Potent divalent inhibitors with rigid glucose click spacers for *Pseudomonas aeruginosa* lectin LecA

Francesca Pertici^a and Roland J. Pieters^a

^aDepartment of Medicinal Chemistry and Chemical Biology. Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands

Supporting information

Table of contents	page
General Experimental Section	S-6
Synthesis and physical data of 2	S-7
Synthesis and physical data of 3	S-8
Synthesis and physical data of 4	S-8
Recovery of compound 2	S-9
Synthesis and physical data of 6a	S-9
General procedure for the introduction of the azide	S-10
General procedure for the "click reaction"	S-10
Physical data of 6	S-11
Physical data of 7a	S-11
Physical data of 7	S-11
Physical data of 9a	S-12
Physical data of 9	S-12
General procedure for the removal of the Boc, step a. Preparation of	S-13
compounds 8a and 10a	
Physical data of 8a	S-13
Physical data of 10a	S-13
General procedure for the diazotransfer, step b. Preparation of	S-13
compounds 8 and 10	
Physical data of 8	S-14
Physical data of 10	S-14

General procedure for the "click reaction", step a. Preparation of	S-15
compounds 11, 13, 15, 17	
Physical data of 11	S-16
Physical data of 13	S-16
Physical data of 15	S-17
Physical data of 17	S-17
General procedure for the removal of acetyl and benzoyl protecting	S-17
groups, step b. Preparation of compounds 12, 14, 16, 18	
Physical data of 12	S-18
Physical data of 14	S-18
Physical data of 16	S-18
Physical data of 18	S-19
Synthesis and physical data of 19b	S-20
Synthesis and physical data of 19c	S-20
Synthesis and physical data of 19	S-21
Synthesis and physical data of 21	S-21
Synthesis and physical data of 20	S-22
Synthesis and physical data of 24	S-22
Synthesis and physical data of 22	S-23
Calculation of the effective length of the spacer of compound 19	S-23
Estimating the potential for bivalent binding of 12 and 14	S-23
References	S-24
¹ H NMR of 2	S-25
¹³ C NMR of 2	S-25
¹ H NMR of 3	S-26
¹³ C NMR of 3	S-26
¹ H NMR of 4	S-27
¹³ C NMR of 4	S-27
¹ H NMR of 6a	S-28
¹³ C NMR of 6a	S-28
¹ H NMR of 6	S-29
¹³ C NMR of 6	S-29
¹ H NMR of 7a	S-30

¹³ C NMR of 7a	S-30
¹ H NMR of 7	S-31
¹³ C NMR of 7	S-31
¹ H NMR of 9a	S-32
¹³ C NMR of 9a	S-32
¹ H NMR of 9	S-33
¹³ C NMR of 9a	S-33
¹ H NMR of 8a	S-34
¹ H NMR of 10a	S-34
¹ H NMR of 8	S-35
¹³ C NMR of 8	S-35
¹ H NMR of 10	S-36
¹³ C NMR of 10	S-36
¹ H NMR of 11	S-37
¹³ C NMR of 11	S-37
¹ H NMR of 13	S-38
¹³ C NMR of 13	S-38
¹ H NMR of 15	S-39
¹³ C NMR of 15	S-39
¹ H NMR of 17	S-40
¹³ C NMR of 17	S-40
¹ H NMR of 12	S-41
HSQC/HMBC NMR of 12	S-41
¹ H NMR of 14	S-42
HSQC/HMBC NMR of 14	S-42
¹ H NMR of 16	S-43
HSQC/HMBC NMR of 16	S-43
¹ H NMR of 18	S-44
HSQC/HMBC NMR of 18	S-44
¹ H NMR of 19b	S-45
¹³ C NMR of 19b	S-45
¹ H NMR of 19c	S-46
¹³ C NMR of 19c	S-46

¹ H NMR of 19	S-47
HSQC/HMBC NMR of 19	S-47
¹ H NMR of 20	S-48
¹³ C NMR of 20	S-48
¹ H NMR of 21	S-49
¹³ C NMR of 21	S-49
¹ H NMR of 24	S-50
¹³ C NMR of 24	S-51
¹ H NMR of 22	S-52
HSQC NMR of 22	S-53
IC ₅₀ measurement of 12	S-54
IC ₅₀ measurement of 14	S-54
IC ₅₀ measurement of 16	S-55
IC ₅₀ measurement of 18	S-55
IC ₅₀ measurement of 19	S-56
IC ₅₀ measurement of 20	S-56
IC ₅₀ measurement of 22	S-57
HPLC of compound 12	S-58
HPLC of compound 14	S-58
HPLC of compound 16	S-58
HPLC of compound 18	S-59
HPLC of compound 19	S-59
MS (ESI) of compound 6	S-60
MS (ESI) of compound 7	S-60
MS (ESI) of compound 8	S-61
MS (ESI) of compound 9	S-61
MS (ESI) of compound 10	S-62
MS (ESI) of compound 11	S-62
MS (ESI) of compound 12	S-63
MS (ESI) of compound 13	S-63
MS (ESI) of compound 14	S-64
MS (ESI) of compound 15	S-64
MS (ESI) of compound 16	S-65

