁻¹; MS, *m/z* (%) 295 (M⁺⁺, 91), 266 (95), 252 (38), 149 (100), 43 (71); Anal. Calcd for C₁₇H₁₃NO₄ (295.29): C, 69.15; H, 4.44; N, 4.74. Found: C, 69.44; H, 4.27; N, 4.59.

6-nitro-4-p-tolyl-2*H***-chromen-2-one (3j).** Yield 77%, mp 214-217 °C; ¹H NMR (500 MHz, CDCl₃) δ 2.50 (s, 3H, CH₃), 6.51 (s, 1H, H₃ coumarin), 7.37 (d, 2H, *J*= 8.2 Hz, H Ph), 7.41 (d, 2H, *J*= 8.2 Hz, H Ph), 7.54 (d, 1H, *J* = 9.0 Hz, H₈ coumarin), 8.42 (dd, 1H, *J* = 2.6, 9.0 Hz, H₇ coumarin), 8.47 (d, 1H, *J* = 2.6 Hz, H₅ coumarin); ¹³C NMR (125 MHz, CDCl₃) δ 21.4, 116.3, 118.4, 119.4, 123.1, 126.6, 128.2, 130.1, 130.8, 140.9, 143.9, 154.7, 157.7, 159.0; IR (KBr): 1731 (C=O), 1338 and 1516 (NO₂) cm⁻¹. Anal. Calcd for C₁₆H₁₁NO₄: C, 68.32; H, 3.94; N, 4.98. Found: C, 68.20; H, 3.75; N, 5.11.

4-(4-ethylphenyl)-6-methyl-2*H***-chromen-2-one (3k).** Yield 84%, mp 41-44 °C, ¹H NMR (500 MHz, CDCl₃) δ 1.35 (t, 3H, *J* = 7.5 Hz, <u>CH</u>₃-CH₂), 2.35 (s, 3H, CH₃), 2.77 (q, 2H, *J* = 7.5 Hz, <u>CH</u>₂-CH₃), 6.35 (s, 1H, H₃ coumarin), 7.30-7.31 (d, *J* = 8.3 Hz, 2H, H Ph), 7.35-7.40 (m, 5H, 2H

Ph and $H_{5,7,8}$ coumarin). ¹³C NMR (125 MHz, CDCl₃) δ 15.3, 20.9, 28.4, 114.8, 117.0, 118.7, 126.7, 127.3, 128.5, 128.6, 132.7, 133.6, 146.0, 152.3, 155.7, 161.1; IR (KBr): 1737 (C=O) cm⁻¹. Anal. Calcd for $C_{18}H_{16}O_2$: C, 81.79; H, 6.10. Found: C, 81.47; H, 6.28.

6-chloro-4-p-tolyl-2*H***-chromen-2-one (3l).**Yield 82%, 156-159 °C; ¹H NMR (500 MHz, CDCl₃) δ 2.48 (s, 3H, CH₃), 6.40 (s, 1H, H₃ coumarin), 7.34-7.38 (m, 5H, 4H Ph and H₈ coumarin), 7.49-7.52 (m, 2H, H₅ and H₇ coumarin); ¹³C NMR (125 MHz, CDCl₃) δ 21.3, 115.7, 118.7, 120.2, 126.3, 128.2, 129.5, 129.7, 131.6, 131.7, 140.2, 152.5, 154.7, 160.2; IR (KBr): 1734 (C=O) cm⁻¹; MS, m/z (%) 272 (M⁺⁺+2, 38), 270 (M⁺⁺, 100), 255 (60), 242 (89), 178 (53); Anal.Calcd for C₁₆H₁₁ClO₂: C, 70.99; H, 4.10. Found: C, 70.75; H, 4.33.

4-(4-bromophenyl)-6-methyl-2*H***-chromen-2-one (3m).**Yield 80%, mp 104-106 °C; ¹H NMR (500 MHz, CDCl₃) δ 2.35 (s, 3H, CH₃), 6.34 (s, 1H, H₃ coumarin), 7.19 (s, 1H, H₅ coumarin), 7.31-7.39 (m, 4H, 2H Ph and H₇ and H₈ coumarin), 7.68 (d, 2H, *J* = 8.1 Hz, , H Ph); ¹³C NMR (125 MHz, CDCl₃) δ 20.4, 114.8, 116.7, 117.8, 123.5, 125.8, 129.5, 13.6, 132.6, 133.5, 133.7, 151.8, 153.9, 160.2; IR (KBr): 1725 (C=O) cm⁻¹; MS, *m/z* (%) 313 (M^{*+}+2, 100), 311 (M^{*+}, 98), 288 (83), 284 (80), 235 (19), 178 (59); Anal. Calcd for C₁₆H₁₁BrO₂: C, 60.98; H, 3.52. Found: C, 60.71; H, 3.39.

