Supporting Information for

Rh-Catalyzed Intramolecular sp(2) C-H Bond

Difluoromethylenation

Yajun Li, ^{*ab*} Jiangtao Zhu, ^{*a*} Haibo Xie, ^{*a*} Shan Li, ^{*a*} Dongjie Peng, ^{*a*} Zhengke Li, ^{*a*} Yongming Wu^{**a*} and Yuefa Gong^{* *b*}

General Information

Melting points were measured on a Melt-Temp apparatus and were uncorrected. ¹H NMR spectra were recorded in CDCl₃ on a Bruker AM-300 spectrometer (300 MHz) with TMS as internal standard. ¹⁹F NMR spectra were taken on a Bruker AM-300(282 MHz) spectrometer using PhCF₃ as external standard. ¹³C NMR spectra were taken a Bruker AM-400(100 MHz) spectrometer. IR spectra were obtained with a Nicolet AV-360 spectrophotometer. Mass spectra and elemental analyses were recorded in this institute. Solvents were purchased form commercial sources and purified before used by standard procedures. Unless otherwise specified, all reactions were carried out under a nitrogen atmosphere in a flame-dried Schlenk tube and magnetic stirring. TLC analysis was performed on silica gel plates, column chromatography over silica gel (mesh 300-400) and petroleum ethyl acetate combination was used as the eluent.

2-aryl indoles were prepared by fischer indole synthesis. 2-aryl pyrroles¹ were prepared according to literature. Substrate $3f^2$ was prepared according to literature.

Synthesis of N-(2-bromo-2, 2-difluoro-1-(2-phenyl-1H-indol-1-yl) ethylidene)-4-methoxyaniline 1a and Analogues

General procedure: A solution of 2-Phenyl indole (3.6 mmol) in THF (3 ml) was stirred at 0 °C for 10 min, and then n-BuLi (3.6 mmol) was added dropwise in 20 min. The mixture was stirred at 0 °C for another 1h before 2-bromo-2, 2-difluoro-N-(4-methoxyphenyl)acetimidoyl chloride (3 mmol) in THF (3 ml) was added dropwise. Then the mixture was stirred overnight at room temperature. To the mixture saturated ammonium chloride solution was added, then extracted with ethyl acetate, and dried over anhydrous magnesium sulfate. After filtration the resulting solution was evaporated *in vacuo* and the crude residue was purified by column chromatography (ethyl acetate and petrol ether) to give **1a** as a yellow solid (91%).

General Procedure for Optimization of Intramolecular C-H Bond Difluoromethylenation of 1a

Rh(PPh₃)₃Cl (5 mol%, 9.2mg), base (1 equiv.), and **1a** (0.2 mmol) were suspended in solvent (2 ml) in a Schlenk tube under nitrogen. The resulting mixture was stirred at 100 °C, and then detected directly by ¹⁹FNMR without purification.

Table 1. Optimization of Intramolecular C-H Bond Difluoromethylenation of 1a^a

	Wilkinson's	catalyst, base	
	PMP-N Br 100 °C,	solvent PMP-N F	-
	1a	2a	
Entry	Solvent	Base	Yield(%) ^b
1	toluene	Cs ₂ CO ₃	58
2	toluene	K ₂ CO ₃	33
3	toluene	K ₃ PO ₄	10
4	toluene	Et ₃ N	29
5	toluene	DBU	5
6	toluene	КОН	54
7	toluene	Ag ₂ CO ₃	62
8	1, 4-dioxane	Ag ₂ CO ₃	99(94) ^c
9	DMF	Ag ₂ CO ₃	33
10	DMSO	Ag ₂ CO ₃	12
11	CH ₃ CN	Ag ₂ CO ₃	5
12	THF	Ag ₂ CO ₃	74
13	1, 4-dioxane	Ag ₂ CO ₃	15^d
14	1, 4-dioxane		13^e
15	1, 4-dioxane	Ag ₂ CO ₃	0 ^r
^a General conditions: 1a	a (0.2mmol), base(1 equiv.), RhCl(PPI	$(h_3)_3$ (5 mol %) in solvent at 100	°C. ^b Yields were based on 1a
determined by ¹⁹ F NMF	R. ^c Isolated yield in parenthesis. ^d Read	ction temperature is 90 °C. ^e V	Vithout base. ^f In the absence of
RhCl(PPh ₃) ₃ .			

The reaction was optimized with respect to solvent, base and temperature. As show in table 1, compared to K_2CO_3 and K_3PO_4 , Cs_2CO_3 provided the most encouraging result in toluene (entries 1 vs. 2 and 3, Table 1), obtaining the product **2a** in up to 58% yield, which was confirmed by X-ray crystal diffraction studies. This effect may be due to the higher solubility of Cs_2CO_3 in organic solvents. However, the organic bases, such as Et_3N and DBU, were found not suitable for the reaction (entries 4 and 5, Table 1). When KOH was chosen as a base, it performed less efficiency than Cs_2CO_3 (entry 6, Table 1). Interestingly, when Ag_2CO_3 took place of Cs_2CO_3 , 62% yield of **2a** was detected (entry 7, Table 1). The solvent was also screened. While the polar solvents such as DMF (entry 9, Table 1), DMSO (entry 10, Table 1) and CH₃CN (entry 11, Table 1) couldn't improve the product yield, 1, 4-dioxane offered the highest yield (entry 8, Table 1). Neither the catalyst nor the base alone could give satisfied performance (entries 14, 15 vs. 1, Table 1). Surprisingly, decreasing the reaction temperature to 90 °C would significantly affect the product yield (entry 13, Table 1), that might be due to the energy barrier of this reaction. In the end, the final optimized conditions (5 mol % of RhCl(PPh_3)_3, 1 equiv. Ag₂CO₃, at 100 °C in 1, 4-dioxane for 2h) provided intramolecular C-H bond difluoromethylenated product **2a** in 94% isolated yield.

Figure 1. X-ray Crystal Structure of 2a

General procedure for the intramolecular difluoromethylenation of 2-arylindole

Representative experimental procedure for the synthesis of 2a

RhCl(PPh₃)₃ (5 mol%, 9.2mg), Ag₂CO₃ (1 equiv. 55.2mg), and **1a** (0.2 mmol) were suspended in 1, 4-dioxane (2 ml) in a Schlenk tube under nitrogen. The resulting mixture was stirred at 100 °C for 2h. After cooling to room temperature, the solution was filtered through a short path of silica gel, eluting with ethyl acetate. The volatile compounds were removed *in vacuo* and the crude residue was purified by column chromatography (ethyl acetate and petrol ether) to give **2a** as a yellow solid (94%).

Hydrolysis of products 2a and 4e³

To a stirring solution of iminoethanones 2a or 4e (0.2 mmol) in THF (3 ml), 10% HCl (1 ml) was added. The reaction mixture was then stirred at room temperature for 10min and poured into water. The products were extracted with ethyl acetate, washed with brine, and dried over MgSO₄. The solvent was evaporated and the residue was purified by silica gel column chromatography to obtain the products.

Control Experiments and Mechanism Studies Reaction under sulfinatodehalogenation reagent

To a mixed solution of CH₃CN and water (5:1, 2.4 ml) was added **1a** (0.5 mmol) under nitrogen,

Na₂S₂O₄-NaHCO₃ mixture (1:1, 1.5 equiv.) was added partially. The resulting solution was stirred at room temperature for 5h. No corresponding product was detected.

Reaction under Fenton reagent

Substrate **1a** (0.2 mmol), Cp₂Fe (9 mg, 0.05 mmol), and DMSO (2.0 mL) were charged in a two-neck flask in Ar atmosphere. Then, a 30% aqueous solution of H_2O_2 (40 uL) was added continuously over 5 min. The reaction solution was stirred at room temperature for 12 h, and then detected directly by ¹⁹F NMR without purification.

Reaction using Hu's strategy

Under N₂ atmosphere, into a 10-mL Schlenk flask was added **1a** (92 mg, 0.2 mmol), Cu powder (25 mg, 0.4mmol), and DMSO (2 mL). The reaction mixture was vigorously stirred at 65 $^{\circ}$ C for 3h, and then detected directly by ¹⁹FNMR without purification.

General procedure for the controlling experiments and mechanism studies

Rh(PPh₃)₃Cl (5 mol%, 9.2mg), Ag₂CO₃ (1 equiv. 55.2mg), additive (20 mol%) and **1a** (0.2 mmol) were suspended in 1, 4-dioxane (2 ml) in a Schlenk tube under nitrogen. The resulting mixture was stirred at 100 °C for 2h. The product yield was determined by ¹⁹F NMR using PhCF₃ as external standard.

References:

- 1. M. J. Hall, S. O. McDonnell, J. Killoran, and D. F. O'Shea, J. Org. Chem. 2005, 70, 5571-5578.
- 2. S. K. Guchhait, M. Kashyap, and H. Kamble, J. Org. Chem. 2011, 76, 4753-4758.
- 3. Y. Suzuki, A. B. Md., T. Tanoi, N. Nomura, and M. Sato, *Tetrahedron* 2011, 67, 4710-4715.