MS (ESI) of compound 17	S-65
MS (ESI) of compound 18	S-66
MS (ESI) of compound 19c	S-66

Experimental Section

General: Unless stated otherwise, chemicals were obtain from commercial sources and were used without further purification. Solvents were purchased from Biosolve (Valkenswaard, The Netherlands). All moisture-sensitive reactions were performed under nitrogen atmosphere. Anhydrous THF was dried over Na/benzophenone and freshly distilled prior to use. All the other solvents were dried over molecular sieves 4 Å or 3 Å. TLC was performed on Merck precoated Silica 60 plates. Spots were visualized by UV light, 10% H₂SO₄ in MeOH and triphenylphosphine in THF followed by Ninhydrine. Microwave reactions were carried out in a Biotage microwave Initiator (Uppsala, Sweden). The microwave power was limited by temperature control once the desired temperature was reached. Sealed vessels of 2-5 mL and 10-20 mL were used. Analytical HPLC runs were performed on a Shimadzu automated HPLC system with a reversed-phase column (Alltech, C8, 90 M, 5 mm, 250 L, 4.6 mm, Deerfield, IL, USA) that was equipped with an evoparitive lightscattering detector (PLELS 1000, Polymer Laboratories, Amherst, MA, USA) and a UV/Vis detector operating at 220 nm and 250 nm. Preparative HPLC runs were performed on an Applied Biosystems workstation. Elution was effected by using a linear gradient of 5% MeCN/0.1% TFA in H₂O to 5% H₂O/0.1% TFA in MeCN or by a gradient of 0.1% in H₂O to 30% MeCN/0.1% TFA in H₂O. ¹H NMR (300 MHz) and ¹³C (75.5 MHz) were performed on a Varian G-300 spectrometer. HSQC, HMBC and TOCSY NMR (500 MHz) were performed with a VARIAN INOVA-500. Electrospray Mass experiments were performed in a Shimadzu LCMS QP-8000. High resolution mass spectrometry (HRMS) analysis was performed using an Applied Biosystems 4700 MALDI TOF/TOF instrument.

LecA inhibiton assay: The lectin LecA was obtained from Sigma-Aldrich and it was FITC labeled according to the procedure of Sigma-Aldrich.¹⁹ Microarray experiments were performed by using PamChip arrays run on a PamStation12 instrument (Pam-Gene B.V., 's Hertogenbosch, The Netherlands). Data were obtained by real-time imaging of the fluorescence signal by a CCD camera. Images were analyzed by using BioNavigator software (Pam-Gene). Each array slide contains spots in duplicate. The fluorescence intensities were expressed in arbitrary units and the relative intensities

were the average of the two duplicate spots. Aliquots of a solution of FITC-labeled LecA (20 mg mL-1) in HEPES/PBS buffer (10 mM HEPES, 100 mM NaCl, 0.1% BSA. pH 7.4), containing different concentrations of the inhibitors were incubated for 1 h at r.t. and subsequently added to the glycodendrimer chip. The binding process was monitored for 2 h and the end values of the fluorescence detection were taken for the determination of the IC50 by using Prism 5 (Graphpad Software, Inc.).

Scheme 1. Preparation of the building block **4**. a) i. BCl₃·SMe₂, DCM, microwave, 80°C, 20'; ii. Ac₂O, Py, 70% 2 steps; b) MeONa, MeOH, quant.; c) BzCl, Py, -40 °C, 30%

