Supporting Information

Reactivity of scandium terminal imido complexes towards metal halides

Erli Lu, Qinghai Zhou, Yuxue Li, Jiaxiang Chu, Yaofeng Chen,* Xuebing Leng and

Jie Sun

Contents

1. General	S2
2. Synthesis of 3 – 5	S2
3. Variable-temperature ¹ H NMR spectra of 4	
4. Variable-temperature ¹ H NMR spectra of 5	
5. Hydroboration of alkynes	
6 X-ray crystallography for 3 – 5	S10
7. Theoretical calculation	
8. References.	S16
9. Calculated total energies and geometrical coordinates.	S17
10. ¹ H NMR spectra showing the hydroborations catalyzed by 5	

General. All operations were carried out under an atmosphere of argon using Schlenk techniques or in a nitrogen filled glovebox. Toluene, hexane, C_6D_6 , and d_8 -toluene were dried over Na/K alloy, distilled under vacuum, and stored in the glovebox. CuI (A.R.) was purchased from SCRC (Sinopharm Chemical Reagent Co., Ltd), dried under vacuum at 50 °C for 12 hours, and stored in the glovebox in darkness. [Rh(COD)Cl]₂ (99%) and [Ir(COD)Cl]₂ (99%) were purchased from Shanghai Boka-Chem Tech Inc., stored in the freezer of glovebox, and used without further purification. Pinacolborane was purchased from Alfa-Aesar, dried over activated 4 Å molecule sieve, distilled under vacuum, degassed by freeze-thaw-vacuum, and stored in the glovebox. 3-Hexyne and prop-1-ynylbenzene were purchased from Acros, dried over activated 4 Å molecule sieve, distilled under vacuum, degassed by freeze-thaw-vacuum, and stored in the glovebox. The scandium terminal imido complexes 1 and 2 were synthesized as we previously reported.¹ ¹H and ¹³C NMR spectra were recorded on a Varian Mercury 300 MHz or a Varian 400 MHz spectrometer. Low temperature ¹H NMR spectra were recorded on a Bruker AV 500 MHz spectrometer in d_8 -toluene. All chemical shifts were reported in δ units with references to the residual solvent resonance of the deuterated solvents for proton and carbon chemical shifts. Elemental analysis was performed by the Analytical Laboratory of Shanghai Institute of Organic Chemistry.

3: 1 (100 mg, 0.149 mmol) and CuI (56.8 mg, 0.298 mmol) were mixed in 3 mL of toluene and stirred at room temperature in dark. After 1.5 hours, the reaction mixture was filtrated, the filtrate was concentrated to approximately 0.5 mL, and to which 0.1 mL of hexane was added. The above solution was cooled to -35 °C to afford 3 as a dark red crystalline solid (97 mg, 0.113 mmol, 76% yield). Anal. Calcd for C₄₀H₆₁CuIN₆Sc: C, 55.78; H, 7.14; N, 9.76. Found: C, 54.95; H, 6.93; N, 9.10. ¹H NMR (400 MHz, C₆D₆, 25 °C): $\delta = 8.26$ (br, d, ${}^{3}J_{H-H} = 5.2$ Hz, 2H; orthoH of DMAP), 7.29-7.26 (m, 4H; ArH), 7.21 (dd, ${}^{3}J_{H-H} =$ 6.8 Hz, ${}^{4}J_{H-H} = 2.4$ Hz, 1H; ArH), 6.97 (t, ${}^{3}J_{H-H} = 7.6$ Hz, 1H; ArH), 5.51 (br, d, ${}^{3}J_{H-H} = 6.0$ Hz, 2H; meta *H* of DMAP), 5.14 (s, 1H; MeC(N)CH); 4.46 (br, 1H; ArCHMe₂), 4.03 (sept, ${}^{3}J_{H-H} = 6.8$ Hz, 1H; ArCHMe₂), 3.59 (m, 1H; NCH₂), 3.01-2.85 (m, 3H; NCH₂), 2.89 (s, 3H; CH₂NMe₂), 2.16 (s, 3H; CH_2NMe_2), 1.89 (br, s, 6H; $CNMe_2$), 1.80 (s, 3H; MeC), 1.72 (s, 3H; MeC), 1.71 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 3H; ArCHMe₂), 1.54 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 6H; ArCHMe₂), 1.49 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 3H; ArCHMe₂), 1.47 (br, d, ${}^{3}J_{H-H} = 6.8$ Hz, 6H; ArCHMe₂), 1.37 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 3H; ArCHMe₂), 1.11 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 3H; ArCHMe₂). ¹³C NMR (100 MHz, C₆D₆, 25 °C): δ = 166.3, 165.4 (imine C), 158.1, 153.8, 150.8, 148.6, 143.2, 142.2, 125.7, 124.3, 123.9, 123.1, 122.4, 116.8, 106.5 (ArC and DMAP's aromatic C), 99.6 (MeC(N)CH), 57.5, 51.4, 46.9, 42.4, 38.0 (NCH₂, CH₂NMe₂ and CNMe₂), 28.9, 28.3, 27.8, 26.0, 25.7, 25.4, 25.3, 25.1, 24.3, 23.1, 22.5 (^{*i*}Pr and MeC).