Characterization data for the substrates and Products

N-(2-bromo-2,2-difluoro-1-(2-phenyl-1H-indol-1-yl)ethylidene)-4-methoxyaniline (1a)

yellow solid; **mp**: 84-85 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.66-7.57 (m, 1H), 7.31 (m, 5H), 7.22-7.08 (m, 3H), 6.80 (s, 1H), 6.84-6.82 (m, 2H), 6.72-6.70 (m, 2H), 3.71 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.49 (dd, J = 428.5, 156.8 Hz, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.28, 140.79 (t, J=29.4Hz), 139.35, 135.97, 135.73, 131.97, 129.12, 128.78, 128.39, 127.32, 126.81, 123.55, 122.03, 120.97, 114.41, 114.85 (t, J=309.6Hz), 111.78, 105.89, 55.40; **IR** (KBr, cm⁻¹): v 3052, 2957, 2835, 1647, 1591, 1504, 1452, 1338, 1255, 744; **MS** (**EI**) m/z (relative intensity) 545 (34, ⁷⁹Br) [M⁺], 546 (34, ⁸¹Br) [M⁺], 264 (100), 262 (98); **Anal. Calcd.** For C₂₃H₁₇BrF₂N₂O: C, 60.67; H, 3.76; N, 6.15. Found: C, 60.80; H, 3.80; N, 6.04.

N-(2-bromo-2,2-difluoro-1-(2-(p-tolyl)-1H-indol-1-yl)ethylidene)-4-methoxyaniline (1b)

yellow solid; **mp**: 136-137 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.62-7.60 (m, 1H), 7.28-7.03 (m, 7H), 6.81 (s, 1H), 6.81-6.76 (m, 2H), 6.67-6.64 (m, 2H), 3.71 (s, 3H), 2.35 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.58 (dd, J = 499.1, 155.9 Hz, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.28, 140.86 (t, J=29.3Hz), 129.20, 129.14, 127.17, 126.88, 123.32, 121.93, 120.82, 114.82 (t, J=308.9 Hz), 114.40, 111.70, 105.39, 55.39, 21.26; **IR** (KBr, cm⁻¹): v 3074, 2995, 2830, 1641, 1590, 1317, 1452, 745, 540, 512; **MS (EI)** m/z (relative intensity) 468 (39, ⁷⁹Br) [M⁺], 470 (39, ⁸¹Br) [M⁺], 262 (100), 264 (98); **Anal. Calcd.** For C₂₄H₁₉BrF₂N₂O: C, 61.42; H, 4.08; N, 5.97. Found: C, 61.61; H, 4.18; N, 5.86.

N-(2-bromo-2,2-difluoro-1-(2-(4-methoxyphenyl)-1H-indol-1-yl)ethylidene)-4-methoxyanilin e (1c)

yellow solid; **mp**: 150-152 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.62-7.59 (m, 1H), 7.30 – 7.06 (m, 5H), 6.86-6.84 (m, 2H), 6.79 – 6.75 (m, 2H), 6.71 (s, 1H), 6.67-6.64 (m, 2H), 3.80 (s, 3H), 3.71 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.47 (dd, J = 445.6, 156.6 Hz, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.27, 141.58 (t, J=30.8Hz), 159.85, 129.25, 128.70, 126.84, 124.50, 123.20, 121.93, 120.72, 114.89 (t, J=311.8Hz), 114.39, 114.23, 111.65, 105.03, 55.40, 55.32; **IR** (KBr, cm⁻¹): v 2963, 2830, 1253, 1501, 1451, 1253, 1031, 969, 799, 539; **MS** (**EI**) m/z (relative intensity) 486 (25, ⁷⁹Br) [M⁺], 484 (23, ⁸¹Br) [M⁺], 43 (100); **Anal. Calcd.** For C₂₄H₁₉BrF₂N₂O₂: C, 59.40; H, 3.95; N, 5.77. Found: C, 59.19; H, 4.10; N, 5.56.

N-(2-bromo-2,2-difluoro-1-(2-(4-fluorophenyl)-1H-indol-1-yl)ethylidene)-4-methoxyaniline

(1d)

yellow solid; **mp**: 140-141 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 – 7.60 (m, 1H), 7.27 – 7.13 (m, 5H), 7.00 (t, J = 8.6 Hz, 2H), 6.74 (s, 1H), 6.72-6.70 (m, 2H), 6.66-6.64 (m, 2H), 3.72 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.23 (q, J = 158.3 Hz, 2F), -101.15 – -125.05 (m, 1F); ¹³**C NMR** (100 MHz, CDCl₃) δ 164.07, 161.60, 160.35, 140.58 (t, J = 34.3 Hz), 138.27, 136.03, 135.62, 129.33, 129.24, 129.00, 128.04, 126.74, 123.68, 122.14, 120.97, 115.89, 115.67, 114.41, 111.78, 55.42; **IR** (KBr, cm⁻¹): v 3000, 2825, 1588, 1503, 1135, 970, 800, 520; **MS (EI)** m/z (relative intensity) 472 (5, ⁷⁹Br) [M⁺], 474 (5, ⁸¹Br) [M⁺], 160 (100); **Anal. Calcd.** For C₂₃H₁₆BrF₃N₂O: C, 58.37; H, 3.41; N, 5.92. Found: C, 58.55; H, 3.63; N, 5.80.

N-(2-bromo-1-(2-(4-chlorophenyl)-1H-indol-1-yl)-2,2-difluoroethylidene)-4-methoxyaniline (1e)

yellow solid; **mp**: 169-172 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.65-7.62 (m, 1H), 7.30-7.28 (m, 2H), 7.22 – 7.14 (m, 5H), 6.78 (s, 1H), 6.74-6.71 (m, 2H), 6.67-6.65 (m, 2H), 3.73 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.40 (q, *J* = 158.1 Hz, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 159.50, 140.08 (t, *J* = 26.8 Hz), 136.12, 134.45, 128.69, 125.27, 123.48, 121.71, 121.10, 114.49 (t, *J* = 309.6 Hz), 114.20, 112.01, 106.79, 55.30; **IR** (KBr, cm⁻¹): v 2931, 2840, 1589, 1503, 1113, 1027, 866, 543; **MS** (**EI**) m/z (relative intensity) 490 (22) [M⁺], 262 (100); **Anal. Calcd.** For C₂₃H₁₆BrClF₂N₂O: C, 56.41; H, 3.29; N, 5.72. Found: C, 56.41; H, 3.42; N, 5.68.

N-(2-bromo-1-(2-(4-bromophenyl)-1H-indol-1-yl)-2,2-difluoroethylidene)-4-methoxyaniline (1f)

yellow solid; **mp**: 171 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.64-7.62 (m, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.23 – 7.11 (m, 5H), 6.78 (s, 1H), 6.74-6.71 (m, 2H), 6.67-6.65 (m, 2H), 3.72 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.36 (q, J = 158.0 Hz, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.39, 140.41 (t, J = 28.6 Hz), 138.07, 136.17, 135.55, 131.92, 130.83, 128.94, 128.80, 126.77, 123.89, 122.62, 122.21, 121.07, 114.84 (t, J = 28.6 Hz), 114.44, 111.83, 106.34, 55.43; **IR** (KBr, cm⁻¹): v 3005, 2840, 1589, 1503, 1338, 1135, 970, 800, 746, 520; **MS** (**ESI**) m/z 535 [M+H⁺]; **Anal. Calcd.** For C₂₃H₁₆Br₂F₂N₂O: C, 51.71; H, 3.02; N, 5.24. Found: C, 51.97; H, 3.19; N, 5.19. **N-(2-bromo-2,2-difluoro-1-(2-(4-nitrophenyl)-1H-indol-1-yl)ethylidene)-4-methoxyaniline** (1g)

yellow solid; **mp**: 169-171 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 8.19 (d, J = 8.6 Hz, 2H), 7.74 – 7.66 (m, 1H), 7.44 (d, J = 8.6 Hz, 2H), 7.28-7.19 (m, 3H), 6.96 (s, 1H), 6.70 (dd, J = 18.5, 9.0 Hz, 4H), 3.75 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.34 (q, J = 159.5 Hz, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.62, 147.30, 138.11, 136.79, 136.68, 135.26, 128.65, 127.67, 126.81, 124.89, 124.07, 122.62, 121.54, 114.55, 112.03, 108.47, 55.47; **IR** (KBr, cm⁻¹): v 3085, 2926, 2835, 1598, 1351, 1125, 967, 750, 522; **MS (ESI)** m/z 500 [M+H⁺], 522 [M+Na⁺]; **HRMS (ESI)** *m/e* calcd. for C₂₃H₁₆F₂N₃NaO₃⁺ [M+Na⁺] 522.0235, Found: 522.02422.