3,7-Anhydro-4,5,6,8-tetra-O-acetyl-1,1,2,2-tetradehydro-1,2-D-glycero-L-

mannooctitol, 2. A BCl₃·SMe₂ solution (2M, 6.44 mL, 12.88 mmol) in CH₂Cl₂ was added to a solution of 1 (1 g, 1.61 mmol) in CH₂Cl₂ (12 mL). The mixture was heated under microwave irradiation at 80°C for 20 min. The resulting black solution was neutralized with a saturated NaHCO₃ solution (80 mL). The liquid was evaporated, methanol was added and the suspension was filtered. The solvent was evaporated under vacuum and pyridine (15 mL) was added to the residue. The solution was treated with acetic anhydride (2.46 mL, 26 mmol) and the mixture was stirred overnight at r.t.. The mixture was concentrated under vacuum and the residue was dissolved in CH₂Cl₂, washed with 1M KHSO₄ solution (15 mL), H₂O (15 mL) and brine (15 mL). The organic layer was dried over sodium sulfate. After evaporation of the solvent the product was purified by column chromatography (ethyl acetate/hexane, 4:6) to give 2 as a white solid (0.430 g, 1.13 mmol, 70%). ¹H NMR (300MHz, CDCl₃): δ, 5.39 (d, 1H, J_{6.5}=3.34 Hz, H-6), 5.38 (t, 1H, J_{4.3}=J_{4.5}=9.95 Hz, H-4), 4.97 (dd, 1H, J_{5,4}=9.95 Hz, J_{5,6}=3.34 Hz, H-5), 4.16 (dd, 1H, J_{3,1}=2.19, J_{3,4}=9.95 Hz, H-3), 4.09 (d, 2H, J_{8a,7}=J_{8b,7}=6.40 Hz, H-8ab), 3.88 (t, 1H, J_{7,8a}=J_{7,8b}=6.40 Hz, H-7), 2.50 (d, J_{1,3}=2.19 Hz, H-1), 2.13, 2.05, 2.02 and 1.96 (4s, 4H, COCH₃). ¹³C NMR (75.5 MHz, CDCl₃): δ ppm 170.59 (C=O), 170.40 (C=O), 170.26 (C=O), 169.53 (C=O). 78.10 (C-1), 75.45 (C-2), 74.79 (C-7), 71.62 (C-5), 69.07 (C-3), 68.44 (C-4), 67.48

(C-6), 61.78 (C-8), 20.09 (CO<u>C</u>H₃). MS (ESI) m/z calcd for C₁₆H₂₁O₉ (M+H)⁺ 357.12, found 357.32.

3,7-Anhydro-1,1,2,2-tetradehydro-1,2-D-glycero-L-mannooctitol, 3. A solution of **2** (3 g, 8.42 mmol) in methanol (25 mL) was treated with a solution of NaOMe in methanol (30%, 1 mL) and the mixture was stirred for 4 h at r.t. After neutralization with DowexH⁺, the mixture was filtered and the methanol evaporated in vacuum to give compound **3** as a white foam (1.57 g, 8.35 mmol, quant.) ¹H NMR (300MHz, CD₃OD): δ , 3.86 (d, 1H, J_{6,5}=3.2 Hz, H-6), 3.86 (dd, 1H, J_{3,1}=2.19, J_{3,4}=9.55 Hz, H-3), 3.73 (d, 1H, J_{8a,7}=6.05 Hz, J_{8a,8b}=11.45 Hz, H-8a), 3.66 (d, 1H, J_{8b,7}=6.05 Hz, J_{8b,8a}=11.45 Hz, H-8b), 3.65 (t, 1H, J_{4,3}=J_{4,5}=9.55 Hz, H-4), 3.48 (t, 1H, J_{7,8a}=J_{7,8b}=6.05 Hz, H-7), 3.40 (dd, 1H, J_{5,4}=9.55 Hz, J_{5,6}=3.30 Hz, H-5), 2.85 (d, J_{1,3}=2.19 Hz, H-1). ¹³C NMR (75.5 MHz, CD₃OD): δ ppm 82.04 (C-1), 80.67 (C-7), 75.70 (C-5), 75.06 (C-2), 72.43 (C-6), 72.25 (C-4), 70.54 (C-3), 62.69 (C-8). MS (ESI) *m/z* calcd for C₈H₁₃O₅ (M+H)⁺ 189.08, found 189.40.

3,7-Anhydro-4,5,8-tri-O-acetyl-1,1,2,2-tetradehydro-1,2-D-glycero-L-

mannooctitol, 4. Benzoyl chloride (1.97 mL, 17 mmol) in pyridine (10 mL) was added dropwise to a solution of **3** (1 g, 5.3 mmol) in pyridine (25 mL) previously cooled at -40 C. The mixture was kept at -40 C for 30 min and the reaction was quenched with water (50 mL). The product was extracted three times with CH₂Cl₂ (30 mL). After evaporation of the liquid, the residue was dissolved in CH₂Cl₂ and washed with 1M KHSO₄, H₂O and brine. The organic layer was dried over sodium sulfate. TLC analysis showed the presence of four different benzoylated compounds, monitored by TLC. The desired compound 4 (toluene/ethylacetate, 4/1; R_f=0.52) was obtained after column chromatography (toluene/ethylacetate, 9:1, 0.796 g, 1.59 mmol, 30%). ¹H NMR (300 MHz, CDCl₃): δ 8.05-7.26 (m, 15H, Ar), 6.04 (t, 1H, J_{4.3}=J_{4.5}=10.18 Hz, H-4), 5.37 (dd, 1H, J_{5,4}= 10.18 Hz, J_{5,6}=2.95 Hz, H-5), 4.70 (dd, 1H, $J_{8a,7}$ = 5.98 Hz, $J_{8a,8b}$ = 11.60 Hz H-8a), 4.59 (dd, 1H, $J_{8b,7}$ = 5.98 Hz, $J_{8b,8a}$ = 11.60 Hz, H-8b), 4.48 (dd, 1H, J_{3.1}=2.05, J_{3.4}= 10.18 Hz, H-3), 4.45 (d, 1H, J_{6.5}=2.95 Hz, H-6), 4.10 (t, 1H, $J_{7,8a}=J_{7,8b}=5.98$ Hz, H-7), 3.22 (s, 1H, OH), 2.47 (d, 1H, $J_{1,3}=2.05$ Hz H-1). ¹³C NMR (75.5 MHz, CDCl₃): δ ppm 166.62 (C=O), 165.94 (C=O), 165.39 (C=O), 133.47 (C, Ar), 133.32 (C, Ar), 133.30 (C, Ar), 129-129.79 (CH, Ar), 129.50 (CH, Ar), 129.28 (CH, Ar), 128.94 (CH, Ar), 128.50-128.40 (CH, Ar), 78.30 (C-1), 76.43 (C-2), 75.38 (C-7), 74.81 (C-5), 69.16 (C-4), 68.99 (C-3), 67.63 (C-6), 63.53 (C-8). MS (ESI) m/z calcd for $C_{29}H_{25}O_8$ (M+H)⁺ 501.15, found 501.30. The other compounds were collected (1.9 g) and used to recovery compound **2**.

