Supplementary Information

Promotion Effects of Optical Antipodes on the Formation of Helical Fibrils: Chiral Perfluorinated Gelators

Kazuhiro Kohno^a, Kazuya Morimoto^a, Naoko Manabe^b, Tomoko Yajima^b, Akihiko Yamagishi^{*c} and Hisako Sato^{*a} ^aEhime University, ^bOchanomizu University, ^cToho University

1. Syntheses and NMR spectra of gelators:

¹H NMR spectra (400 MHz) were recorded on a JEOL ECX 400 spectrometer in acetonitrile-d. ¹⁹F NMR (470 MHz) spectra were recorded on a JEOL ECX 500 spectrometer in acetonitrile-d. Chemical shifts (δ) were reported in ppm relative to tetramethylsilane or trichlorofluoromethane for ¹H and ¹⁹F, respectively. Data are reported in the following order: multiplicity [(s) singlet; (d) doublet; (t) triplet; (q) quartet; (quint) quintet; (m) multiplet; (br) broad peak], coupling constants (Hz), number of protons.

Electrospray ionization (ESI) mass spectrometry was performed on a Thermo Scientific Exactive spectrometer in both negative and positive ionization modes.

SS-CF₈ was synthesized from pentadecafluorooctanoyl chloride (0.9 mL (3.6 mmol), Aldrich) and trans-(1*S*, 2*S*)-(+)-1,2-diaminocyclohexane (0.19 g, (1.7 mmol), Wako, Japan) in 73% yield. [α]_D (c = 0.1835 g /100 ml in methanol) -18.37 ¹H NMR (CD₃CN, 400 MHz): δ = 1.32 (m, C*H*₂CHNH, 2H), 1.43 (m, C*H*₂CHNH, 2H), 1.76 (m, CH₂C₂*H*₄CH₂, 4H), 3.85 (m, CH₂C*H*NH, 2H), 7.66 (br, N*H*CO, 2H) ¹⁹F NMR (CD₃CN, 470 MHz): δ = -126.6, -123.2, -123.0, -122.5, -122.1 (s, 2F), -120.4 (d, *J* = 272.1 Hz), -119.6 (d, *J* = 272.1 Hz), -81.6 ppm (s, 3F) HRMS (ESI): m/z calcd for C₂₂H₁₁O₂N₂F₃₀: 905.03360; found: 905.03406 IR (KBr, cm⁻¹): 3319, 1689, 1243, 1200, 1154

RR-CF₈ was synthesized from pentadecafluorooctanoyl chloride (0.9 mL (3.6 mmol), Aldrich) and trans-(1*R*, 2*R*)-(-)-1,2-diaminocyclohexane (0.19 g, (1.7 mmol), Tokyo Kasei, Ltd., Japan) in 94% yield.

[α]_D (c =0.1805 g /100ml in methanol) +14.79 ¹H NMR (CD₃CN, 400 MHz): δ = 1.34 (m, CH₂CHNH, 2H), 1.46 (m, CH₂CHNH, 2H), 1.76 (m, CH₂C₂H₄CH₂, 4H), 3.87 (m, CH₂CHNH, 2H), 7.63 (br, NHCO, 2H) ¹⁹F NMR (CD₃CN, 470 MHz): δ = -126.6, -123.2, -123.0, -122.5, -122.1 (s, 2F), -120.4 (d, J = 272.1 Hz), -119.6 (d, J = 272.1 Hz), -81.6 ppm (s, 3F) HRMS (ESI): m/z calcd for C₂₂H₁₁O₂N₂F₃₀: 905.03360; found: 905.03418 IR (KBr, cm⁻¹): 3312, 1689, 1242, 1200, 1153

Racemic-CF₈ was synthesized from pentadecafluorooctanoyl chloride (0.9 mL (3.6 mmol), Aldrich)

and trans-(±)-trans-1,2-diaminocyclohexane (0.19 g, (1.7 mmol), Aldrich) in 59% yield. [α]_D (c = 0.075g/ 100 ml in methanol) 0.00 ¹H NMR (CD₃CN, 400 MHz): δ = 1.35 (m, C*H*₂CHNH, 2H), 1.44 (m, C*H*₂CHNH, 2H), 1.77 (m, CH₂C₂*H*₄CH₂, 4H), 3.87 (m, CH₂C*H*NH, 2H), 7.62 (br, N*H*CO, 2H) ¹⁹F NMR (CD₃CN, 470 MHz): δ = -126.6, -123.2, -123.1, -122.5, -122.1 (s, 2F), -120.4 (d, *J* = 272.1 Hz), -119.7 (d, *J* = 272.1 Hz), -81.6 ppm (s, 3F) HRMS (ESI): m/z calcd for C₂₂H₁₁O₂N₂F₃₀: 905.03360; found: 905.03424 IR (KBr, cm⁻¹): 3300, 1697, 1240, 1206, 1150

2. DSC data of gelators:

The DSC results (red) are presented as function of temperature (blue): SS-CF₈ (left) and racemic CF₈ (right)).