4: 2 (100 mg, 0.165 mmol) in 1 mL of toluene was added to [Rh(COD)Cl]₂ (40.7 mg, 0.083mmol) in 1 mL of toluene at room temperature. The reaction solution gradually changed from red into vellow. After standing at room temperature for 1 hour, the volatiles of the reaction solution were removed under vacuum to give a red viscous oil. The oil was extracted by 2 mL of hexane, the extraction was concentrated to approximately 1 mL and cooled to -35 °C to afford 4 as a yellow crystalline solid (107 mg, 0.126 mmol, 76% vield). Anal. Calcd for C44H70ClN5RhSc (0.5 hexane): C, 63.04; H, 8.67; N, 7.82. Found: C, 63.10; H, 8.34; N, 8.04. ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 7.25-7.17 (m, 3H; Ar*H*), 5.77(d, ${}^{3}J_{H-H} = 6.0$ Hz, 0.5H; 3, 5-*H* of η^{4} 2,6-DIPP), 5.74 (d, ${}^{3}J_{H-H} = 6.0$ Hz, 0.5H; 3, 5-*H* of η^{4} 2,6-DIPP), 5.72 (d, ${}^{3}J_{H-H} = 6.0$ Hz, 0.5H; 3, 5-*H* of η^{4} 2,6-DIPP), 5.68 (d, ${}^{3}J_{H-H} = 6.0$ Hz, 0.5H; 3, 5-*H* of η^{4} 2,6-DIPP), 5.04 (s, 0.5H; MeC(N)CH), 5.00 (s, 0.5H; MeC(N)CH), 3.88 (t, ${}^{3}J_{H-H} = 6.0$ Hz, 0.5H; 4-H of η^{4} 2,6-DIPP), 3.87 (t, ${}^{3}J_{H-H} = 6.0$ Hz, 0.5H; 4-H of η^{4} 2,6-DIPP), 3.72 (br, 2H; CH₂CHCHCH₂), 3.67 (br, 2H; CH₂CHCHCH₂), 3.63-3.37 (m, 5H; NCH₂ and ArCHMe₂), 3.30-3.13 (m, 2H; NCH₂ or ArCHMe₂), 3.10-3.02 (m, 1.5H; NCH₂ or ArCHMe₂), 2.90 (m, 0.5H; NCH₂ or ArCHMe₂), 2.68 (s, 1.5H; NMe), 2.58 (m, 1H; NCH₂), 2.50 (s, 1.5H; NMe), 2.30 (t, ${}^{3}J_{H-H} = 6.4$ Hz, 1H; NCH₂), 2.21-2.18 (m, 5H; 4Hs of CH₂CHCHCH₂, 1H of NCH₂), 2.05 (s, 3H; NMe₂), 2.00 (s, 3H; NMe₂), 1.94-1.82 (m, 5H; 4Hs of CH2CHCHCH2, 1H of NCH2), 1.89 (s, 1.5H; MeC), 1.84 (s, 1.5H; MeC), 1.72 (s, 1.5H; MeC), 1.71 (s, 1.5H; MeC), 1.64 (d, ${}^{3}J_{H-H} = 6.4$ Hz, 1.5H; ArCHMe₂), 1.54 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 1.5H; ArCHMe₂), 1.49 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 1.5H; ArCHMe₂), 1.45 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 1.5H; ArCHMe₂), 1.41-1.35 (m, 12H; ArCHMe₂), 1.30 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 1.5H; ArCHMe₂), 1.26 (d, ${}^{3}J_{H-H} = 6.4$ Hz, 1.5H; ArCHMe₂), 1.18 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 3H; ArCHMe₂), 0.89 (t, ${}^{3}J_{H-H} = 6.4$ Hz, 3H; CH₃ of hexane). ${}^{13}C$ NMR (100 MHz, C₆D₆, 25 °C): $\delta = 166.3$, 166.1, 164.9, 164.4 (imine C), 148.5, 148.2, 143.8, 143.2, 142.8, 142.3, 142.0, 125.3, 125.2, 124.3, 124.0, 123.9, 123.5, 123.4, 123.1, 122.3, 100.4, 100.3, 100.2, 100.0, 98.7, 98.2 (ArC and MeC(N)CH), 73.5, 73.3, 72.1(br), 71.4(br), 71.1(br) (CH₂CHCHCH₂ of COD), 55.9, 55.3, 54.2, 53.8, 53.0, 50.2, 47.8, 47.7, 46.0, 45.6, 45.0, 39.7, 32.4, 32.3, 32.1, 32.0, 31.9, 28.6, 28.4, 28.3, 28.2, 26.7, 26.5, 26.4, 26.3, 25.5, 25.3, 24.8, 24.7, 24.6, 24.4, 24.2, 23.9, 23.3, 23.1, 23.0, 22.9 (NCH₂, NMe, CMe, ⁱPr, CH₂ of COD and CH₂ of hexane), 14.3 (CH₃ of hexane).

5: Following the procedure described for **4**, but with **2** (100 mg, 0.165 mmol) and [Ir(COD)Cl]₂ (55.4 mg, 0.083mmol), and the reaction time was 12 hours. **5** was obtained as a brownish yellow crystalline solid (96.8 mg, 0.103 mmol, 63% yield). Anal. Calcd for C₄₄H₇₀ClN₅IrSc: C, 56.12; H, 7.49; N, 7.44. Found: C, 56.35; H, 7.60; N, 7.47. ¹H NMR (300 MHz, C₆D₆, 25 °C): δ = 7.26-7.21 (m, 3H; Ar*H*), 5.45 (d, ³*J*_{H-H} = 5.7 Hz, 0.5H; 3, 5-*H* of η^3 - η^5 2, 6-DIPP), 5.40 (d, ³*J*_{H-H} = 5.7 Hz, 0.5H; 3, 5-*H* of η^3 - η^5 2, 6-DIPP), 5.03 (s, 0.5H; MeC(N)C*H*), 4.98 (s, 0.5H; MeC(N)C*H*), 4.43 (t, ³*J*_{H-H} = 5.7 Hz, 1H; 4-*H* of η^3 - η^5 2, 6-DIPP), 3.70 (br, 4H; CH₂C*H*C*H*CH₂), 3.53-

3.44 (m, 1.5H; NC*H*₂ or ArC*H*Me₂), 3.38-3.07 (m, 7.5H; NC*H*₂ or ArC*H*Me₂), 2.96 (m, 1H; NC*H*₂ or ArC*H*Me₂), 2.72 (s, 1.5H; N*Me*), 2.67 (m, 0.5H; NC*H*₂ or ArC*H*Me₂), 2.57 (m, 0.5H; NC*H*₂ or ArC*H*Me₂), 2.54 (s, 1.5H; N*Me*), 2.28 (t, ${}^{3}J_{H-H} = 6.3$ Hz, 1H; NC*H*₂), 2.22 (t, ${}^{3}J_{H-H} = 6.3$ Hz, 1H; NC*H*₂), 2.16-2.12 (m, 4H; C*H*₂CHCHC*H*₂), 2.06 (s, 3H; N*Me*₂), 2.01 (s, 3H; N*Me*₂), 1.91-1.82 (m, 5H; 4*H*s of C*H*₂CHCHC*H*₂, 1H of NC*H*₂), 1.88 (s, 1.5H; *Me*C), 1.82 (s, 1.5H; *Me*C), 1.73 (s, 1.5H; *Me*C), 1.72 (s, 1.5H; *Me*C), 1.59 (d, ${}^{3}J_{H-H} = 6.6$ Hz, 1.5H; ArCH*Me*₂), 1.53 (d, ${}^{3}J_{H-H} = 6.6$ Hz, 1.5H; ArCH*Me*₂), 1.52 (d, ${}^{3}J_{H-H} = 6.6$ Hz, 1.5H; ArCH*Me*₂), 1.20 (d, ${}^{3}J_{H-H} = 6.6$ Hz, 0.4Hz, 0.4HX, 0.4K2, 0.4K2 (d, ${}^{3}J_{H-H} = 6.6$ Hz, 3H; ArCH*Me*₂), 1.20 (d, ${}^{3}J_{H-H} = 6.6$ Hz, 0.4Hz, 0.4HZ, 0.4HX, 0.4K2, 0.4K2 (d, ${}^{3}J_{H-H} = 6.6$ Hz, 3H; ArCH*Me*₂), 1.20 (d, ${}^{3}J_{H-H} = 6.6$ Hz, 0.4HZ, 0.4HZ, 0.4HZ, 0.4K2, 0.4K2,

Variable-temperature ¹H NMR spectra of 4 and 5 in C₆D₆ or *d*₈-toluene:

The ¹H NMR spectra of **4** and **5** in C₆D₆ at room temperature are similar to each other, both of which features two sets of signals in a ratio of 1:1. For example, the hydrogen at the β -diketiminato backbone appears as two signals at δ = 5.04 and 5.00 ppm for **4**, and at δ = 5.03 and 4.98 ppm for **5**. Increasing the temperature results in the coalescence of the two sets of signals (see Figures S1 and S3 for **4** and **5** in C₆D₆, respectively). When the complexes were brought back to room temperature, they return to their orginal state without any observable decomposition (for **4**, Figure S1), or with a small amount of decomposition (for **5**, Figure S3).