Recovery of compound 2. The crude benzoylated compounds (1.9 g) were dissolved in methanol (20 mL) and treated with 500 μ L of 30% MeONa solution in methanol. After 4 h the reaction mixture was neutralized with Dowex and the methanol was removed under vacuum. The residue obtained was dissolved in pyridine 10 mL and 3 mL of acetic anhydride was added. The mixture was stirred at r.t. and it was concentrated under vacuum. The residue was dissolved in CH₂Cl₂ and washed with 1M KHSO₄, H₂O and brine. The organic layer was dried over sodium sulfate. After evaporation of the solvent the product was purified by column chromatography (ethyl acetate/hexane, 4:6) to give **2** (1.23 g, 3.45 mmol, 65%).

Scheme 2. Synthesis and elongation of the spacer. a) $CuSO_4$, Na-ascorbate, DMF, 10% H₂O, 30', 80°C, microwave, 85-91%; b) i. Tf₂O, Py, DCM, 0°C, 1h; ii. NaN₃, DMF, r.t., 4h, 80-85% 2 steps.

6a. Compound 5²⁰ (0.225 g, 1.2 mmol), CuSO₄·5H₂O (0.038 g, 0.15 mmol) and sodium ascorbate (0.060 g, 0.3 mmol) were added to a solution of 4 (0.5 g, 1 mmol) in DMF (15 mL) containing 10% water. The mixture was heated under microwave irradiation at 80°C for 30 min. After evaporation of the solvent the residue was dissolved in CH₂Cl₂. The organic solution was washed three times with water and brine and it was dried over sodium sulfate. The solvent was removed and the white solid compound 5 was purified by column chromatography (EtOAc/Hexane, 2:3) (0.625g, 0.91 mmol, 91%). ¹H NMR (300 MHz, CDCl₃): δ 8.02-7.29 (m, 15H, Ar), 7.80 (s, 1H, H-3), 6.07 (t, 1H, $J_{65}=J_{67}=9.95$ Hz, H-6), 5.56 (dd, 1H, $J_{76}=9.95$, J_{3,4}=3.15 Hz, H-7), 5.04 (d, 1H, J_{5.6}=9.95 Hz, H-5), 4.94 (t, 1H, J_{NH,1ab}=4.55 Hz, NH), 4.71 (dd, 1H, J_{10a,9}=5.94 Hz, J_{10a,10b}=11.38 Hz, H-10a), 4.56 (dd, 1H, J_{10b,9}=5.94 Hz, J_{10b,10a}=11.38 Hz, H-10b), 4.53 (d, 1H, J_{8.7}=3.15 Hz, H-8), 4.34 (m, 2H, H-2ab), 4.27 (t, 1H, J_{9,10a}=J_{9,10b}=5.94 Hz, H-9), 3.49 (m, 2H, H-1ab), 3.38 (s, 1H, OH), 1.42 (s, 9H, C(CH₃)₃. ¹³C NMR (75.5 MHz, CDCl₃): δ 166.84 (C=O), 166.02 (C=O), 165.92 (C=O), 156.16 (NHC=O), 145.04 (C-4), 133.80-133.36 (C, Ar), 130.23-128.41 (CH, Ar), 123.52 (C-3), 77.60 (C-9), 75.29 (C-7), 74.15 (C-5), 70.09 (C-6), 68.00 (C-8), 63.51 (C-10), 50.56 (C-2), 40.83 (C-1), 80.17 (C(CH₃)₃), 28.53 (C(CH₃)₃). MS (ESI) m/z calcd for C₃₆H₃₉N₄O₁₀ 687.27 (M+H⁺), found 687.00.