methyl 4-(1-(2-bromo-2,2-difluoro-1-((4-methoxyphenyl)imino)ethyl)-1H-indol-2-yl)benzoate (1h)

yellow solid; **mp**: 118-120°C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 8.3 Hz, 2H), 7.80 – 7.59 (m, 1H), 7.37 (d, J = 8.3 Hz, 2H), 7.23 – 7.13 (m, 3H), 6.88 (s, 1H), 6.75 (d, J = 9.0 Hz, 2H), 6.64 (d, J = 9.0 Hz, 2H), 3.90 (s, 3H), 3.69 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -50.12 (q, J = 158.3 Hz); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.56, 160.35, 140.28 (t, J = 29.2 Hz), 138.05, 136.34, 136.18, 135.46, 130.04, 129.63, 128.83, 126.95, 126.73, 124.21, 122.29, 121.26, 114.70 (t, J = 308.3 Hz), 114.43, 111.87, 107.25, 55.39, 52.21; **IR** (KBr, cm⁻¹): v 2952, 1717, 1592, 1449, 1282, 1132, 964, 865, 510; **MS** (**EI**) m/z (relative intensity) 512 (12, ⁷⁹Br) [M⁺], 514 (11, ⁸¹Br) [M⁺], 262 (100), 264 (99); **Anal. Calcd.** For C₂₅H₁₉BrF₂N₂O₃: C, 58.49; H, 3.73; N, 5.46. Found: C, 58.55; H, 3.86; N, 5.18.

N-(2-bromo-2,2-difluoro-1-(2-(4-(methylsulfonyl)phenyl)-1H-indol-1-yl)ethylidene)-4-methox yaniline (1i)

yellow solid; **mp**: 120-122°C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 2H), 7.74 – 7.63 (m, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.34 – 7.12 (m, 3H), 6.93 (s, 1H), 6.65-6.74 (m, 4H), 3.74 (s, 3H), 3.06 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.19 (q, J = 159.4 Hz); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.60, 139.87 (t, J = 29.1 Hz), 137.19, 136.97, 136.63, 135.29, 128.70, 127.88, 127.81, 126.81, 124.72, 122.58, 121.53, 114.79 (t, J = 307.1 Hz), 114.56, 112.00, 108.16, 55.49, 44.51; **IR** (KBr, cm⁻¹): v 2920, 1645, 1590, 1505, 1448, 1310, 1148, 967, 537; **MS (EI)** m/z (relative intensity) 532 (6, ⁷⁹Br) [M⁺], 534 (6, ⁸¹Br) [M⁺], 262 (100), 264 (98); **Anal. Calcd.** For C₂₄H₁₉BrF₂N₂O₃S: C, 54.04; H, 3.59; N, 5.25. Found: C, 54.27; H, 3.67; N, 5.43.

N-(2-bromo-2,2-difluoro-1-(2-(4-morpholinophenyl)-1H-indol-1-yl)ethylidene)-4-methoxyani line (1j)

yellow solid; ¹**H** NMR (300 MHz, CDCl₃) δ 7.61 (d, J = 6.5 Hz, 1H), 7.26 (d, J = 8.6 Hz, 2H), 7.19 – 7.07 (m, 3H), 6.85 (d, J = 8.9 Hz, 4H), 6.74 (s, 1H), 6.67 (d, J = 9.0 Hz, 2H), 3.92 – 3.75 (m, 4H), 3.71 (s, 3H), 3.31 – 3.07 (m, 4H); ¹⁹**F** NMR (282 MHz, CDCl₃) δ -50.33 (dd, J = 560.5, 155.5 Hz); ¹³**C** NMR (100 MHz, CDCl₃) δ 160.28, 151.13, 141.06 (t, J = 29.0 Hz), 139.50, 135.79, 135.71, 129.36, 128.22, 126.94, 123.18, 123.07, 121.91, 120.65, 115.29, 114.83 (t, J = 309.0 Hz), 114.42, 111.60, 104.62, 66.78, 55.39, 48.69; **IR** (KBr, cm⁻¹): v 2963, 2850, 1609, 1505, 1452, 1260, 1094, 1024, 800; **MS** (**EI**) m/z (relative intensity) 539 (38, ⁷⁹Br) [M⁺], 541 (35, ⁸¹Br) [M⁺], 277 (100); **HRMS (EI)** calcd. For C₂₇H₂₄BrF₂N₃O₂: 539.1020, Found: 539.1017.

N-(2-bromo-2,2-difluoro-1-(2-(o-tolyl)-1H-indol-1-yl)ethylidene)-4-methoxyaniline (1k)

yellow solid; **mp**: 79-80°C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.70-7.61 (m, 1H), 7.35 – 7.12 (m, 5H), 7.08 (s, 1H), 6.96-6.89 (m, 1H), 6.69 (s, 5H), 3.74 (s, 3H), 2.23 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.76 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.32, 140.63 (t, *J* = 29.3 Hz), 137.67, 137.23, 135.80, 135.37, 130.89, 130.79, 129.14, 128.94, 128.73, 126.91, 125.65, 123.48, 121.97, 120.98, 114.90(t, *J* = 310.3 Hz), 114.45, 111.75, 107.56, 55.45, 20.43; **IR** (KBr, cm⁻¹): v 3053, 2824, 1645, 1589, 1504, 1453, 1338, 969, 762, 529; **MS** (**EI**) m/z (relative intensity) 468 (22, ⁷⁹Br) [M⁺], 470 (26, ⁸¹Br) [M⁺], 262 (97), 264 (100); **Anal. Calcd.** For C₂₄H₁₉BrF₂N₂O: C, 61.42; H, 4.08; N, 5.97. Found: C, 61.37; H, 4.15; N, 5.89.

N-(2-bromo-2,2-difluoro-1-(2-(3-methoxyphenyl)-1H-indol-1-yl)ethylidene)-4-methoxyanilin e (11)

yellow solid; **mp**: 78-79°C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.68 – 7.61 (m, 1H), 7.26-7.13 (m, 4H), 6.96 – 6.72 (m, 6H), 6.66 (d, J = 8.9 Hz, 2H), 3.72 (s, 3H), 3.72 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.51 (dd, J = 514.3, 157.0 Hz, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.36, 140.80 (t, J = 27.1 Hz), 159.89, 139.30, 136.00, 135.74, 133.24, 129.93, 129.10, 126.91, 123.69, 122.15, 121.08, 119.70, 114.64, 114.92 (t, J = 312.6 Hz), 114.47, 112.42, 111.82, 106.00, 55.40, 55.22; **IR** (KBr, cm⁻¹): v 2963, 2840, 1500, 1340, 1178, 743, 538; **MS** (**EI**) m/z (relative intensity) 484 (31, ⁷⁹Br) [M⁺], 486 (34, ⁸¹Br) [M⁺], 262 (100), 264 (96); **Anal. Calcd.** For C₂₄H₁₉BrF₂N₂O₂: C, 59.40; H, 3.95; N, 5.77. Found: C, 59.52; H, 4.02; N, 5.66.

N-(2-bromo-1-(2-(3-chlorophenyl)-1H-indol-1-yl)-2,2-difluoroethylidene)-4-methoxyaniline (1m)

yellow solid; **mp**: 88-92 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.66-7.64 (m, 1H), 7.28 – 7.19 (m, 6H), 7.14-7.12 (m, 1H), 6.79 (s, 1H), 6.64 (s, 4H), 3.74 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -42.12 – -51.39 (m, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.26, 140.74 (t, *J* = 29.4 Hz), 137.85, 136.39, 135.68, 134.63, 133.53, 129.87, 128.85, 128.39, 127.70, 126.32, 125.29, 124.06, 122.28, 121.19, 115.00 (t, *J* = 308.9 Hz), 114.41, 111.89, 55.43; **IR** (KBr, cm⁻¹): v 3078, 2846, 1648, 1590, 1500, 970, 800, 531; **MS (ESI)** m/z 491 [M+H⁺]; **Anal. Calcd.** For C₂₃H₁₆BrClF₂N₂O: C, 56.41; H, 3.29; N, 5.72. Found: C, 56.70; H, 3.28; N, 5.63.

1-(1-(2-bromo-2,2-difluoro-1-((4-methoxyphenyl)imino)ethyl)-2-phenyl-1H-indol-3-yl)ethano ne(1n)

¹**H NMR** (300 MHz, CDCl₃) δ 8.49 (d, J = 7.0 Hz, 1H), 7.45-7.37 (m, 2H), 7.35-7.30 (m, 4H), 7.05 (d, J = 7.4 Hz, 2H), 6.72 (d, J = 9.2 Hz,2H), 6.64 (d, J = 9.2 Hz, 2H), 3.77 (s, 3H), 1.98 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -50.56 (q, J = 161.4 Hz, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 195.36, 160.83, 143.70, 138.76(t, J = 30.9 Hz), 135.16, 135.07, 130.28, 130.11, 130.07, 128.40, 127.18, 126.90, 125.04, 124.05, 123.31, 122.34, 118.84, 114.60(t, J = 308.5 Hz), 114.43, 111.13, 67.10, 55.49, 30.41; **IR** (KBr, cm⁻¹): v 2840, 1720, 1654, 1591, 1505, 1387, 1256, 1166, 1029, 747; **MS** (**EI**) m/z (relative intensity) 496 (3, ⁷⁹Br) [M⁺], 498 (3, ⁸¹Br) [M⁺], 122 (100); **HRMS (EI**) calcd. For C₂₅H₁₉BrF₂N₂O₂: 496.0598, Found: 496.0596.