4-3 Chromenones 7a-7i

4-(4-ethylphenyl)-7-hydroxy-2H-chromen-2-one (3n). Yield 68%, mp 174-177 °C; ¹H NMR (DMSO-d₆, 500 MHz) δ 1.24 (t, 3H, J = 7.6 Hz, CH₃), 2.70 (q, 2H, J = 7.6 Hz, CH₂), 6.13 (s, 1H, H₃ coumarin), 6.77-6.80 (m, 2H, H₆ and H₈ coumarin), 7.32 (d, 1H, J = 8.6 Hz, H₅ coumarin), 7.39-7.44 (m, 4H, H Ph), 11.34 (s, 1H, OH). ¹³C NMR (125 MHz, DMSO-d₆) δ 15.4, 27.9, 102.6, 110.0, 110.6, 113.1, 128.2, 128.4, 132.5, 145.4, 155.4, 155.5, 160.1, 161.3; IR (KBr): 3443 (OH), 1695 (C=O) cm⁻¹; MS, m/z (%) 238 (M^{*+}, 94), 210 (100), 181 (37); Anal. Calcd for C₁₇H₁₄O₃: C, 76.68; H, 5.30. Found: C, 76.81; H, 5.19.

2-phenyl-4*H***-chromen-4-one (7a).** Yield 86%, mp 96-98 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.86 (s, 1H, H₃ chromenone), 7.44 (dt, 1H, J = 7.4, 1.1 Hz, H₆ chromenone), 7.56-7.54 (m, 3H, H Ph), 7.58 (d, 1H, J = 7.7 Hz, H₈ chromenone), 7.70 (dt, 1H, J = 1.7, 7.1 Hz, H₇ chromenone), 7.94-7.96 (m, 2H, H Ph), 8.25 (dd, 1H, J = 1.5, 7.9 Hz, H₅ chromenone); ¹³C NMR (125 MHz, CDCl₃) δ , 107.5, 118.0, 125.2, 125.7, 126.3, 129.0, 131.6, 133.3, 133.8, 154.6, 156.2, 163.5, 178.4; IR (KBr): 1642 (C=O) cm⁻¹. Anal. Calcd for C₁₅H₁₀O₂ (222.24): C, 81.07; H, 4.54. Found: C, 81.30; H, 4.33.

2-(4-methoxyphenyl)-4*H***-chromen-4-one (7b).** Yield 80%, mp 124-126 °C; ¹H NMR (500 MHz, CDCl₃) δ 3.90 (s, 3H, O-CH₃), 6.81 (s, 1H, H₃ chromenone), 7.03 (d, 2H, *J* = 8.6 Hz, H Ph), 7.43 (t, 1H, *J*= 8.8 Hz, H₆ chromenone), 7.56 (d, 1H, *J* = 8.3 Hz, H₈ chromenone), 7.70 (t, 1H, *J* = 7.4, H₇ chromenone), 7.90 (d, 2H, *J* = 8.6 Hz, H Ph), 8.23 (d, 1H, *J* = 7.6 Hz , H₅ chromenone); ¹³C NMR (125 MHz, CDCl₃) δ 55.6, 105.9, 114.5, 117.9, 123.7, 123.9, 125.2, 125.6, 128.1, 133.7, 156.2, 162.5, 163.7, 178.4; IR (KBr): 1649 (C=O) cm⁻¹. Anal. Calcd for C₁₆H₁₂O₃: C, 76.18; H, 4.79. Found: C, 76.02; H, 4.66.