General procedure for the introduction of the azide, step b. Preparation of compounds 6, 7 and 9: Triflic anhydride (10 equiv) was added dropwise to a solution of the carbohydrate (1 equiv) in CH_2Cl_2 (20 mL) containing pyridine 10 %, previously cooled at 0°C. The solution was stirred at 0°C for 1.5 h and the reaction was quenched adding cold 1 M KHSO₄ (20 mL). The organic layer was washed two times with cold water and cold brine and dried over sodium sulfate. The solvent was evaporated giving the triflate-carbohydrate compound as a yellow solid which was used without any further purification. The solid was dissolved in DMF (20 mL) and sodium azide (5 equiv) was added. The reaction mixture was stirred at r.t. for 5 h. The solvent was evaporated under vacuum and the residue was dissolved in CH_2Cl_2 and washed three times with water and brine. The organic layer was dried over sodium sulfate. The solvent solvent was evaporated and the residue purified by column chromatography to give a yellowish solid.

General procedure for the "click reaction", step a. Preparation of compounds 7a and 9a: The reactions between compound 4 and the azide–carbohydrate compounds 6 and 7, respectively, were performed following the experimental procedure reported for the synthesis of the compound 6a.

6. (0.527 g, 0.74 mmol, 85%) ¹H NMR (300 MHz, CDCl₃): δ 8.09-7.28 (m, 15H, Ar), 7.66 (s, 1H, H-3), 5.84 (t, 1H, J_{7,6}=J_{7,8}=9.84 Hz, H-7), 5.65 (t, 1H, J_{6,5}=J_{6,7}=9.84 Hz, H-6), 5.02 (d, 1H, J_{5,6}=9.84 Hz, H-5), 4.85 (t, 1H, J_{NH,1ab}=4.55 Hz, NH), 4.74 (dd, 1H, J_{10a,6}=2.16 Hz, J_{10a,10b}=12.53 Hz, H-10a), 4.62 (dd, 1H, J_{10b,9}=4.53 Hz, J_{10b,10a}=12.53, Hz, H-10b), 4.39 (m, 2H, H-2ab), 4.03 (t, 1H, J_{8,7}=J_{8,9}=9.84 Hz, H-8); 3.98 (m, 1H, H-9), 3.52 (m, 2H, H-1ab), 1.40 (s, 9H, C(CH₃)₃). ¹³C NMR (75.5 MHz, CDCl₃): δ 166.35 (C=O), 165.82 (C=O), 165.68 (C=O), 156.03 (NHC=O), 144.28 (C-4), 133.97-133.24 (C, Ar), 130.52-128.05 (CH, Ar), 123.34 (C-3), 80.17 (C(CH₃)₃), 77.33 (C-9), 73.95 (C-5), 75.11 (C-7), 72.36 (C-6), 63.88 (C-10), 61.35 (C-8), 50.52 (C-2), 40.81 (C-1), 28.53 (C(CH₃)₃). MS (ESI) *m*/*z* calcd for C₃₆H₃₈N₇O₉ (M+H)⁺ 712,27, found 712.25.

7a. (0.775 g, 0.64 mmol, 86%) ¹H NMR (300 MHz, CDCl₃): δ 8.1 (1H, H-3'), 7.99-7.11 (m, 30H, Ar), 7.71 (1H, H-3), 6.31 (1H, H-7), 5.93 (1H, H-6'), 5.81 (1H, H-6), 5.52 (1H, H-7'), 5.30 (1H, H-8), 5.28 (1H, H-5), 4.95 (1H, H-5'), 4.89 (1H, NH), 4.71 (1H, H-9), 4.65 (1H, H-10a'), 4.52 (1H, H-10b'), 4.45 (1H, H-10a), 4.40 (1H, H-8'), 4.38 (2H, H-2ab), 4.20 (1H, H-9'), 3.93 (1H, H-10b), 3.50 (2H, H-1ab), 3.50 (1H, OH), 1.38 (9H, C(CH₃)₃). ¹³C NMR (75.5 MHz, CDCl₃): δ 166.75 (C=O), 166.02 (C=O), 165.88 (C=O), 165.73 (C=O), 165.63 (C=O), 165.17 (C=O), 165.08 (NHC=O), 156.08 (NHC=O), 145.88 (C-4'), 144.29 (C-4), 134.36-132.83 (Ar), 130.01-127.89 (Ar), 123.90 (C-3), 123.02 (C-3'), 80.13 (C(CH₃)₃), 77.33 (C-9), 76.87 (C-9'), 75.27 (C-7'), 74.32 (C-5'), 74.20 (C-5), 73.97 (C-7), 72.97 (C-6), 70.32 (C-6'), 68.03 (C-8'), 63.49 (C-10'), 62.68 (C-10), 61.07 (C-8), 50.53 (C-2), 40.77 (C-1), 28.52 (C(CH₃)₃). MS (ESI) *m*/*z* calcd for C₆₅H₆₂N₇O₁₇ (M+H)⁺ 1212,42, found 1212.25.