N-(2-bromo-2,2-difluoro-1-(5-methyl-2-phenyl-1H-indol-1-yl)ethylidene)-4-methoxyaniline (10)

yellow solid; **mp**: 114-115°C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.42 (s, 1H), 7.30 (s, 5H), 7.01 (s, 2H), 6.81 – 6.63 (m, 5H), 3.73 (s, 3H), 2.43 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.49 (dd, J = 409.7, 156.8 Hz, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.23, 141.05 (t, J = 27.2 Hz), 139.41, 135.85, 134.39, 132.12, 131.47, 129.42, 128.78, 128.3, 127.26, 126.83, 125.15, 120.78, 114.90 (t, J = 309.6 Hz), 114.42, 111.48, 55.41, 21.44; **IR** (KBr, cm⁻¹): v 3053, 2904, 2835, 1595, 1500, 1462, 1256, 1027, 800, 520; **MS (EI)** m/z (relative intensity) 468 (42, ⁷⁹Br) [M⁺], 470 (42, ⁸¹Br) [M⁺], 262 (100), 264 (98); **Anal. Calcd.** For C₂₄H₁₉BrF₂N₂O: C, 61.42; H, 4.08; N, 5.97. Found: C, 61.66; H, 4.28; N, 5.85.

N-(2-bromo-2,2-difluoro-1-(5-fluoro-2-phenyl-1H-indol-1-yl)ethylidene)-4-methoxyaniline (1p)

yellow solid; **mp**: 121-122 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.33-7.30 (m, 6H), 7.04-7.00(m,1H), 6.93-6.87 (m, 1H), 6.77-6.66 (m, 5H), 3.74 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.76 (dd, J = 441.5, 156.6 Hz, 2F), -81.25 – -133.35 (m, 1F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.45, 158.95 (d, J = 237.8 Hz), 140.98, 140.27 (t, J = 26.8 Hz), 135.52, 132.23, 131.68, 129.69 (d, J = 10.4 Hz), 128.87, 128.68, 127.27, 126.84, 114.64 (t, J = 305.7 Hz), 114.49, 112.58 (d, J =9.6 Hz), 111.93, 111.67, 106.21, 105.97, 105.71 (d, J = 4.3 Hz), 55.43; **IR** (KBr, cm⁻¹): v 3021, 2960, 2830, 1590, 1504, 1467, 967, 521; **MS** (**EI**) m/z (relative intensity) 472 (3) [M⁺], 160 (100); **Anal. Calcd.** For C₂₃H₁₆BrF₃N₂O: C, 58.37; H, 3.41; N, 5.92. Found: C, 58.60; H, 3.61; N, 5.89. **N-(2-bromo-1-(5-bromo-2-phenyl-1H-indol-1-yl)-2,2-difluoroethylidene)-4-methoxyaniline** (1q)

yellow solid; **mp**: 145-146 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.77 (s, 1H), 7.39-7.25 (m, 6H), 6.98-6.95 (m, 1H), 6.79-6.67 (m, 5H), 3.75 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.84 (dd, *J* = 451.3, 156.8 Hz, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.54, 140.60, 139.83 (t, *J* = 27.5 Hz), 135.40, 134.53, 131.48, 130.77, 128.93, 128.80, 127.31, 126.89, 126.41, 123.55, 115.28, 114.55 (t, *J* = 310.3 Hz), 114.58, 113.20, 105.07, 55.45; **IR** (KBr, cm⁻¹): v 3074, 2835, 1650, 1591, 1353, 840, 518; **MS** (**EI**) m/z (relative intensity) 534 (6) [M⁺], 218 (100); **Anal. Calcd.** For C₂₃H₁₆Br₂F₂N₂O: C, 51.71; H, 3.02; N, 5.24. Found: C, 51.90; H, 3.21; N, 5.26.

N-(2-bromo-1-(4,6-dimethyl-2-phenyl-1H-indol-1-yl)-2,2-difluoroethylidene)-4-methoxyanili ne (1r)

yellow solid; **mp**: 132-133 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.33–7.21 (m, 5H), 6.83-6.76 (m, 5H), 6.69-6.66 (m, 2H), 3.74 (s, 3H), 2.54 (s, 3H), 2.35 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.09 (q, J = 157.6 Hz, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.18, 141.17 (t, J = 27.2 Hz), 138.14, 136.35, 135.88, 133.66, 132.20, 130.08, 128.66, 128.06, 127.23, 126.86, 126.75, 124.18, 115.02 (t, J = 308.1 Hz), 114.37, 109.28, 104.40, 55.40, 21.87, 18.58; **IR** (KBr, cm⁻¹): v 3021, 2915, 2840, 1587, 1503, 1255, 1026, 831, 532; **MS** (EI) m/z (relative intensity) 482 (41, ⁷⁹Br) [M⁺], 484 (39, ⁸¹Br) [M⁺], 262 (100), 264 (93); **Anal. Calcd.** For C₂₅H₂₁BrF₂N₂O: C, 62.12; H, 4.38; N, 5.80. Found: 61.94; H, 4.48; N, 5.66.

N-(2-bromo-2,2-difluoro-1-(7-methyl-2-phenyl-1H-indol-1-yl)ethylidene)-4-methoxyaniline (1s)

yellow solid; **mp**: 85-86 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.51 (d, J = 8.0 Hz, 1H), 7.25-7.30 (m, 5H), 7.02 (d, J = 8.0 Hz, 1H), 6.94 (s, 1H), 6.77-6.65 (m, 5H), 3.74 (s, 3H), 2.39 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.10 (q, J = 157.9 Hz, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.23, 141.09 (t, J = 28.6 Hz), 138.78, 136.56, 135.86, 133.65, 132.09, 128.72, 128.20, 127.29, 126.95, 126.81, 123.82, 120.60, 115.01 (t, J = 310.8 Hz), 114.39, 111.72, 105.85, 55.41, 21.98; **IR** (KBr, cm⁻¹): v 3050, 2910, 2835, 1590, 1503, 1259, 1027, 837, 522; **MS (EI)** m/z (relative intensity) 468 (36, ⁷⁹Br) [M⁺], 470 (36, ⁸¹Br) [M⁺], 262 (100), 264 (95); **Anal. Calcd.** For C₂₄H₁₉BrF₂N₂O: C, 61.42; H, 4.08; N, 5.97. Found: C, 61.70; H, 4.21; N, 5.92.

N-(2-bromo-2,2-difluoro-1-(2-phenyl-1H-pyrrol-1-yl)ethylidene)-4-methoxyaniline (3a)

¹**H NMR** (300 MHz, CDCl₃) δ 7.14-7.16 (m, 3H), 6.97-7.00 (m, 3H), 6.57 (d, J = 7.0 Hz, 2H), 6.43 (m, 1H), 6.32 (m, 1H), 6.20 (d, J = 7.0 Hz, 2H), 3.74 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -50.13 (dd, J = 516.8, 162.3 Hz); ¹³**C NMR** (100 MHz, CDCl₃) δ 159.23, 140.98 (t, J = 27.3 Hz), 136.19, 134.93, 131.59, 128.23, 127.15, 126.75, 124.94, 120.75, 114.92 (t, J = 306.2 Hz), 113.92, 112.06, 111.64, 55.44; **IR** (KBr, cm⁻¹): v 2920, 1663, 1605, 1509, 1446, 1134, 750, 537; **MS (EI)** m/z (relative intensity) 404 (24, ⁷⁹Br) [M⁺], 406 (24, ⁸¹Br) [M⁺], 133 (100); **HRMS (EI)** calcd. For C₁₉H₁₅BrF₂N₂O: 404.0336, Found: 404.0335.

N-(2-bromo-2,2-difluoro-1-(2-phenyl-1H-imidazol-1-yl)ethylidene)-4-methoxyaniline (3b)

¹**H** NMR (300 MHz, CDCl₃) δ 7.47 – 7.06 (m, 7H), 6.62 (d, J = 7.0 Hz, 2H), 6.35 (d, J = 7.0 Hz, 2H), 3.74 (s, 3H); ¹⁹**F** NMR (282 MHz, CDCl₃) δ -51.31 (dd, J = 653.9, 163.2 Hz); ¹³**C** NMR (100 MHz, CDCl₃) δ 159.85, 147.40, 138.66 (t, J = 28.3 Hz), 135.27, 130.84, 129.27, 128.41, 127.03, 124.94, 119.38, 114.39 (t, J = 306.8 Hz), 114.03, 55.36; **IR** (KBr, cm⁻¹): v 3061, 2840, 1592, 1504, 1388, 1254, 971, 816; **MS (EI)** m/z (relative intensity) 405 (22, ⁷⁹Br) [M⁺], 407 (21, ⁸¹Br) [M⁺], 264 (100), 262(97); **HRMS (EI)** calcd. For C₁₈H₁₄BrF₂N₃O: 405.0288, Found: 405.0292.