In d_8 -toluene, the similar ¹H NMR dynamical behavior as that in C₆D₆ was observed for both of the complexes (4: Figure S2; 5: Figure S4), with the temperature ranges from -23 °C to 60 °C (the low-end of the temperature range is -23 °C due to the restriction of the our NMR facility, for which a temperature lower than -23 °C is inaccessible).

Figure S1. Variable-temperature ¹H NMR spectra of **4** (C₆D₆, 400 MHz). The temperature was varied from 20 °C \rightarrow 30 °C \rightarrow 40 °C \rightarrow 50 °C \rightarrow 40 °C \rightarrow 30 °C \rightarrow 20 °C.

Figure S2. Variable-temperature ¹H NMR spectra of **4** (*d*₈-toluene, 500 MHz). The temperature was varied from 27 °C \rightarrow 0 °C \rightarrow -10 °C \rightarrow -20 °C \rightarrow -23 °C \rightarrow -20 °C \rightarrow -10 °C \rightarrow 0 °C \rightarrow 27 °C \rightarrow 40 °C \rightarrow 50 °C \rightarrow 60 °C \rightarrow 27 °C.

Figure S3. Variable-temperature ¹H NMR spectra of **5** (C₆D₆, 400 MHz). The temperature was varied from 20 °C \rightarrow 40 °C \rightarrow 60 °C \rightarrow 40 °C \rightarrow 20 °C.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Figure S4. Variable-temperature ¹H NMR spectra of **5** (*d*₈-toluene, 500 MHz). The temperature was varied from 27 °C \rightarrow 0 °C \rightarrow -10 °C \rightarrow -20 °C \rightarrow -23 °C \rightarrow -20 °C \rightarrow -10 °C \rightarrow 0 °C \rightarrow 27 °C \rightarrow 40 °C \rightarrow 50 °C \rightarrow 60 °C \rightarrow 27 °C.

General procedure for hydroboration of alkynes. Alkyne (0.352 mmol) and pinacolborane (0.352 mmol) were disolved in 200 mg (0.210 mL) of C₆D₆. **4**, **5**, [Rh(COD)Cl]₂, or [Ir(COD)Cl]₂ (0.00352 mmol for **4** and [Rh(COD)Cl]₂; 0.00176 mmol for **5** and [Ir(COD)Cl]₂) in 275 mg of C₆D₆ (0.290 mL) was added to the substrates' C₆D₆ solution by one portion at room temperature. The [Sub.]₀ is 0.704 mmol L⁻¹. The process of the reaction was monitored by ¹H NMR spectroscopy.

Table S1. Hydroboration of 3-hexyne

^a Selectivity of products were determinated by ¹H NMR spectrum, and the *Z*- and *E*- isomers were determinated by ¹H-¹H 1D NOESY spectrum. ^b conversions were determinated by ¹H NMR spectrum.

 Table S2. Hydroboration of prop-1-ynylbenzene

X-ray Crystallography.

-

Data collection of **3** was performed on a Bruker SMART diffractometer at 293(2) K; data collection of **4** and **5** were performed on a Bruker SMART APEXII diffractometer at 133(2) K. The structures were solved by direct methods and refined on F^2 by full-matrix least squares using the SHELXL-97 program.² Hydrogen atoms were placed at calculated positions and were included in the structure calculation.

Table S3. Crystal data and refinement	t parameters for 3-5.
---------------------------------------	-----------------------

Compound	3	4	5
Empirical formula	$C_{40}H_{61}CuIN_6Sc$	C44H70ClN5RhSc	C44H70ClIrN5Sc
Formula weight	861.35	852.37	941.66
Crystal size, mm	$0.31\times0.25\times0.17$	$0.15 \times 0.10 \times 0.05$	$0.35\times0.18\times0.15$
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{1}/n$	$P2_{1}/c$	Сс
Unit cell dimensions:			
<i>a</i> [Å]	11.2772(9)	13.2520(12)	23.527(3)
<i>b</i> [Å]	36.002(3)	22.398(2)	12.3238(13)
<i>c</i> [Å]	14.1324(12)	15.4942(14)	15.6154(16)
α [^o]	90	90	90
β [°]	104.966(2)	110.3550(10)	105.940(2)
γ [°]	90	90	90
Volume [Å ³]	5543.2(8)	4311.8(7)	4353.4(8)
Ζ	4	4	4
Density (calculated) [g·cm ³]	1.032	1.313	1.437
Abosrption coefficient [mm ⁻¹]	1.089	0.638	3.306
F(000)	2184	1808	1936
θ range [°]	1.87 to 26.00	1.64 to 26.00	1.80 to 27.00
	$-13 \le h \le 11$	$-16 \le h \le 16$	$-26 \le h \le 30$
Index ranges	$-41 \le k \le 44$	$-20 \le k \le 27$	$-14 \le k \le 15$
	$-16 \le l \le 17$	$-19 \le l \le 19$	$-19 \le l \le 19$
Refelections collected/unique	30198/10864	28282/8452	15211/8417
	$[R_{\rm int} = 0.053]$	$[R_{\rm int} = 0.089]$	$[R_{\rm int} = 0.026]$
Flack parameter			-0.001(5)
Su [max / min]	0.001 / 0.000	0.001 / 0.000	0.005 / 0.000
Completeness [%]	99.7	99.8	99.7
Observed refelections $I > 2\sigma(I)$	5683	5731	7851
Min. and Max. transmission	0.728 and 0.832	0.910 and 0.969	0.391 and 0.637
Data/restrains/parameters	10864 / 0 / 456	8452 / 0 / 470	8417/40/492
Goodness-of-fit on F^2	0.946	0.985	1.010
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0496$	$R_1 = 0.0450$	$R_1 = 0.0272$
	$wR_2 = 0.1005$	$wR_2 = 0.0996$	$wR_2 = 0.0626$
R indices (all data)	$R_1 = 0.0847$	$R_1 = 0.0855$	$R_1 = 0.0311$
	$wR_2 = 0.1049$	$wR_2 = 0.1194$	$wR_2 = 0.0645$
Largest diff. peak and hole [e·Å-3]	0.633 and -0.331	0.616 and -0.763	1.314 and -0.393