2-(2,4-dimethoxyphenyl)-4*H***-chromen-4-one (7c).** Yield 88%, mp 127-129 °C; ¹H NMR (500 MHz, CDCl₃) δ 3.89 (s, 3H, O-CH₃), 3.93 (s, 3H, O-CH₃), 6.56 (d, 1H, J = 2.4 Hz, H₃ Ph), 6.65 (dd, 1H, J = 2.4, J = 8.8 Hz, H₅ Ph), 7.15 (s, 1H, H₃ chromenone), 7.39 (dt, 1H, J = 1.6, J = 8.0 Hz, 1H, H₆ chromenone), 7.51 (d, 1H, J = 8.3 Hz, H₈ chromenone), 7.66 (dt, 1H, J = 1.6, J = 7.4 Hz, H₇ chromenone), 7.91 (d, 1H, J = 8.7 Hz, H₆ Ph), 8.23 (dd, 1H, J = 1.4, J = 7.6 Hz, H₅ chromenone). ¹³C NMR (125 MHz, CDCl₃) δ 55.5, 55.6, 98.9, 105.3, 111.3, 113.0, 117.9, 124.7, 125.2, 125.6, 130.4, 133.3, 156.4, 159.6, 160.8, 163.2, 178.9; IR (KBr): 1650 (C=O) cm⁻¹.Anal. Calcd for C₁₇H₁₄O₄: C, 72.33; H, 5.00. Found: C, 72.57; H, 5.22.

2-(4-ethylphenyl)-4*H***-chromen-4-one (7d).**Yield 92%, mp 47-49 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.29 (t, 3H, J = 7.6 Hz, CH₃), 2.73 (q, 2H, J = 7.6 Hz, CH₂), 7.27 (s, 1H, H₃ chromenone), 7.36 (d, 2H, J = 8.4 Hz, H Ph), 7.42 (dt, 1H, J = 1.0, J = 7.6 Hz, H₆ chromenone), 7.57 (dd, 1H, J = 1.0, J = 7.8 Hz, H₈ chromenone), 7.70 (td, 1H, J = 1.6, J = 7.8 Hz, H₇ chromenone), 7.86 (d, 2H, J = 8.4 Hz, H Ph), 8.24 (dd, 1H, J = 1.6, 7.6 Hz, H₅ chromenone); ¹³C NMR (125 MHz, CDCl₃) δ 15.2, 28.8, 106.9, 118.0, 123.9, 125.1, 125.6, 126.3, 128.6, 129.1, 133.7, 148.5, 156.2, 163.6, 178.5; IR (KBr): 1644 (C=O) cm⁻¹. Anal. Calcd for C₁₇H₁₄O₂ (250.29): C, 81.58; H, 5.64. Found: C, 81.26; H, 5.89.

2-*p***-tolyl-4***H***-chromen-4-one (7e). Yield 90%, mp 85-87 °C; ¹H NMR (500 MHz, CDCl₃) \delta 2.44 (t, 3H, J = 7.7 Hz, CH₃), 6.82 (s, 1H, H₃ chromenone), 7.32 (d, 2H, J = 8.4 Hz, H Ph), 7.42 (dt, 1H, J= 7.1, J= 1.0 Hz, H₆ chromenone), 7.57 (d, 1H, J = 7.3, 1 Hz, H₈ chromenone), 7.69 (dt, 1H, J = 1.6, 7.7 Hz, H₇ chromenone), 7.82 (d, 2H, J = 8.3 Hz, H Ph), 8.23 (dd, 1H, J = 1.6, 7.6 Hz, H₅ chromenone); ¹³C NMR (125 MHz, CDCl₃) \delta 21.5, 106.9, 118.0, 123.9, 125.1, 125.6, 126.2, 128.8, 129.7, 133.6, 142.3, 156.2, 163.6, 178.5; IR (KBr): 1643 (C=O) cm⁻¹. Anal. Calcd for C₁₆H₁₂O₂: C, 81.34; H, 5.12. Found: C, 81.58; H, 5.22.**

2-(4-bromophenyl)-4*H***-chromen-4-one (7f).**Yield 85%, mp 173-176 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.82 (s, 1H, H₃ chromenone), 7.45 (t, 1H, *J*= 7.5 Hz, H₆ chromenone), 7.57 (d, 1H, *J* = 8.3 Hz, H₈ chromenone), 7.81 (d, 2H, *J* = 8.5 Hz, H Ph), 7.73 (t, 1H, *J* = 8.2 Hz, H₇ chromenone), 7.86 (d, 2H, *J* = 8.5 Hz, H Ph), 8.24 (d, 1H, *J* = 7.5 Hz, H₅ chromenone); ¹³C NMR (125 MHz, CDCl₃) δ 107.7, 118.0, 123.9, 125.4, 125.7, 126.3, 127.7, 130.7, 132.3, 133.9, 156.1, 162.3, 178.3; IR (KBr): 1663 (C=O) cm⁻¹; MS, *m*/*z* (%) 302 (M^{*+}+2, 98), 300 (M^{*+}, 100), 274 (30), 272 (30), 221 (63); Anal. Calcd for C₁₅H₉BrO₂: C, 59.83; H, 3.01. Found: C, 59.52; H, 3.29.