N-(2-bromo-1-(2,4-diphenyl-1H-pyrrol-1-yl)-2,2-difluoroethylidene)-4-methoxyaniline(3c)

¹**H NMR** (300 MHz, CDCl₃) δ 7.63 (d, J = 7.6 Hz, 2H), 7.43 (m, 2H), 7.31 (m, 2H), 7.19 (m, 3H), 7.06 (m, 2H), 6.68 (s, 1H), 6.61 (d, J = 8.8 Hz, 2H), 6.33 (d, J = 8.8 Hz, 2H), 3.75 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -50.69 (dd, J = 549.3, 162.8 Hz); ¹³**C NMR** (100 MHz, CDCl₃) δ 159.34, 140.49 (t, J = 27.5 Hz), 136.14, 135.99, 133.98, 131.41, 128.91, 128.33, 128.08, 127.45, 126.84, 126.79, 125.53, 125.01, 116.69, 114.93 (t, J = 308.2 Hz), 114.06, 109.87, 55.47; **IR** (KBr, cm⁻¹): v 2963, 2830, 1654, 1479, 1504, 1249, 964, 758; **MS** (**ESI**) m/z 481 [M+H⁺], 503 [M+Na⁺]; **HRMS** (**ESI**) *m/e* calcd. for C₂₅H₂₀BrF₂N₂O⁺ [M+Na⁺] 481.07216, Found: 481.07036.

N-(2-bromo-1-(2-(4-chlorophenyl)-4-phenyl-1H-pyrrol-1-yl)-2,2-difluoroethylidene)-4-metho xyaniline(3d)

¹**H NMR** (300 MHz, CDCl₃) δ 7.59 (d, J = 7.1 Hz, 2H), 7.41 (m, 2H), 7.30 (d, J = 14.0 Hz, 2H), 7.13 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 6.66 – 6.52 (m, 3H), 6.29 (d, J = 9.0 Hz, 2H), 3.75 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.89 (dd, J = 505.1, 163.8 Hz); ¹³**C NMR** (100 MHz, CDCl₃) δ 159.46, 140.03 (t, J = 27.4 Hz), 135.95, 134.71, 133.72, 133.44, 129.85, 128.91, 128.47, 128.18, 128.01, 126.95, 125.51, 125.00, 116.91, 114.87 (t, J = 307.8 Hz), 114.09, 110.25, 67.12, 55.46; **IR** (KBr, cm⁻¹): v 2958, 2835, 1652, 1598, 1504, 1468, 1357, 1249, 965, 815; **MS** (**EI**) m/z (relative intensity) 514 (3) [M⁺], 88 (100); **HRMS (EI)** calcd. For C₂₅H₁₈BrClF₂N₂O: 514.0259, Found: 514.0255.

N-(2-bromo-1-(4-(tert-butyl)-2-(4-methoxyphenyl)-1H-pyrrol-1-yl)-2,2-difluoroethylidene)-4-methoxyaniline(3e)

¹**H NMR** (400 MHz, CDCl₃) δ 6.85 (d, J = 8.7 Hz, 2H), 6.69 (s, 1H), 6.64 (d, J = 8.8 Hz, 2H), 6.60 – 6.49 (m, 2H), 6.16 (m, 3H), 3.73 (s, 3H), 3.72 (s, 3H), 1.29 (s, 9H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -49.30 (dd, J = 527.1, 164.3 Hz); ¹³**C NMR** (100 MHz, CDCl₃) δ 159.04, 158.84, 141.75 (t, J = 27.3 Hz), 139.15, 136.52, 134.81, 127.96, 124.98, 124.64, 115.16, 114.86 (t, J =306.0 Hz), 113.72, 113.59, 110.01, 55.43, 55.25, 31.37, 30.74; **IR** (KBr, cm⁻¹): v 2960, 2835, 1650, 1613, 1525, 1505, 1250, 963, 815; **MS** (**EI**) m/z (relative intensity) 490 (26, ⁷⁹Br) [M⁺], 492 (25, ⁸¹Br) [M⁺], 262 (99), 264 (100); **HRMS (EI)** calcd. For C₂₄H₂₅F₂N₂O₂Br: 490.1067, Found: 490.1069.

N-(5,5-difluoroindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2a)

yellow solid; **mp**: 193-195°C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.30-7.24 (m, 2H), 7.05 (s, 1H), 7.02-7.00 (m, 2H), 6.94-6.92 (m, 2H), 3.83 (s, 3H); ¹⁹F **NMR** (282 MHz, CDCl₃) δ -79.61 (s, 2F); ¹³C **NMR** (100 MHz, CDCl₃) δ 156.18, 141.41 (t, J = 28.6 Hz), 140.36, 136.65, 132.88, 131.90, 130.40, 128.73, 127.21 (t, J = 28.5 Hz), 125.94, 125.73, 123.92, 123.63, 121.15, 120.79, 116.82, 113.87, 104.00, 55.52; **IR** (KBr, cm⁻¹): v 3101, 2835, 1668, 1504, 1449, 1240, 1028, 749, 488; **MS (EI)** m/z (relative intensity) 374 (100) [M⁺]; **Anal. Calcd.** For C₂₃H₁₆F₂N₂O: C, 73.79; H, 4.31; N, 7.48. Found: C, 73.77; H, 4.54; N, 7.30.

N-(5,5-difluoro-3-methylindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2b)

yellow solid; **mp**: 223-224 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.43 (s, 1H), 7.34-7.21 (m, 3H), 7.07 – 6.88 (m, 5H), 3.83 (s, 3H), 2.37 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -79.65 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.13, 140.45, 139.11, 136.53, 133.13, 132.92, 130.52, 127.07 (t, J = 29.1 Hz), 126.07, 125.46, 123.85, 123.65, 116.74, 113.84, 103.24, 55.53, 21.41; **IR** (KBr, cm⁻¹): v 3058, 2835, 1669, 1504, 1450, 1242, 1013, 806, 747, 488; **MS (EI)** m/z (relative intensity) 388 (100) [M⁺]; **HRMS (EI)** calcd. For C₂₄H₁₈F₂N₂O: 388.1387, Found: 388.1391.

N-(5,5-difluoro-3-methoxyindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2c)

yellow solid; **mp**: 206-207 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.69 (d, J = 8.9 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.27-7.20 (m, 2H), 7.08 (d, J = 7.8 Hz, 2H), 7.01 (d, J = 8.2 Hz, 2H), 6.97 – 6.86 (m, 3H), 3.83 (s, 3H), 3.80 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -79.65 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.06, 156.13, 140.46, 136.40, 133.06, 130.67, 128.40 (t, J = 23.5 Hz), 125.41, 125.23, 123.85, 120.82, 119.85, 119.65, 116.67, 113.84, 109.04, 102.46, 55.57, 55.52; **IR** (KBr, cm⁻¹): v 3064, 2830, 1662, 1503, 1450, 1348, 1233, 1040, 805, 542; **MS (EI)** m/z (relative intensity) 404 (100) [M⁺]; **Anal. Calcd.** For C₂₄H₁₈F₂N₂O₂: C, 71.28; H, 4.49; N, 6.93. Found: C, 71.25; H, 4.56; N, 6.86.

4-methoxy-N-(3,5,5-trifluoroindolo[2,1-a]isoquinolin-6(5H)-ylidene)aniline (2d)

yellow solid; **mp**: 199-200 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.80-7.87 (m, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.36 – 7.18 (m, 4H), 7.07 – 6.90 (m, 5H), 3.84 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -79.93 (s, 2F), -109.63 (s, 1F); ¹³**C NMR** (100 MHz, CDCl₃) δ 163.70, 161.21, 156.28, 140.11, 136.54, 132.07, 130.31, 126.00 (d, J = 8.1 Hz), 125.80, 124.03, 123.27, 121.14, 120.77, 119.98 (d, J = 22.6 Hz), 116.78, 113.90, 112.77 (d, J = 24.2 Hz), 103.82, 100.00, 55.52; **IR** (KBr, cm⁻¹): v 3069, 2835, 1658, 1498, 1449, 1241, 1036, 858, 750, 530; **MS (EI)** m/z (relative intensity) 392 (100) [M⁺]; **HRMS (EI)** calcd. For C₂₃H₁₅F₃N₂O: 392.1136, Found: 392.1135. **N-(3-chloro-5,5-difluoroindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2e)**

yellow solid; **mp**: 220-222 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.54 (d, J = 6.8 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.58-7.57 (m, 2H), 7.48 (d, J = 8.4 Hz, 1H), 7.36 – 7.20 (m, 2H), 7.02-6.92 (m, 5H), 3.84 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.20 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.33, 140.72 (t, J = 26.0 Hz), 140.07, 136.65, 134.53, 132.34, 131.91, 130.23, 128.50 (t, J = 24.7 Hz), 126.09, 126.05, 125.10, 124.07, 121.26, 120.78, 116.81, 113.91, 110.29 (t, J = 246.2 Hz), 104.47, 55.54; **IR** (KBr, cm⁻¹): v 3080, 2835, 1668, 1505, 1398, 1242, 1034, 748, 490; **MS (EI)** m/z (relative intensity) 408 (100) [M⁺]; **Anal. Calcd.** For C₂₃H₁₅ClF₂N₂O: C, 67.57; H, 3.70; N, 6.85. Found: C, 67.54; H, 3.86; N, 6.83.