11

7. (0.593 g, 0.48 mmol, 83%) ¹H NMR (300 MHz, CDCl₃): δ 8.09-7.14 (m, 15H, Ar), 7.85 (1H, H-3'), 7.69 (1H, H-3), 6.25 (1H, H-7), 5.53 (1H, H-6'), 5.81 (1H, H-6), 5.80 (1H, H-7'), 5.23 (1H, H-8), 5.25 (1H, H-5), 4.95 (1H, H-5'), 4.86 (1H, NH), 4.64 (1H, H-9), 4.66 (1H, H-10a'), 4.61 (1H, H-10b'), 4.40 (1H, H-10a), 3.97 (1H, H-8'), 4.39 (2H, H-2ab), 3.90 (1H, H-9'), 3.98 (1H, H-10b), 3.52 (2H, H-1ab), 1.39 (9H, C(CH₃)₃). ¹³C NMR (75.5 MHz, CDCl₃): δ 166.36 (C=O), 165.88 (C=O), 165.80 (C=O), 165.55 (C=O), 165.49 (C=O), 165.07 (C=O), 156.03 (NHC=O), 145.08 (C-4'), 144.06 (C-4), 133.80-133.24 (C, Ar), 130.24-128.29 (CH, Ar), 123.40 (C-3), 122.27 (C-3'), 80.18 (C(CH₃)₃), 77.32 (C-9), 77.25 (C-9'), 75.11 (C-7'), 74.25 (C-5), 73.89 (C-5'), 73.82 (C-7), 72.78 (C-6), 72.59 (C-6'), 64.02 (C-10'), 62.73 (C-10), 61.44 (C-8'), 61.13 (C-8), 50.53 (C-2), 40.77 (C-1), 28.52 (C(CH₃)₃). MS (ESI) *m*/*z* calcd for C₅₈H₅₆N₁₀O₁₅ (M+H)⁺ 1237.43, found 1238.00.

9a. (0.618 g, 0.36 mmol, 80%) ¹H NMR (300 MHz, CDCl₃): δ 8.03-7.10 (m, 45H, Ar), 7.93 (2H, H-3', H-3"), 7.65 (1H, H-3), 6.25 (2H, H-7, H-7"), 5.93 (1H, H-6"), 5.76 (1H, H-6), 5.68 (1H, H-6"), 5.48 (1H, H-7"), 5.23 (1H, H-5), 5.22 (1H, H-8), 5.19 (1H, H-8), 5.17 (1H, H-5"), 4.91 (1H, H-5"), 4.84 (1H, NH), 4.70 (1H, H-9), 4.68 (1H, H-10a"), 4.65 (1H, H-9"), 4.47 (1H, H-10b"), 4.40 (2H, H-10a, H-8"), 4.38 (3H, H-2ab, H-10a"), 4.15 (1H, H-9"), 4.00 (1H, H-10b"), 3.95 (1H, H-10b), 3.48 (2H, H-1ab), 1.38 (s, 9H, C(CH₃)₃). ¹³C NMR (75.5 MHz, CDCl₃): δ 166,74-165,00 (C=O), 156.06 (NHC=O), 145.80 (C-4"), 145.06 (C-4"), 144.16 (C-4), 134.00-132.82 (Ar), 130.30-128.00 (Ar), 123.41 (C-3), 122.51 (C-3", C-3"), 80.16 (C(CH₃)₃), 77.45 (C-9, C-9"), 77.00 (C-9"), 75.28 (C-7"), 74.14 (C-5"), 73.97 (C-5, C-5"), 73.67 (C-7, C-7"), 72.91 (C-6"), 72.72 (C-6), 70.19 (C-6"), 67.88 (C-8"), 63.41 (C-10"), 62.87 (C-10"), 62.64 (C-10), 61.08 (C-8, C-8"), 50.49 (C-2), 40.79 (C-1), 28.53 (C(CH₃)₃). MS (ESI) *m/z* calcd for C₉₄H₈₅N₁₀O₂₄ (M+2H)²⁺ 869.29, found 869.90.

9. (0.486 g, 0.28 mmol, 80%) ¹H NMR (300 MHz, CDCl₃): δ 8.10-7.11 (m, 45H, Ar), 7.88 (s, 1H, H-3'), 7.81 (s, 1H, H-3''), 7.69 (s, 1H, H-3), 6.24 (1H, H-7), 6.21 (1H, H-7'), 5.79 (1H, H-6''), 5.78 (1H, H-7''), 5.63 (1H, H-6), 5.50 (1H, H-6'), 5.23 (1H, H-5), 5.21 (1H, H-8), 5.14 (1H, H-8'), 5.09 (1H, H-5'), 4.91 (1H, H-5''), 4.87 (1H, NH),