	3	4 (M = Rh)	5 (M = Ir)
Sc-N ^{imido}	1.920(3)	1.928(4)	1.937(4)
N ^{imido} –C ^{ipso}	1.411(4)	1.300(5)	1.286(6)
Sc-N1	2.183(3)	2.233(3)	2.220(4)
Sc-N2	2.188(3)	2.206(3)	2.188(5)
Sc-N3	2.372(3)	2.360(3)	2.328(5)
ScCu	2.926(8)	-	-
Cu–I	2.409(5)	-	-
ScCl	-	2.453(1)	2.435(2)
M-C25	-	2.568(4)	2.700(4)
M-C26	-	2.497(4)	2.317(4)
М-С27	-	2.344(4)	2.245(5)
M-C28	-	2.184(4)	2.245(6)
М-С29	-	2.254(4)	2.213(5)
М-С30	-	2.340(4)	2.347(4)
$Sc-N^{imido}-C^{ipso}$	152.5(2)	174.5(3)	161.8(4)
Sc-N6-Cu	100.6(1)	-	-
Cu–N ^{imido} –C ^{ipso}	106.9(2)	-	-
N ^{imido} –Sc–Cu	39.2(8)	-	-
N ^{imido} –Cu–Sc	40.2(9)	-	-
Sc-Cu-I	146.0(3)	-	-
I-Cu-N ^{imido}	173.6(9)	-	-

Table S4. Selected bonds lengths (Å) and angles (deg) for 3-5

Theoretical Calculation. Density functional theory $(DFT)^3$ studies have been performed with the Gaussian 09 program⁴ using the B3LYP method⁵. The 6-311G* basis set was used for C, H, N, and Cl, and the Lanl2DZ basis set with Effective Core Potential $(ECP)^6$ was used for Cu, I, Sc, Rh, and Ir. The NBO charges and the Wiberg bond order were calculated by NBO natural bonding analysis.⁷ The structures of the complexes **3–5** obtained by the X-ray diffraction were used as the initial structures to do the optimization. The molecule orbitals were depicted using isodensity at 0.02 au.

The optimized structure of 3

Figure S5. The optimized structure of **3** with selected bond lengths and bond angles (the data in italic are obtained from X-ray diffraction). Hydrogen atoms have been omitted for clarity.

MO-170

MO-180

MO-187

MO-189

MO-190(HOMO)

MO-191(LUMO)

Figure S6. Selected molecule orbitals of **3**, showing some overlaps between the empty 3*d* orbitals of Sc(III) and the filled 3*d* orbitals of Cu(I) in **MO-170**, **MO-176**, **MO-180** and **MO-190** (HOMO).

The optimized structures of 2, 4 and 5

Figure S7. The optimized structures of 2, 4 and 5. Isopropyl groups at the DIPP substituents and hydrogen atoms have been omitted for clarity.

	Sc-	-Nimido	(Å)	Ni	mido–C ((Å)	Sc–Nim	ido-C (°)
Complex	X-ray	DFT	WBO	X-ray	DFT	WBO	X-ray	DFT
1*	1.881	1.854	1.33	1.357	1.363	1.23	169.6	170.3
2	1.859	1.850	1.35	1.360	1.368	1.22	167.9	170.5
4	1.928	1.947	0.95	1.300	1.292	1.58	174.5	179.2
5	1.937	1.951	0.94	1.286	1.289	1.60	161.8	173.1

Table S5. Selected bond lengths (Å) and bond angles (deg) obtained from X-ray diffraction and theoretical calculations for 1, 2, 4, and 5. The calculated Wiberg bond orders (WBO) are also given.

*See ref 1 a).

Complex	Donated Charges	Accepted Charges	Charges on Sc	Charges on N ^{imido}
2			+1.308	-1.020
4	Cl⁻: -0.529	[Rh(COD)] ⁺ : -0.822	2 +1.145	-0.884
5	Cl⁻: -0.532	[lr(COD)] ⁺ : -0.841	+1.146	-0.886

Scheme S1. Some NBO charges for 2, 4, and 5.

The calculated NBO charges indicate that the charge donation from the chloride ion to the Sc center in 4 and 5 are -0.529 and -0.532, respectively; and the charge donation from the imido ligand to the Rh or Ir center in 4 and 5 are -0.822 and -0.841, respectively. The charge donation from the imido ligand to the Sc center in 4 and 5 (-0.652 and -0.643) are much less than that in 2 (-0.955). The NBO charges on the Sc centers in 2, 4 and 5 are 1.308, 1.145 and 1.146, respectively, indicating that the Sc centers in 4 and 5 are less electron-deficient than that in 2.

References

- 1 (*a*) E. L. Lu, Y. X. Li, Y. F. Chen, *Chem. Commun.*, 2010, **46**, 4469; (*b*) E. L. Lu, J. X. Chu, Y. F. Chen, M. V. Borzov, G. Y. Li, *Chem. Commun.*, 2011, **47**, 743.
- 2 G. M. Sheldrick, *SHELXL-97*, Program for the Refinement of Crystal Structure from Diffraction Data, University of Goettingen, Germany, 1997.
- 3 (a) P. Hohenberg, W. Kohn, Phys. Rev., 1964, 136, B864; (b) W. Kohn, L. Sham, J. Phys. Rev., 1965, 140, A1133.
- 4 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09*, Revision A.01, Gaussian, Inc., Wallingford CT, **2009**.
- 5 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev., 1988, B37, 785.
- 6 W. R. Wadt, P. J. Hay, J. Chem. Phys., 1985, 82, 284.
- 7 A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev., 1988, 88, 899.

Calculated total energies and geometrical coordinates calculated at B3LYP/6-311G*/Lanl2DZ level.

3

E(RB3LYP) = -2144.16670472 Hartree Sc 0.0314167100 -0.4286638866 -0.4726078827 Cu -2.8271322499 0.2495162387 -0.1103945527 Ι -5.1357902868 -0.4285707998 -0.8570880119 Ν 1.1281250600 -1.9563503622 0.7574114885 Ν -1.2146590185 -2.1551187266 -1.0480524442Ν -0.2553585329-0.3153804793 -2.9216887950 Ν 1.9570964787 0.8649403907 -0.8877563956 Ν 5.1434452453 3.5087420204 -1.6498823016 Ν -1.05881044190.8976053185 0.3976060771 С 0.9531564290 -3.5236315532 2.6751761010 С 0.3834646132 -2.8458604253 1.4415761011 С -0.9215286666 -3.2162645945 1.0959441363 С -1.5982636919 -3.0372028547 -0.1355530287 С -2.7859057250 -0.3880966089 -3.9406573868 С -1.8118903268 -2.2078368118 -2.3842183733 С -1.6182761009 -0.8778493167 -3.1021421575 С 2.5624898367 -2.04338038850.8419781379 С -0.06550341453.2306963565 -2.9116205023 С 4.6276948726 -2.9493340704 -0.0643216857 С 5.3719071913 -2.1555310908 0.7995566275 С 4.7131239729 -1.3297192162 1.6978939224 С 3.3161807333 -1.2647133678 1.7520116582 С 2.6776039450 -0.3994344874 2.8340228167 С 3.0622064062 -0.9014759918 4.2406578228 С 3.0455341261 1.0883637509 2.7002814816