N-(3-bromo-5,5-difluoroindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2f)

yellow solid; **mp**: 222-224 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.76 (s, 1H), 7.65 (s, 2H), 7.59 (d, J = 7.7 Hz, 1H), 7.44 – 7.19 (m, 2H), 7.05 (s, 1H), 6.96 (dd, J = 29.4, 8.1 Hz, 4H), 3.84 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.16 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.34, 140.42 (t, J = 27.8 Hz), 140.05, 136.69, 135.18, 131.96, 130.22, 129.08, 128.66 126.06, (t, J = 25.4 Hz), 125.69, 125.19, 124.08, 122.24, 121.27, 120.77, 116.80, 113.90, 110.19 (t, J = 246.9 Hz), 104.54, 55.54; **IR** (KBr, cm⁻¹): v 3075, 2830, 1669, 1504, 1448, 1242, 1033, 748, 485; **MS** (**EI**) m/z (relative intensity) 454 (100, ⁷⁹Br) [M⁺], 542 (92, ⁸¹Br) [M⁺]; **Anal. Calcd.** For C₂₃H₁₅BrF₂N₂O: C, 60.94; H, 3.34; N, 6.18. Found: C, 61.15; H, 3.57; N, 6.13.

N-(5,5-difluoro-3-nitroindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2g)

yellow solid; **mp**: 259-260 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 8.63 – 8.50 (m, 2H), 8.38 (d, J = 8.7 Hz, 1H), 7.96 (d, J = 8.8 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.48 – 7.20 (m, 3H), 6.99 (dd, J = 23.4, 8.3 Hz, 4H), 3.86 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.47 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.60, 147.17, 140.02 139.63, 137.20, 132.18, 130.75, 129.94, 128.01 (t, J = 26.3 Hz), 127.29, 126.71, (t, J = 28.2 Hz), 124.68, 124.46, 122.36, 121.88, 120.79, 117.01, 113.98, 109.82 (t, J = 247.5 Hz), 107.67, 55.54; **IR** (KBr, cm⁻¹): v 3069, 2920, 2835, 1656, 1603, 1341,

1038, 826, 742, 538; **MS (ESI)** m/z 420 [M+H⁺]; **HRMS (ESI)** *m/e* calcd for $C_{23}H_{16}F_2N_3O_3^+$ [M+H⁺] 420.1154, Found: 420.11551.

methyl-5,5-difluoro-6-((4-methoxyphenyl)imino)-5,6-dihydroindolo[2,1-a]isoquinoline-3-car boxylate (2h)

yellow solid; **mp**: 217-219°C; ¹**H NMR** (300 MHz, CDCl₃) δ 8.58-8.55 (m, 1H), 8.32 (s, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 7.2 Hz, 2H), 7.43 – 7.20 (m, 2H), 7.15 (s, 1H), 7.03 (d, J = 7.3 Hz, 2H), 6.94 (d, J = 7.1 Hz, 2H), 3.91 (s, 3H), 3.85 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.65 ; ¹³**C NMR** (100 MHz, CDCl₃) δ 165.48, 156.35, 140.08, 136.92, 132.65, 131.87, 130.15, 127.87, 127.19 (t, J = 24.7 Hz), 126.51, 124.15, 123.68, 121.54, 120.78, 116.93, 113.89, 106.04, 55.54, 52.43; **IR** (KBr, cm⁻¹): v 2954, 1716, 1668, 1505, 1450, 1239, 1042, 751; **MS (EI)** m/z (relative intensity) 432 (100) [M⁺]; **Anal. Calcd.** For C₂₅H₁₈F₂N₂O₃: C, 69.44; H, 4.20; N, 6.48. Found: C, 69.29; H, 4.22; N, 6.40.

N-(5,5-difluoro-3-(methylsulfonyl)indolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2i)

yellow solid; **mp**: 259-261°C;¹**H NMR** (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.23 (s, 1H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.47 – 7.20 (m, 3H), 7.01 (d, *J* = 7.9 Hz, 2H), 6.94 (d, *J* = 7.6 Hz, 2H), 3.85 (s, 3H), 3.07 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -79.56; ¹³**C NMR** (100 MHz, CDCl₃) δ 156.56, 140.38, 139.74, 137.08, 131.51, 130.97, 130.45, 129.95, 127.04, 126.13, 124.72, 124.38, 121.80, 120.77, 116.96, 113.96, 107.09, 55.55, 44.44; **IR** (KBr, cm⁻¹): v 2926, 1666, 1605, 1505, 1446, 1305, 1134, 750, 540; **MS (EI)** m/z (relative intensity) 452 (100) [M⁺]; **Anal. Calcd.** For C₂₅H₁₉F₂NO₃S: C, 63.71; H, 4.01; N, 6.19. Found: C, 63.43; H, 3.98; N, 6.13.

N-(5,5-difluoro-3-morpholinoindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2j)

yellow solid; **mp**: 245-247°C; ¹**H NMR** (300 MHz, CDCl₃) δ 8.53 (s, 1H), 7.67 (d, J = 8.5 Hz, 1H), 7.53 (m, 1H), 7.24 (m, 2H), 6.96 (m, 7H), 3.83 (m, 7H), 3.18 (m, 4H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.35 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.07, 151.31, 140.58, 136.34, 133.37, 130.82, 128.16 (t, J = 22.4 Hz), 125.03, 123.81, 120.72, 120.66, 119.12, 117.88(t, J = 5.3 Hz), 116.61, 113.81, 110.59(t, J = 4.3 Hz), 101.83, 66.58, 55.52, 48.35; **IR** (KBr, cm⁻¹): v 2830, 1659, 1504, 1449, 1239, 917, 749; **MS** (**EI**) m/z (relative intensity) 459 (100); **HRMS (EI)** calcd. For C₂₇H₂₃F₂N₃O₂: 459.1758, Found: 459.1760.

N-(5,5-difluoro-1-methylindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2k)

yellow solid; **mp**: 209-212 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 8.53 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 7.5 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.44 (d, J = 7.3 Hz, 1H), 7.38 – 7.26 (m, 3H), 7.13 (s, 1H), 6.98 (dd, J = 25.5, 8.2 Hz, 4H), 3.84 (s, 3H), 2.72 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.77 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.21, 140.40, 136.00, 135.35, 135.14, 132.34, 130.33, 128.03, 125.92, 123.90, 123.71, 121.25, 120.74, 116.15, 113.92, 109.64, 55.51, 23.80; **IR** (KBr, cm⁻¹): v 2915, 2840, 1662, 1504, 1458, 1245, 1016, 748, 552; **MS** (**EI**) m/z (relative intensity) 389 (100) [M⁺]; **HRMS** (**EI**) calcd. For C₂₄H₁₈F₂N₂O: 388.1387, Found: 388.1386. **mixture of**

N-(5,5-difluoro-2-methoxyindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2l) and N-(5,5-difluoro-4-methoxyindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2l')

yellow solids; ¹H NMR (300 MHz, CDCl₃) δ 8.60 (m, 1.1H), 7.60 (m, 1.2H), 7.50-7.46 (m, 2.2H), 7.37 – 7.19 (m, 3.5H), 7.08 (s, 1.2H), 7.05 – 6.84 (m, 4.4H), 3.85 (s, 3H), 3.84 (s, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ -77.92, -81.70; **IR** (KBr, cm⁻¹): v 3042, 2963, 2835, 1587, 1454, 1340, 1258, 1130, 810, 538; **MS (EI)** m/z (relative intensity) 404 (100) [M⁺]; **Anal. Calcd.** For C₂₄H₁₈F₂N₂O₂: C, 71.28; H, 4.49; N, 6.93. Found: C, 71.30; H, 4.55; N, 6.89.

Mixture of N-(2-chloro-5,5-difluoroindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2m) and N-(4-chloro-5,5-difluoroindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2m²)

yellow solids; ¹H NMR (300 MHz, CDCl₃) δ 8.60 (s, 1H), 7.78 (d, J = 8.5 Hz, 1H), 7.63-7.59 (m, 1H), 7.52 – 7.20 (m, 4H), 7.11-6.92 (m, 5H), 3.85 (s, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ -79.75 (s), -81.29 (s); **IR** (KBr, cm⁻¹): v 3080, 2915, 2835, 1664, 1505, 1454, 1239, 1047, 826, 544; **MS** (EI) m/z (relative intensity) 408 (100) [M⁺]; **HRMS (EI)** calcd. For C₂₃H₁₅ClF₂N₂O: 408.0841, Found: 408.0845.