Differential scanning calorimetry (DSC): DSC measurements were carried out with a DSC6200 (SEIKO, Japan). Heating and cooling runs were performed at a scan rate of 5 °Cmin⁻¹ and 3 °Cmin⁻¹ for enantiopure *SS*-CF₈, 10 °Cmin⁻¹ and 5 °Cmin⁻¹ for the **racemic-CF**₈, respectively. The corresponding optical microscope images are shown below.

3. The critical concentrations of gelation for various solvents:

The critical concentration is given in terms of $gL^{\cdot 1}$ for enantiopure *RR*·CF₈, *SS*·CF₈ and *racemic*·CF₈ as a gelator.

solvent	RR*	SS*	Racemic*
methanol	tvs→c	tvs→c	tg(8.5)
ethanol	tvs→c	tvs→c	tg(9.8)
2-propanol	tvs→c	tvs→c	cg(7.8)
1-butanol	tvs	tvs	tg(4.95)
2-butanol(racemic)	tvs→c	tvs→c	tg(2.8)
1-pentanol	tg(40.6)	tg(42)	tg(3.2)
2-pentanol	tg(43.4)	tg(41.8)	tg(5)
benzene	р	р	tg(11.3)
toluene	р	р	tvs
o-xylene	р	р	tvs
acetonitrile	с	с	tg(3.8)
cyclohexane	р	р	tvs
hexane	р	р	cg (11.2)

* The state of samples: c = crystal, p = solid precipitate, tg = turbid gel, cg = clear gel,

tvs = turbid viscous solutions, tvs \rightarrow c= from turbid viscous solutions to crystal

The photographic images of the samples at different *RR/SS* ratio dissolved in racemic 2-butanol. The sample at *e.e.* = 1 transformed gradually from turbid viscous solutions to crystal, while the samples at *e.e.* = $0 \sim 0.8$ formed a gel.

4. <u>The time-course of optical microscope images of the 2-butanol solutions</u> <u>containing the following gelators:</u>

Enantiopure CF_8 (initial: turbid viscous solutions) (concentration 0.015M)

(a) 3 min (b) 10 min (c) 20 min (d) 360 min

Racemic CF_8 (gel) (concentration 0.015M)

(a) 3 min

(b) 360 min

5. <u>The SEM images of the freeze-dried racemic 2-butanols and 1-butanol samples</u> <u>containing chiral gelators at various ratios.</u>

The ratio of RR-CF₈ to SS-CF₈ and the scale are indicated in each figure. The total concentration of a gelator was 0.015M.

Racemic 2-butanol xerogels

RR/*SS* 6:4

RR/SS 8:2

2:8

RR/SS 9:1

1:9

Racemic

RR/SS 1:1

1-butanol xerogel

RR/SS 7:3

3:7

6. The XRD patterns of the solid crystal of enantiopure CF_8 (blue) and racemic CF_8 (red) at the wavelength of 0.154 nm from CuK α .

	crystal	crystal	xerogel
	Enantiopure CF ₈	Racemic CF ₈	racemic CF ₈
	monoclinic	hexagonal	hexagonal
a /nm	2.16	2.26	2.72
b /nm	1.36	2.26	2.72
c / nm	0.52	1.32	1.62
α/°	90.0	90.0	90.0
β/°	90.0	90.0	90.0
γ /°	95.0	120.0	120.0

Conditions of PXRD measurements: The samples were subjected to X-ray diffraction measurements were performed with a PXRD (Ultima IV, Rigaku) under CuKa radiation ($\lambda = 0.15406$ nm) at the conditions of 40 kV, 40 mA, and 20 3°/min scanning. The temperature is kept at room temperature.

Here the analyses were made by use of the SFC and EDA program for the optimized unit cell size (Kogure, T. Journal of the crystallographic Society of Japan, (2003) 45, 391-395; http://www-gbs.eps.s.u-tokyo.ac.jp/kogure/EDANA/index_E.htm).

7. <u>The XRD patterns of the solid crystals of enantiopure CF_8 (blue) and xerogel of enantiomeric CF_8 (red) at the wavelength of 0.154 nm from $CuK\alpha$).</u>

8. <u>The XRD patterns of the solid crystals of racemic CF_8 (blue) and xerogel of racemic CF_8 (red) at the wavelength of 0.154 nm from $CuK\alpha$.</u>

9. <u>Conditions of VCD experiment</u>

The VCD spectra were measured using a spectrometer PRESTO-S-2007 (JASCO, Japan). Signals were accumulated for 5000 scans in about 1 hour at 4 cm⁻¹ resolution, using a liquid nitrogen cooled MCT infrared detector equipped with ZnSe windows. After gels were warmed above the sol-gel transition temperature, about 50 μ L of the samples were sandwiched between two CaF₂ plates with a 50 μ m spacer.

10. <u>The geometries of CF₈ molecules</u>

11. An example of a hybrid associate proposed for a helical fibril

(Empty circle = major enantiomer; filled circle = minor enantiomer)