С	2.4634088586	-3.8386527060	-1.0084309330
С	3.0790333571	-3.9254097351	-2.4161176636
С	2.3324469501	-5.2550961240	-0.4134581176
С	-0.2126731573	1.0350520912	-3.5135909812
С	0.7464374378	-1.1655192110	-3.5888343403
С	3.1412625147	0.4384393103	-1.3721025854
С	4.2148790426	1.2605072153	-1.6404846436
С	4.1150663075	2.6528069144	-1.3985853033
С	2.8793325357	3.0930074426	-0.8672345484
С	1.8642931158	2.1887580271	-0.6340612881
С	6.4173590689	2.9999397977	-2.1413729719
С	5.0063391956	4.9281265819	-1.3450986278
С	-1.2722350218	1.9641142678	1.2813281917
С	-1.3458280625	1.7492636662	2.6955237531
С	-1.4891478868	2.8381993647	3.5543207436
С	-1.5836048109	4.1418780454	3.0797080840
С	-1.5647252218	4.3570917587	1.7088489354
С	-1.4254720086	3.3049413676	0.8008160361
С	-1.5422650656	3.5976863877	-0.6911379026
С	-3.0210601069	3.6928819060	-1.1147840403
С	-0.7860312494	4.8566977191	-1.1482106588
С	-1.3600743569	0.3365328492	3.2663212389
С	-2.8034771491	-0.1934763329	3.3733255083
С	-0.6590009624	0.2044742438	4.6271809426
Н	2.0065517021	-3.7761403279	2.5553666395
Н	0.4042526978	-4.4319049016	2.9222266840
Н	0.8809773262	-2.8470438256	3.5320077614
Н	-1.4111775032	-3.8840003378	1.7928039902
Н	-3.6898173824	-3.3479504846	-0.5611468332
Н	-2.9664973200	-4.6008313417	0.4587801266

Н	-2.6269952096	-4.5653844379	-1.2725258894
Н	-2.8887093318	-2.3910184350	-2.3495582080
Н	-1.3658119957	-3.0306895622	-2.9604774939
Н	-1.8423385890	-0.9918324486	-4.1735208498
Н	-2.3258447921	-0.1531898156	-2.6946583886
Н	5.1445163369	-3.6153741331	-0.7472398144
Н	6.4568470180	-2.1963435465	0.7845234871
Н	5.2962836901	-0.7307393820	2.3901323520
Н	1.5942712894	-0.4800716584	2.7296662141
Н	4.1310212040	-0.7663723545	4.4311099901
Н	2.8388468953	-1.9614912396	4.3748345072
Н	2.5200963945	-0.3439181390	5.0088359024
Н	4.1191513109	1.2499804570	2.8385140814
Н	2.5229318267	1.6805172099	3.4563195378
Н	2.7712698177	1.4849177483	1.7235386834
Н	1.4524137992	-3.4376372888	-1.1096562042
Н	3.2548816237	-2.9382872430	-2.8524326967
Н	2.4112214080	-4.4736055165	-3.0873644078
Н	4.0337412810	-4.4585925012	-2.4178726938
Н	3.3169177363	-5.7064492165	-0.2552209887
Н	1.7695678691	-5.9070679734	-1.0887900205
Н	1.8116590728	-5.2453315247	0.5450093161
Н	0.7708485717	1.4788867142	-3.3605903727
Н	-0.9597007998	1.6679083919	-3.0379782068
Н	-0.4181280669	0.9993812897	-4.5927360193
Н	0.7722664721	-2.1537796964	-3.1325019136
Н	1.7330963028	-0.7119422947	-3.4952729275
Н	0.5222320939	-1.2806077256	-4.6588799644
Н	3.2410539229	-0.6288084153	-1.5287382447
Н	5.1254149852	0.8117569363	-2.0117982132

Н	2.7064121522	4.1302673603	-0.6176599912
Н	0.9280212214	2.5225705197	-0.2059982567
Н	6.8795097247	2.3049000702	-1.4317818060
Η	7.1015425067	3.8320906113	-2.2905390515
Н	6.3006379893	2.4864984237	-3.1010735296
Н	4.8573699195	5.1031384471	-0.2740704276
Н	4.1668483940	5.3733467716	-1.8873892790
Н	5.9120033162	5.4481934965	-1.6488990086
Н	-1.5415127833	2.6668589007	4.6248316772
Н	-1.6915016255	4.9738649464	3.7689121981
Н	-1.6801606157	5.3699696317	1.3342397020
Н	-1.1118928488	2.7397091436	-1.2113053273
Н	-3.5706997734	2.7809962385	-0.8705151388
Н	-3.1142912773	3.8576371705	-2.1943943482
Н	-3.5181283211	4.5243764424	-0.6057706780
Н	-0.7877572168	4.9286288971	-2.2408568160
Н	0.2553756031	4.8567331366	-0.8136711470
Н	-1.2478744999	5.7732526605	-0.7707522752
Н	-0.8345135152	-0.3024135187	2.5528922883
Н	-3.3884716969	0.4134853538	4.0715429875
Н	-2.8162148201	-1.2286500239	3.7303234882
Н	-3.3171307812	-0.1724626922	2.4088890524
Н	0.3370431693	0.6534623074	4.6188889658
Н	-0.5540968004	-0.8505568158	4.8997252425
Н	-1.2274608345	0.6804350661	5.4316403141

2

E((RB3LYP) = -172	27.46664726 H	lartree
Sc	-0.0349159696	0.8808852201	0.1987637240
N	-1.7046149414	-0.6318473931	0.5531423849