1-(5,5-difluoro-6-((4-methoxyphenyl)imino)-5,6-dihydroindolo[2,1-a]isoquinolin-12-yl)ethan one(2n)

yellow solid; **mp**: 198-200°C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.88 (s, 1H), 7.78 (d, J = 8.8 Hz, 1H), 7.70 (s, 1H), 7.57 (t, J = 7.2 Hz, 1H), 7.48 (d, J = 6.4 Hz, 1H), 7.34 (m, 2H), 7.02- 6.94 (m, 4H), 3.83 (s, 3H), 2.71 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -85.46 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 198.96, 156.71, 140.67, 139.75, 135.69, 132.18, 131.94, 129.89, 128.33, 127.81, 126.15, 125.67, 124.68, 120.73, 119.96, 116.17, 114.01, 55.51, 31.95; **IR** (KBr, cm⁻¹): v 2915, 1659, 1504, 1449, 1241, 1139, 1035, 747; **MS** (**EI**) m/z (relative intensity) 416 (100) [M⁺]; **Anal. Calcd.** For C₂₅H₁₈F₂N₂O₂: C, 72.11; H, 4.36; N, 6.73. Found: C, 72.38; H, 4.46; N, 6.78.

N-(5,5-difluoro-10-methylindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (20)

yellow solid; **mp**: 187-189 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 8.42 (s, 1H), 7.81 (d, J = 7.0 Hz, 1H), 7.62 (s, 1H), 7.58 – 7.49 (m, 1H), 7.38 (s, 2H), 7.12 (s, 1H), 7.00-6.93 (m, 5H), 3.84 (s, 3H), 2.44 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -79.63 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.11, 141.35 (t, J = 28.9 Hz), 140.51, 134.90, 133.52, 132.85, 131.84, 130.65, 128.58, 127.11, 126.78, 110.95, 125.92, 123.55, 121.07, 120.83, 116.52, 113.86, 103.82, 55.53, 21.40; **IR** (KBr, cm⁻¹): v 3000, 2839, 1656, 1505, 1463, 1399, 1238, 1017, 761, 490; **MS (EI)** m/z (relative intensity) 389 (100) [M⁺]; **Anal. Calcd.** For C₂₄H₁₈F₂N₂O: C, 74.21; H, 4.67; N, 7.21. Found: C, 74.21; H, 4.76; N, 7.01.

4-methoxy-N-(5,5,10-trifluoroindolo[2,1-a]isoquinolin-6(5H)-ylidene)aniline (2p)

yellow solid; **mp**: 192-193 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 8.54 (s, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 6.3 Hz, 1H), 7.03-6.92 (m, 6H), 3.85 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -79.70 (s, 2F), -118.72 - -118.63(m, 1F); ¹³**C NMR** (100 MHz, CDCl₃) δ 161.04, 158.65, 156.29, 141.23 (t, J = 27.2 Hz), 140.10, 134.32, 133.00, 131.99, 131.37 (d, J = 9.3 Hz), 129.08, 127.35 (t, J = 24.9 Hz), 126.31, 126.01, 123.72, 120.82, 118.03, 113.88, 113.30 (d, J = 24.0 Hz), 106.52 (d, J = 24.0 Hz), 103.41 (d, J = 4.0 Hz), 55.52; **IR** (KBr, cm⁻¹): v 3048, 2835, 1659, 1505, 1461, 1146, 1034, 770, 515; **MS** (**EI**) m/z (relative intensity) 393 (100) [M⁺]; **Anal. Calcd.** For C₂₃H₁₅F₃N₂O: C, 70.40; H, 3.85; N, 7.14. Found: C, 70.41; H, 4.06; N, 7.03.

N-(10-bromo-5,5-difluoroindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2q)

yellow solid; **mp**: 205-206 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 8.44 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.73 (s, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.45-7.37 (m, 2H), 7.03-9.92 (m, 5H), 3.85 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -79.98 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.38, 139.96, 135.25, 133.98, 132.11, 132.02, 129.18, 128.38, 127.38 (t, J = 24.9 Hz), 126.01, 123.80, 123.65, 120.80, 118.25, 117.14, 113.89, 102.81, 55.52; **IR** (KBr, cm⁻¹): v 3021, 2825, 1654, 1505, 1448, 1248, 1031, 902, 768, 546; **MS** (**ESI**) m/z 453 [M+H⁺]; **HRMS** (**ESI**) m/e calcd for C₂₃H₁₆F₂N₂O⁺ [M+H⁺] 453.0409, Found: 453.04105.

N-(5,5-difluoro-9,11-dimethylindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2r)

yellow solid; **mp**: 254-255 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 8.21 (s, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.14 – 6.83 (m, 6H), 3.85 (s, 3H), 2.53 (s, 3H), 2.42 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -79.61 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.05, 140.60, 136.24, 131.80, 130.14, 128.27, 127.92, 126.02, 125.89, 123.38, 120.75, 114.37, 113.82, 102.60, 55.53, 22.01, 18.44; **IR** (KBr, cm⁻¹): v 3005, 2830, 1666, 1506, 1412, 1242, 1039, 763, 556; **MS** (**EI**) m/z (relative intensity) 403 (100) [M⁺]; **Anal. Calcd.** For C₂₅H₂₀F₂N₂O: C, 74.61; H, 5.01; N, 6.96. Found: C, 74.73; H, 5.12; N, 6.72. **N-(5,5-difluoro-8-methylindolo[2,1-a]isoquinolin-6(5H)-ylidene)-4-methoxyaniline (2s)**

yellow solid; **mp**: 230-321 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 8.39 (s, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.60 – 7.43 (m, 2H), 7.37 (t, J = 7.6 Hz, 1H), 7.15 – 6.89 (m, 6H), 3.85 (s, 3H), 2.46 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -78.59 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.11, 141.57 (t, J = 20.2 Hz), 140.55, 137.07, 136.12, 132.31, 131.84, 128.44, 128.15, 126.95 (t, J = 24.7 Hz), 125.89, 125.44, 123.45, 120.76, 116.86, 113.85, 104.07, 55.54, 22.10; **IR** (KBr, cm⁻¹): v 3003, 2830, 1660, 1506, 1400, 1242, 1023, 764, 482; **MS (EI)** m/z (relative intensity) 389 (100) [M⁺]; **HRMS (EI)** calcd. For C₂₄H₁₈F₂N₂O: 388.1387, Found: 388.1384. **N-(6,6-difluoropyrrolo]2,1-a]isoquinolin-5(6H)-ylidene)-4-methoxyaniline(4a)**

¹H NMR (300 MHz, CDCl₃) δ 7.67 – 7.40 (m, 4H), 7.40 – 7.16 (m, 1H), 6.99-6.89 (m, 4H), 6.68

(s, 1H), 6.36 (s, 1H), 3.81 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.29 (s); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.47, 140.65 (t, *J* = 26.1 Hz), 139.88, 131.95, 128.26, 127.21, 126.12, 126.01, 122.31, 120.92, 119.85, 115.06, 113.81, 108.98, 55.46; **IR** (KBr, cm⁻¹): v 3140, 2835, 1661, 1609, 1505, 1452, 1421, 1275, 1040, 839, 757; **MS** (ESI) m/z 347 [M+Na⁺]; **HRMS** (ESI) *m/e* calcd for C₂₃H₁₆F₂N₂O⁺ [M+Na⁺] 347.09664, Found: 347.09556.

N-(6,6-difluoroimidazo[2,1-a]isoquinolin-5(6H)-ylidene)-4-methoxyaniline(4b)

yellow solid; **mp**: 157-160°C; ¹**H NMR** (300 MHz, CDCl₃) δ 8.17 (d, J = 7.7 Hz, 1H), 7.75 (s, 1H), 7.62 (m, 2H), 7.49 (d, J = 6.5 Hz, 1H), 7.00 (s, 1H), 6.93 (d, J = 7.3 Hz, 2H), 3.84 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.76 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 171.08, 157.13, 142.70, 138.66, 132.41, 131.85, 130.08, 128.65, 126.00, 124.12, 121.05, 116.26, 113.90, 55.45; **IR** (KBr, cm⁻¹): v 3144, 2907, 1687, 1505, 1414, 1266, 834, 778, 575; **MS** (**EI**) m/z (relative intensity) 325 (100) [M⁺]; **Anal. Calcd.** For C₁₈H₁₃F₂N₃O: C, 66.46; H, 4.03; N, 12.92. Found: C, 66.71; H, 4.11; N, 13.03.