4.65 (1H, H-10a''), 4.63 (1H, H-9), 4.61 (1H, H-10b''), 4.53 (1H, H-9'), 4.42 (3H, H-10a, H-2ab), 4.32 (1H, H-10a'), 3.95 (3H, H-10b', H-10b, H-8''), 3.86 (1H, H-9''), 3.50 (2H, H-1ab), 1.39 (s, 9H, C(CH₃)₃). ¹³C NMR (75.5 MHz, CDCl₃): δ 166,35-165,02 (C=O), 156.02 (NHC=O), 145.04 (C-4''), 144.85 (C-4'), 144.06 (C-4), 133.99-133.05 (C, Ar), 130.43-128.00 (CH, Ar), 123.41 (C-3), 122.39 (C-3''), 122.26 (C-3'), 80.19 (C(CH₃)₃), 77.50 (C-9, C-9'), 77.30 (C-9''), 74.95 (C-7''), 74.22 (C-5), 74.05 (C-5'), 73.80 (C-5''), 73.70 (C-7), 73.55 (C-7'), 72.66 (C-6, C-6''), 72.36 (C-6'), 63.88 (C-10''), 62.71 (C-10'), 62.61 (C-10), 61.34 (C-8''), 61.19 (C-8), 61.02 (C-8'), 50.54 (C-2), 40.81 (C-1), 28.53 (C(CH₃)₃). MS (ESI) *m/z* calcd for C₈₇H₇₈N₁₃O₂₁ (M+2H)²⁺ 881.80, found 882.50.

Scheme 3. a) TFA, DCM, quant. b) imidazole-1-sulfonyl azide, K₂CO3, CuSO₄, MeOH, 82-85%.

General procedure for the removal of the Boc, step a. Preparation of compounds 8a and 10a. Trifluoroacetic acid (5 mL, 50%) was added to a solution of 7 and 9 (0.16 mmol), respectively, in CH_2Cl_2 (10 mL). After 2 h the solvent was evaporated under vacuum to give the compounds 8a and 10a, respectively, as yellowish solids that were used without further purification.

8a. MS (ESI) m/z calcd for C₆₀H₅₂N₁₀O₁₄ (M+H)⁺ 1137.57, found 1137.37.

10a. MS (ESI) m/z calcd for C₈₉H₇₅N₁₃O₂₁ (M+2H)²⁺ 831.77, found 832.30.

General procedure for the diazotransfer, step b. Preparation of compounds 8 and 10. Imidazole-1-sulfonyl azide hydrochloride (1.2 equiv) was added to the ammonium salt 8a and 10a (1 equiv), respectively, K_2CO_3 (2.5 equiv) and $CuSO_4 \cdot 5H_2O$ (0.01 equiv) in MeOH (5 mL) and the mixture was stirred at r.t. for 4 h. The solvent was removed under vacuum and the residue was dissolved in CH₂Cl₂ and washed three times with water and brine. After drying over sodium sulfate the solvent was removed and the compound purified by column chromatography.

8. (0.160 g, 0.14 mmol, 85% from 7) ¹H NMR (300 MHz, CDCl₃): δ 8.08-7.12 (m, 30H, Ar), 7.92 (1H, H-3), 7.78 (1H, H-3'), 6.28 (1H, H-7), 5.55 (1H, H-6'), 5.91 (1H, H-6), 5.81 (1H, H-7'), 5.26 (1H, H-8), 5.32 (1H, H-5), 4.96 (1H, H-5'), 4.67 (1H, H-9), 4.63 (1H, H-10a'), 4.59 (1H, H-10b'), 4.39 (1H, H-10a), 3.97 (1H, H-8'), 4.33 (2H, H-2ab), 3.90 (1H, H-9'), 3.98 (1H, H-10b), 3.60 (2H, H-1ab). ¹³C NMR (75.5 MHz, CDCl₃): δ 166.37 (C=O), 165.89 (C=O), 165.86 (C=O), 165.54 (C=O), 165.46 (C=O), 165.14 (C=O), 145.03 (C-4'), 144.14 (C-4), 134.26-133.92 (Ar), 130.46-128.91 (Ar), 123.72 (C-3), 122.51 (C-3'), 77.25 (C-9'), 77.22 (C-9), 75.16 (C-7'), 74.00 (C-5), 73.87 (C-5'), 74.10 (C-7), 72.63 (C-6'), 72.38 (C-6), 64.07 (C-10'), 62.76 (C-10), 61.43 (C-8'), 61.14 (C-8), 50.66 (C-1), 49.59 (C-2). MS (ESI) *m/z* calcd for C₆₀H₅₁N₁₂O₁₄ (M+H)⁺ 1163,36, found 1163.60