N	-0.4777366874	1.4723325586	2.3166009308
N	0.6216670168	3.2514389318	0.3949720243
N	-0.5708107967	1.9496410932	-1.9831464040
N	1.6208616658	0.0908703329	-0.0398612010
С	-2.5484058494	-2.5570886479	1.8767851335
С	-1.8592647376	-1.2075704856	1.7474075893
С	-1.3927052913	-0.6717991468	2.9618005993
С	-0.8445815098	0.5934217690	3.2445922666
С	-0.7110850368	0.9379768372	4.7177373782
С	-0.0302685279	2.7928068276	2.7527502370
С	-0.0923280649	3.7666720921	1.5833109219
С	0.2644168428	4.0043638826	-0.8268532773
С	0.3333676783	3.1222714584	-2.0674421436
С	-1.9831890117	2.3686342637	-2.0495660262
С	-0.2966811110	1.0434651558	-3.1193332967
С	2.0852168595	3.2854434619	0.6066270785
С	-2.4535799671	-1.1146758381	-0.5717483748
С	-1.9247383343	-2.1054633781	-1.4335292511
С	-2.6528082343	-2.4526269587	-2.5784984741
С	-3.8797260403	-1.8724073849	-2.8649852946
С	-4.4125977903	-0.9302960632	-1.9914717803
С	-3.7246854167	-0.5340605360	-0.8418283550
С	-4.3646728931	0.4693946852	0.1198689784
С	-5.2146676763	-0.2406113499	1.1935107044
С	-5.2345276034	1.5364742087	-0.5681033591
С	-0.6288685028	-2.8557650758	-1.1307555672
С	-0.8942555459	-4.3621651348	-0.9364373805
С	0.4477759945	-2.6442120497	-2.2074636694
С	2.8141609407	-0.5763070262	-0.0068688412
С	3.8138379568	-0.3959671314	-1.0247439591

С	5.0180656726	-1.0959720973	-0.9696000366
С	5.3066297615	-1.9841823722	0.0593708827
С	4.3558743947	-2.1668033757	1.0595397076
С	3.1344383900	-1.4974699059	1.0521353731
С	2.1625524723	-1.7079088824	2.2027498739
С	1.9678731541	-3.1821097480	2.5915327686
С	2.5789570676	-0.8769070199	3.4300058164
С	3.5814625623	0.5714378943	-2.1751837431
С	3.5423537898	-0.1335524523	-3.5428317751
С	4.6095785481	1.7176873566	-2.1966531125
Η	-3.0785011327	-2.6435336662	2.8259638913
Н	-3.2469456417	-2.7559863121	1.0665214844
Η	-1.7898779451	-3.3459004737	1.8562452166
Η	-1.5744100325	-1.2952019261	3.8281337170
Н	-1.4166041855	1.7251936128	5.0040403095
Η	-0.9167912864	0.0721577006	5.3451793888
Η	0.2915273706	1.3009092244	4.9581433809
Η	-0.6585775483	3.2101074391	3.5487948358
Η	0.9886740317	2.7519761645	3.1613830630
Η	0.3015980727	4.7504983297	1.8832656116
Н	-1.1417504591	3.9027779104	1.3076692938
Η	-0.7438477336	4.4051734881	-0.7082457979
Н	0.9252629306	4.8716851852	-0.9621425563
Η	1.3476671964	2.7457411311	-2.2026239976
Η	0.0890856052	3.7246227505	-2.9566751435
Η	-2.1776778066	2.9828509913	-2.9411068139
Η	-2.6131186551	1.4832283315	-2.0939714723
Н	-2.2681372894	2.9411745418	-1.1665619536
Н	0.7377587669	0.7116238284	-3.0822794594
Н	-0.9441516977	0.1695361080	-3.0557074891

Н	-0.4815120242	1.5475954155	-4.0790205375
Н	2.4171659844	4.3062111401	0.8504698087
Η	2.3723557669	2.6070920312	1.4060072211
Η	2.5966171508	2.9428575281	-0.2882647838
Н	-2.2537350250	-3.2066376440	-3.2496143635
Н	-4.4278276989	-2.1622865323	-3.7561943217
Η	-5.3825516031	-0.4975127989	-2.2110225045
Н	-3.5506517575	0.9812061318	0.6415391687
Н	-4.6250219554	-0.9290326180	1.7972051147
Н	-5.6643165852	0.4912177333	1.8720689000
Н	-6.0266496266	-0.8101385149	0.7304768821
Н	-6.1678770392	1.1180742363	-0.9554353663
Н	-5.5132676932	2.3093838523	0.1540452843
Н	-4.7257312684	2.0271731918	-1.4005472270
Н	-0.2211381100	-2.4614673072	-0.1988812267
Н	0.0170858767	-4.8657589347	-0.6016099854
Н	-1.6744735799	-4.5506341129	-0.1955495066
Н	-1.2072422491	-4.8397600050	-1.8698924521
Н	0.1003327252	-2.9539500591	-3.1985836328
Н	0.7545644161	-1.5995416370	-2.2504593895
Н	1.3407237352	-3.2273315660	-1.9692210508
Н	5.7560060992	-0.9412481156	-1.7539672760
Н	6.2507481095	-2.5197980641	0.0847514448
Н	4.5782130877	-2.8526652128	1.8731951041
Н	1.1940031287	-1.3293345764	1.8707233531
Н	1.1705861425	-3.2794480382	3.3362825866
Н	1.6954953793	-3.7890450730	1.7235267840
Н	2.8699807195	-3.6219349700	3.0280332806
Н	2.6640784904	0.1819193152	3.1704426224
Η	1.8489658799	-0.9718374003	4.2418808022

Η	3.5518130999	-1.2020810466	3.8129961107
Η	2.5957804573	1.0062295109	-1.9917694824
Η	4.5084244474	-0.5861963092	-3.7858139898
Η	2.7989288036	-0.9342621739	-3.5560088724
Η	3.3016955112	0.5704005078	-4.3488988906
Η	5.6179109729	1.3479673833	-2.4056343643
Η	4.3679322627	2.4558352424	-2.9712378674
Н	4.6532549671	2.2341917364	-1.2337681559

4

E(RB	3LYP) = -2609.4	1676479 Hartre	e
С	-4.4153628077	-0.8072448745	-0.4574977349
С	-5.6098408645	0.7205391731	1.2424568302
С	-5.7559588088	2.2266629192	0.9518845625
С	-6.7221456657	0.2452965817	2.1943214163
С	-4.4063183090	-2.9280011997	1.3091031696
С	-3.3487066645	-1.8394596151	1.3827836025
С	-2.5263194846	-1.8915848785	2.5271425922
С	-1.7224184674	-0.8844779519	3.0854733936
С	-1.2607886054	-1.1297451673	4.5123892725
С	-0.7399318595	1.2955391723	3.2292433791
С	-0.0265382820	2.2790962216	2.3107573178
С	-4.3773609119	-1.4399116603	-1.7191570250
С	-0.0809922893	3.4803387000	0.1747199439
С	0.2897775795	4.9095266909	0.6376910195
С	-2.1043502093	3.3297236694	1.5548045229
С	2.4775493191	5.2030034139	-0.4394830075
С	0.4781255783	5.9852167913	-1.5624727416
С	1.1364109483	-1.0203229702	-0.8373719321
С	1.6135887945	-2.3109731902	-0.2614566559