N-(6,6-difluoro-2-phenylpyrrolo[2,1-a]isoquinolin-5(6H)-ylidene)-4-methoxyaniline(4c)

yellow solid; **mp**: 179-181°C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.79 – 7.58 (m, 3H), 7.54 (s, 1H), 7.49 – 7.29 (m, 5H), 7.16 – 6.79 (m, 5H), 3.88 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.03 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.54, 139.81, 133.58, 132.00, 129.53, 129.11, 128.84, 127.50, 127.13, 126.83, 126.67, 126.43, 126.19, 126.10, 125.54, 122.38, 121.00, 115.60, 113.85, 107.09, 55.48; **IR** (KBr, cm⁻¹): v 2825, 1665, 1504, 1418, 1410, 1275, 1241, 1034, 764, 750; **MS** (**EI**) m/z (relative intensity) 400 (100); **Anal. Calcd.** For C₂₅H₁₈F₂N₂O: C, 74.99; H, 4.53; N, 7.00. Found: C, 75.28; H, 4.76; N, 7.08.

N-(8-chloro-6,6-difluoro-2-phenylpyrrolo[2,1-a]isoquinolin-5(6H)-ylidene)-4-methoxyaniline (4d)

yellow solid; **mp**: 195-197°C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.91 (s, 1H), 7.56 (m, 3H), 7.49 – 7.35 (m, 3H), 7.35 – 7.19 (m, 2H), 6.96 (m, 5H), 3.83 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.39 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.73, 139.51, 133.36, 133.10, 132.36, 129.69, 128.86, 127.76, 127.52, 127.24, 126.23, 125.52, 123.81, 120.99, 115.90, 113.89, 107.51, 55.49; **IR** (KBr, cm⁻¹): v 2920, 2846, 1734, 1665, 1504, 1407, 1240, 885, 833, 543; **MS (EI)** m/z (relative

intensity) 434 (100) [M⁺]; **Anal. Calcd.** For C₂₅H₁₇ClF₂N₂O: C, 69.05; H, 3.94; N, 6.44. Found: C, 69.20; H, 4.12; N, 6.43.

N-(2-(tert-butyl)-6,6-difluoro-8-methoxypyrrolo[2,1-a]isoquinolin-5(6H)-ylidene)-4-methoxy aniline(4e)

yellow solid; **mp**: 140-141°C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.49 (d, J = 9.0 Hz, 1H), 7.33 (s, 1H), 7.01 (m, 2H), 6.93 (m, 4H), 6.52 (s, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 1.29 (s, 9H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.75 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 158.80, 156.26, 140.89 (t, J = 27.9 Hz), 140.80, 140.22, 128.42, 127.41 (t, J = 24.1 Hz), 123.89, 120.88, 120.34, 119.45, 114.98, 113.78, 113.62, 110.94, 109.48, 106.40, 55.44, 30.96, 30.87; **IR** (KBr, cm⁻¹): v 2975, 1671, 1506, 1045, 841, 586; **MS** (**EI**) m/z (relative intensity) 410 (27) [M⁺], 218 (100); **Anal. Calcd.** For C₂₄H₂₄F₂N₂O₂: C, 70.23; H, 5.89; N, 6.82. Found: C, 70.24; H, 6.07; N, 6.77.

5,5-difluoroindolo[2,1-a]isoquinolin-6(5H)-one (2aa)

white solid; **mp**: 157-158°C; ¹**H NMR** (300 MHz, CDCl₃) δ 8.38 (d, J = 8.0 Hz, 1H), 7.84 – 7.69 (m, 2H), 7.57-7.50 (m, 2H), 7.47 – 7.22 (m, 3H), 7.01 (s, 1H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -91.91 (2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 158.53 (t, J = 31.6 Hz), 135.82, 132.89, 132.14, 130.48, 129.34, 126.93, 126.67 (t, J = 3.1 Hz), 125.73, 123.74, 121.50, 116.58, 107.91 (t, J = 240.5 Hz), 107 .50; **IR** (KBr, cm⁻¹): v 3117, 1717, 1610, 1455, 1402, 1155, 1024, 750, 491; **MS** (**EI**) m/z (relative intensity) 269 (100) [M⁺]; **Anal. Calcd.** For C₁₆H₉F₂NO: C, 71.37; H, 3.37; N, 5.20. Found: C, 71.34; H, 3.37; N, 5.28.

2-(tert-butyl)-6,6-difluoro-8-methoxypyrrolo[2,1-a]isoquinolin-5(6H)-one(4ea)

white solid; **mp**: 132-133°C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.52 (d, J = 8.7 Hz, 1H), 7.18 (s, 1H), 7.16 (s, 1H), 7.06 (d, J = 8.9 Hz, 1H), 6.54 (s, 1H), 3.87 (s, 3H), 1.26 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -95.04 (s); ¹³**C NMR** (100 MHz, CDCl₃) δ 159.43, 158.14 (t, J = 31.4 Hz), 143.29, 129.97, 127.32 (t, J = 23.3 Hz), 124.36, 119.61, 119.33 (t, J = 6.1 Hz), 112.73, 110.12, 109.15, 107.92 (t, J = 241.7 Hz), 55.60, 30.83, 30.38; **IR** (KBr, cm⁻¹): v 3108, 2966, 1728, 1620, 1604, 1538, 1491, 1343, 1023, 754, 630; **MS** (**EI**) m/z (relative intensity) 305 (61) [M⁺], 290 (100); **Anal. Calcd.** For C₁₇H₁₇F₂NO₂: C, 66.87; H, 5.61; N, 4.59. Found: C, 66.90; H, 5.62; N, 4.58. **N-(2-chloro-2,2-difluoro-1-(2-phenyl-1H-indol-1-yl)ethylidene)-4-methoxyaniline (5a)**

yellow solid; **mp**: 78-79 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.65 (d, J = 3.7 Hz, 1H), 7.37 – 7.24 (m, 5H), 7.21- (m, 3H), 6.79 (s, 1H), 6.67 (q, J = 9.0 Hz, 4H), 3.73 (s, 3H); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -48.07 – -60.67 (m, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.19, 140.27 (t, J = 27.3 Hz), 139.51, 136.14, 135.78, 131.79, 129.08, 128.69, 128.35, 127.38, 126.60, 123.63, 122.37 (t, J = 296.6 Hz), 122.04, 121.01, 114.32, 111.50, 105.90, 55.40; **IR** (KBr, cm⁻¹): v 3059, 2835, 1650, 1588, 1504, 1453, 1338, 979, 748, 523; **MS** (**ESI**) m/z 411 [M+H⁺]; **Anal. Calcd.** For C₂₃H₁₇ClF₂N₂O: C, 67.24; H, 4.17; N, 6.82. Found: C, 67.34; H, 4.22; N, 6.77.

N-(2-bromo-2,2-difluoro-1-(1H-indol-1-yl)ethylidene)-4-methoxyaniline (6a)

white solid; **mp**: 57-59 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, J = 7.8 Hz, 1H), 7.23 (s, 1H), 7.09 (t, J = 7.4 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.82 (d, J = 7.7 Hz, 1H), 6.72 (d, J = 3.4 Hz, 1H), 6.63-6.57 (m, 4H), 3.65 (s, 3H).; ¹⁹**F NMR** (282 MHz, CDCl₃) δ -53.04 (s, 2F); ¹³**C NMR** (100 MHz, CDCl₃) δ 159.50, 140.08 (t, J = 26.8 Hz), 136.12, 134.45, 128.69, 125.27, 123.48, 121.71, 121.10, 114.20, 112.01, 106.79, 55.30; **IR** (KBr, cm⁻¹): v 3016, 2846, 1650, 1591, 1503, 1452, 1325, 959, 812, 532; **MS (EI)** m/z (relative intensity) 378 (50, ⁷⁹Br) [M⁺], 380 (47, ⁸¹Br) [M⁺], 262 (100), 264 (98); **Anal. Calcd.** For C₁₇H₁₃BrF₂N₂O: C, 53.85; H, 3.46; N, 7.39. Found: C, 54.09; H, 3.58; N, 7.39.

1b

1c

1e

S30

1h

1i

1j

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

1k

1m

1n

10

1q

1s

3a

S46

3e

2a 3.892 8.558 ĩí n 3.00 **0**(79 4 ОРРМ 2 - 55.522 - 156.194 ſ 11 PPM 200 50 150 100 6

2d

P 8.643 - 3.836 4 OPPM 2 163.718 161.217 156.223 1.12.12.259
1.12.12.259
1.12.12.259
1.12.12.259
1.12.12.12.12.259
1.12.12.13.01
1.12.13.01
1.12.13.01
1.12.13.01
1.12.13.01
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1.12.13.00
1. 132.081 - 55.522 100 200 50

2g

--0.000 3.857 1,590 1,564 1,552 1,552 1,552 1,552 1,552 1,552 1,552 1,552 1,552 1,552 1,552 1,557 ШIJ Í Ϊľſ -NO₂ 0 PPM datal -14000 55. 54 29, 70 -1000 140 130 110 100 fl (ppm)

S55

2i

2m & 2m'

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

20

4a

2aa

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