2-(2,4-dimethoxyphenyl)-7-methoxy-4*H***-chromen-4-one (7g).** Yield 91%, mp 118-120 °C; ¹H NMR (500 MHz, CDCl₃) δ 3.95-3.80 (m, 9H, O-CH₃), 6.56 (s, 1H, H₃ chromenone), 6.62 (d, 1H, *J*= 8.8 Hz, H₅ Ph), 6.92 (s, 1H, H₃ Ph), 6.95 (d, 1H, *J*= 8.8 Hz, H₆ Ph), 7.08 (s, 1H, H₈ chromenone), 7.88 (d, 1H, *J* = 8.8 Hz, H₆ chromenone), 8.12 (d, 1H, *J* = 8.8 Hz, H₅ chromenone); ¹³C NMR (125 MHz, CDCl₃) δ 55.1, 55.2, 55.3, 98.3, 99.7, 104.7, 110.7, 113.1, 113.5, 117.1, 126.4, 129.8, 157.6, 159.0, 159.9, 162.6, 163.4, 177.9; IR (KBr): 1627 (C=O) cm⁻¹; MS, *m*/*z* (%) 312 (M⁺⁺, 8), 281 (13), 221 (21), 176 (100), 149 (84); Anal. Calcd for C₁₈H₁₆O₅: C, 69.22; H, 5.16. Found: C, 69.41; H, 5.01.

7-methoxy-2-phenyl-4*H***-chromen-4-one (7h).** Yield 81%, mp 83-85 °C; ¹H NMR (500 MHz, CDCl₃) δ 3.94 (s, 3H, O-CH₃), 6.79 (s, 1H, H₃ chromenone), 6.96-7.01 (m, 2H, H_{6,8} chromenone), 7.51-7.55 (m, 3H, H Ph), 7.93-7.90 (m, 2H, H Ph), 8.13 (d, 1H, *J* = 8.6 Hz, H₅ chromenone); ¹³C NMR (125 MHz, CDCl₃) δ 55.8, 100.3, 107.4, 114.4, 117.8, 126.1, 127.0, 128.9, 131.4, 131.8, 157.9, 163.0, 164.2, 177.8; IR (KBr): 1625 (C=O) cm⁻¹. Anal. Calcd for C₁₆H₁₂O₃: C, 76.18; H, 4.79. Found: C, 76.41; H, 4.60.

2-(4-ethylphenyl)-7-methoxy-4*H***-chromen-4-one (7i).** Yield 77%, mp 160-163 °C; ¹H NMR (500 MHz, CDCl₃) δ 1.30 (t, 3H, *J* = 7.6 Hz, CH₃), 2.75 (q, 2H, *J* = 7.6 Hz, CH₂), 3.96 (s, 3H, OCH₃), 6.88 (s, 1H, H₃ chromenone), 7.00-7.03 (m, 2H, H_{6,8} chromenone), 7.36 (d, 2H, *J*= 7.8 Hz, H Ph), 7.87 (d, 2H, *J*= 7.8 Hz, H Ph), 8.15 (d, 1H, *J* = 8.6 Hz, H₅ chromenone); ¹³C NMR (125 MHz, CDCl₃) δ 15.3, 28.8, 55.8, 100.4, 106.7, 114.5, 117.5, 126.3, 127.0, 128.6, 129.1, 148,5, 158.0, 163.7, 164.3, 177.9; IR (KBr): 1615 (C=O) cm⁻¹; MS, *m/z* (%) 280 (M⁺⁺, 100), 265 (56), 236 (50), 221 (41); Anal. Calcd for C₁₈H₁₆O₃: C, 77.12; H, 5.75. Found: C, 77.33; H, 5.57.

5¹H and ¹³C NMR Spectra

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