С	2.6617170486	-3.0065577711	-0.8453613080
С	3.4377756967	-2.4428475648	-1.8975873951
С	3.0226721069	-1.2101283035	-2.4740048465
С	-5.5160250904	-1.3853951729	-2.5279637667
С	1.9941619640	-0.4583825758	-1.9189791499
С	0.8105101455	-2.9348611040	0.8640167929
С	1.6636720458	-3.6199012155	1.9401565389
С	-0.2256761261	-3.9199463854	0.2903176668
С	1.5934744808	0.8671552555	-2.5393557777
С	0.6125032956	0.6357721312	-3.7039564124
С	2.7770013980	1.7309909656	-2.9958892836
С	3.7834104622	-0.1051432726	1.7114500042
С	4.1401078568	0.8900084673	0.7898159316
С	5.5523720096	1.4468573787	0.6456255644
С	-6.6599305195	-0.7095325810	-2.1280289673
С	6.3700549397	0.7059879401	-0.4326005219
С	5.9837618282	-0.7540805091	-0.5755382705
С	5.7998793754	-1.6651185734	0.4914473476
С	6.0257614134	-1.3100088708	1.9597844784
С	4.7431263177	-0.8054876064	2.6554887443
С	-6.6683252847	-0.0502724690	-0.9066231014
С	-5.5591938611	-0.0782314554	-0.0580325265
С	-3.1376297086	-2.1546990000	-2.2472368518
С	-3.3457887962	-3.6728467151	-2.3999144491
С	-2.6740438017	-1.5470342169	-3.5835022741
Cl	-2.5394965592	1.8006712803	-1.5509314380
Н	-4.6581611112	0.5775951650	1.7584599254
Н	-4.9832652816	2.5689416706	0.2610715193
Н	-6.7259342452	2.4550535331	0.5002812325
Н	-5.6821288250	2.8077871235	1.8777052310

Η	-6.6121098116	-0.8102498908	2.4549041281
Н	-6.7021711496	0.8200672131	3.1258634064
Н	-7.7145739829	0.3733864497	1.7524165399
Н	-4.5317899818	-3.3116821765	0.2980009308
Н	-4.1572258231	-3.7558325046	1.9729545674
Н	-5.3805974697	-2.5375609625	1.6138550739
Н	-2.6645816333	-2.7670128571	3.1479259484
Н	-1.6426992830	-0.3620975985	5.1922248035
Н	-1.6066489704	-2.0959337794	4.8759306529
Н	-0.1691758421	-1.1124547786	4.5922085148
Н	-1.4787574920	1.8280028986	3.8458154722
Н	0.0111196598	0.9099918046	3.9268912053
Н	0.8838391682	1.8175700163	1.9192594356
Н	0.2736693559	3.1589063790	2.8967789062
Н	0.8248535252	2.9181365816	-0.0618045051
Н	-0.6745067932	3.5239569569	-0.7379594466
Н	0.8238970417	4.8791777675	1.5930365594
Н	-0.6229797165	5.4875179272	0.8106239803
Н	-1.9179076838	4.1781082605	2.2244052902
Н	-2.6240997998	3.6770021982	0.6641595667
Н	-2.7590951360	2.6268897292	2.0705403649
Н	3.0724483985	5.9619279058	-0.9559994886
Н	2.9253851628	5.0470387729	0.5460212471
Н	2.5758119369	4.2646819160	-1.0129419977
Н	1.0578551798	6.7542187924	-2.0811747970
Н	0.3840239910	5.1231694242	-2.2442628795
Н	-0.5238511122	6.3857525595	-1.3888327255
Н	2.9479215376	-3.9771540861	-0.4547012681
Н	4.2278010606	-3.0227728480	-2.3606827692
Н	3.5766439178	-0.8214779946	-3.3213705006

Η	0.2542334971	-2.1182839891	1.3296050975
Н	2.4231739651	-2.9449918757	2.3413841852
Н	1.0294117236	-3.9482706855	2.7688724421
Н	2.1781955618	-4.5097524978	1.5630983483
Н	-0.8546694206	-3.4394090864	-0.4599047904
Н	0.2644849802	-4.7796868487	-0.1789224371
Н	-0.8793811642	-4.2935679443	1.0833649845
Н	1.0386766234	1.4069504039	-1.7684222686
Н	-0.2589204728	0.0730208363	-3.3742788932
Н	0.2546000118	1.5897270279	-4.1010341809
Н	1.0948816148	0.0863646684	-4.5197779829
Н	3.5084585567	1.8748993498	-2.1965187432
Н	3.3024658941	1.2961326259	-3.8521353474
Н	2.4215657693	2.7152908690	-3.3134201460
Н	2.7368608556	-0.1513890839	2.0055061191
Н	3.3415921485	1.5343218470	0.4314969390
Н	6.0635562277	1.4049292961	1.6111783532
Н	5.4955633234	2.5087504086	0.3896252682
Н	-5.5033231898	-1.8758665873	-3.4961619540
Н	6.1963647907	1.1852176158	-1.4004591125
Н	7.4481977521	0.8062376244	-0.2366884325
Н	6.2381206423	-1.1844370559	-1.5424528242
Н	5.9096589941	-2.7198367034	0.2513885811
Н	6.8237213918	-0.5658496573	2.0388320479
Н	6.3965516559	-2.1921416225	2.4892873819
Н	4.2162171871	-1.6607388190	3.0867389705
Н	4.9953005026	-0.1515193588	3.5035464808
Н	-7.5333376577	-0.6814768967	-2.7724055502
Н	-7.5534476463	0.5037919325	-0.6091812757
Н	-2.3322433433	-2.0016791149	-1.5251416722

Η	-3.6072806344	-4.1524497186	-1.4538209970
Н	-4.1448386380	-3.8947468883	-3.1136751939
Н	-2.4329152048	-4.1499256145	-2.7699188219
Н	-2.5584113396	-0.4657734507	-3.5007192833
Н	-1.7146087266	-1.9781186090	-3.8852890421
Н	-3.3888364959	-1.7484356910	-4.3870811973
N	-3.2906972863	-0.8885057130	0.4497001275
N	-1.3893115364	0.2400562701	2.4556524485
N	-0.8545863277	2.6529855313	1.1459983856
N	1.1138200596	5.6800721666	-0.2896268003
N	0.0806096337	-0.4151890506	-0.4021739748
Rh	3.87672926	02 -1.01386617	-0.2613437839
Sc	-1.5240319527	0.4747719365	0.2480299280

5

E(RB3	3LYP) = -2604.61	149025 Hartre	e
Ir	20.6913118955	7.1028500831	11.1550791493
Sc	18.2981723500	2.1502596079	9.6580165235
Cl	18.4440382855	0.2327021486	11.1889105401
N	16.0755856119	1.9634604605	9.4262640871
N	18.2440192195	2.7032605405	7.5048666064
N	20.3223576226	1.2301888469	8.6718633468
Ν	23.4716459525	0.8619791992	8.1672568187
Ν	18.8232626483	3.7779782446	10.5975772870
С	13.8542716068	2.7326278599	8.6445398899
С	15.3701264929	2.6809577162	8.5504646167
С	15.9213597693	3.3801470614	7.4593102464
С	17.2126177112	3.2988948466	6.9112259958
С	17.3776993570	3.9210355507	5.5348737391
С	19.4767247932	2.5393605749	6.7333793680

С	20.6548207326	2.2526741377	7.6510299400
С	21.4191382619	1.0669839754	9.6671852444
С	22.6690102616	0.2817106111	9.2463595289
С	19.9527337960	-0.0619178527	8.0584188318
С	15.3234869015	1.0790636211	10.2897666666
С	14.9324943055	1.4903591289	11.5821115054
С	14.1661772656	0.6164060993	12.3587021807
С	13.8023688376	-0.6388912147	11.8930951258
С	14.2254627765	-1.0471360772	10.6353654262
С	14.9898330460	-0.2118233578	9.8183600123
С	15.4728443566	-0.7420130557	8.4701443579
С	14.3148240986	-1.1022968393	7.5219009997
С	16.4120950364	-1.9489168897	8.6571059078
С	15.3401552114	2.8343779101	12.1786765228
С	14.1323106835	3.7403168230	12.4823591688
С	16.1917954812	2.6405082153	13.4468363095
С	24.4022394137	-0.1170466924	7.6185915500
С	24.1812952039	2.0639865435	8.5861796420
С	19.0191329051	4.8709613271	11.2512654678
С	20.1120128099	5.0391067089	12.2587256711
С	20.1202515881	6.1311649423	13.1543922609
С	19.3073083398	7.2646431919	12.9067676370
С	18.3512075002	7.2077030619	11.8455029453
С	18.2249459696	6.1119630057	11.0041495117
С	17.1932162546	6.1031082208	9.8894304318
С	15.9337376505	6.9263301708	10.1936782608
С	17.8078120769	6.5334356321	8.5469604565
С	21.0072785958	3.8440303487	12.5468589828
С	20.2598240407	2.8197324029	13.4227078803
С	22.3564177528	4.1875054588	13.1955989292

С	21.8042385148	8.8825861861	11.5323696629
С	20.9696604843	9.0869761309	10.3830235035
С	21.5175640117	9.1573629150	8.9562262664
С	21.4913486954	7.7801313703	8.2628735701
С	21.5721356207	6.6316322740	9.2546225628
С	22.5618213925	6.5272185755	10.2804687670
С	23.6881177819	7.5462096759	10.4649359556
С	23.3038973893	8.6503913828	11.4704211216
Н	13.4144945611	1.7813840972	8.3355511314
Н	13.4508476768	3.5135478899	8.0001251334
Н	13.5163291299	2.9081969023	9.6652908798
Н	15.2084084540	3.9437035934	6.8722746134
Н	18.1292999421	4.7165280406	5.5401675843
Н	16.4408637710	4.3496739020	5.1828068855
Н	17.7024708858	3.1794763803	4.7989917232
Н	19.7332981137	3.4337573525	6.1557599099
Н	19.3647765476	1.7282083520	5.9998212580
Н	21.5309783700	1.9502277539	7.0687998847
Н	20.9121321009	3.1655875546	8.1959868567
Н	20.9863453424	0.5527016600	10.5267290295
Н	21.6856945221	2.0672746967	10.0105157656
Н	23.2762109299	0.1429135570	10.1627322397
Н	22.3727717195	-0.7233787664	8.9364320227
Н	19.0105905625	0.0369130421	7.5183124830
Н	19.8054605617	-0.7982235224	8.8465092323
Н	20.7165261863	-0.4170110406	7.3565905026
Н	13.8546332158	0.9242329628	13.3518616866
Н	13.2061532298	-1.3018297307	12.5126873208
Н	13.9629521263	-2.0402957141	10.2839445675
Н	16.0515903832	0.0495664771	7.9903701270

Н	13.6974737829	-1.9098380869	7.9263767777
Н	14.7010341466	-1.4390276055	6.5544584753
Н	13.6585694867	-0.2482894644	7.3364820632
Н	17.2318478794	-1.7044411786	9.3347468318
Н	16.8321937123	-2.2620768326	7.6948574238
Н	15.8808464123	-2.8084505368	9.0768717165
Н	15.9639527071	3.3511834232	11.4462656859
Н	13.4637949505	3.2841047187	13.2185388815
Н	13.5398980850	3.9529310202	11.5888748096
Н	14.4657259188	4.6985032029	12.8934197125
Н	15.6037226030	2.2077259547	14.2620843547
Н	16.5828426361	3.6010018297	13.7965125908
Н	17.0343543652	1.9753859904	13.2552496392
Н	25.1430389446	-0.4719564798	8.3585697971
Н	24.9487425527	0.3213818032	6.7802017786
Н	23.8551196397	-0.9855421183	7.2446942744
Н	24.8966511873	1.8708200189	9.4069189130
Н	23.4823366219	2.8308458895	8.9229316013
Н	24.7388305852	2.4761551652	7.7420191807
Н	20.8061334007	6.144464988	13.9919872733
Н	19.3236800683	8.1160052270	13.5761075331
Н	17.7363218551	8.0847158308	11.6765963831
Н	16.8914979874	5.0594104227	9.7775823358
Н	15.4958578699	6.6587281630	11.1589890544
Н	15.1782130254	6.7424362420	9.4250579217
Н	16.1262014013	8.0044026633	10.1972312011
Н	18.1479736031	7.5724265918	8.5890909560
Н	17.0700915050	6.4444579018	7.7445630039
Н	18.6622016641	5.9049367379	8.2924157565
Н	21.1949333460	3.3657162486	11.5817634037

Н	20.0149459428	3.2527255580	14.3985335529
Η	20.8824266570	1.9370115450	13.5966958323
Η	19.3414401998	2.4833334689	12.9480996694
Η	22.8854877133	4.9862937922	12.6734399824
Η	22.9987514863	3.3023178722	13.2016746777
Η	22.2422610437	4.4939999839	14.2402758258
Η	21.4748579162	9.3526337932	12.4577573880
Η	20.0747624900	9.6828352837	10.5499197878
Η	22.5325067760	9.5658692136	8.9686084035
Η	20.9244497388	9.8700308079	8.3763495568
Η	20.5524001005	7.6748336935	7.7136701916
Η	22.2919969278	7.7030353037	7.5126796235
Η	21.1597290370	5.6921132659	8.8890028821
Н	22.8113709629	5.5171066231	10.5927690533
Η	23.9561398818	7.9805866037	9.4974591428
Η	24.5870739831	7.0305673771	10.8142564492
Η	23.6322117615	8.3559497616	12.4717276733
Н	23.8304205342	9.5886013110	11.2428763791

Figure S8. ¹H NMR spectra showing the hydroboration of 3-hexyne and pinacolboran catalyzed by 0.5 mol% of 5.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

S33

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

S34