10. (0.238 g, 0.14 mmol, 83% from **9**) ¹H NMR (300 MHz, CDCl₃): δ 8.10-7.13 (m, 45H, Ar), 7.87 (s, 1H, H-3''), 7.80 (s, 1H, H-3'), 7.77 (s, 1H, H-3), 6.22 (1H, H-7), 6.18 (1H, H-7'), 5.86 (1H, H-6''), 5.77 (1H, H-7''), 5.63 (1H, H-6), 5.49 (1H, H-6'), 5.25 (1H, H-5), 5.19 (1H, H-8), 5.11 (2H, H-5', H-8'), 4.90 (1H, H-5''), 4.63 (1H, H-10a''), 4.61 (1H, H-9), 4.58 (1H, H-10b''), 4.52 (1H, H-9'), 4.38 (3H, H-10a, H-2ab), 4.31 (1H, H-10a'), 3.95 (3H, H-10b', H-10b, H-8''), 3.85 (1H, H-9''), 3.68 (2H, H-1ab). ¹³C NMR (75.5 MHz, CDCl₃): δ 166,14-164.83 (C=O), 144.78 (C-4''), 144.53 (C-4'), 143.88 (C-4), 133.49-133.12 (C, Ar), 129.80-128.23 (CH, Ar), 123.47 (C-3), 122.40 (C-3''), 122.15 (C-3'), 76.82 (C-9, C-9', C-9''), 74.73 (C-7''), 73.66 (C-5), 73.62 (C-5'), 73.51 (C-5''), 73.46 (C-7), 73.39 (C-7'), 72.47 (C-6), 72.18 (C-6'), 71.94 (C-6''), 63.68 (C-10''), 62.49 (C-10'), 62.39 (C-10), 61.10 (C-8''), 60.86 (C-8,

C-8'), 50.41 (C-1), 49.35 (C-2). MS (ESI) m/z calcd for $C_{89}H_{74}N_{15}O_{21}$ (M+2H)²⁺ 844.77, found 845.40

Scheme 4. Synthesis of the ligands. a) CuSO₄, Na-ascorbate, DMF, 10% H₂O, 30', 80°C, microwave, 80-85%. b) MeONa, MeOH, 60-87%.

General procedure for the "click reaction", step a. Preparation of compounds 11, 13, 15, 17: Compound 21 or compound 2 (1.2 equiv), $CuSO_4 \cdot 5H_2O$ (0.15 equiv) and sodium ascorbate (0.3 equiv) were added to a solution of 8 or 10 (1 equiv) in DMF (3 mL) with 10% water. The mixture was heated under microwave irradiation at 80°C for 30 min. After evaporation of the solvent the residue was dissolved in CH₂Cl₂ and washed three times with water and brine. After drying over sodium sulfate the solvent was removed and the compound purified by column chromatography to give a white solid.

11. (0.04 g, 0.02 mmol, 83%) ¹H NMR (300 MHz, CDCl₃): 8.10-7.10 (30H, Ar), 7.93, 7.73, 7.48, 7.44 (4H, 4×H-3), 6.26, 6.24 (2H, 2×H-7), 5.82, 5.66 (2H, 2×H-6), 5.52-5.41 (3H, 2×H-14, 1×H-12), 5.32-5.06 (7H, 2×H-5, 2×H-13, 2×H-8, 1×H-12), 4.88-4.56 (8H, H-1ab, H-2ab, 2×H-9, 2×H-11), 4.38- 4.26 (2H, 2×H-10a), 4.15-3.95 (6H, 2×H-10b, 2×H-16ab, 2×H-15), 2.11, 2.00, 2.02, 1.99, 1.98, 1.93, 1.87, 1.61 (6×CH₃C=O). ¹³C NMR (75.5 MHz, CDCl₃): 170.80-170.17, 169.99, 169.73 (C=O, acetyl), 166.04, 165.88, 165.35, 165.08 (C=O, benzoyl), 145.20, 145.13, 144.78, 144.57 (4×C-4), 133.92-133.15 (C, Ar), 130.27-129.45, 128.97-128.18 (CH, Ar), 123.76, 123.74, 122.70, 122.49 (4×C-3), 77.12 (2×C-9), 75.08 (2×C-15), 74.05-73.60 (2×C-5, 2×C-7, 2×C-11), 72.79 (1×C-6), 72.37-71.90 (1×C-6, 2×C-13), 69.00 (2×C-12), 67.80 (2×C-14), 63.04, 62.76 (2×C-10), 61.64-61.10 (2×C-8, 2×C-16), 49.89 (C-2, C-1), 20.93 (CH₃C=O). MS (ESI) *m/z* calcd for C₈₉H₇₄N₁₅O₂₁ (M+2H)²⁺ 938.30, found 939.15.

13. (0.04 g, 0.02 mmol, 85%) ¹H NMR (300 MHz, CDCl₃): 8.00-7.05 (30H, Ar), 7.91, 7.52, 7.36, 6.89 (4H, 4×H-3), 6.22, 6.19 (2H, 2×H-7), 5.74, 5.67 (2H, 2×H-6), 5.40-5.35 (2H, 2×H-17), 5.23-5.10 (5H, 2×H-5, 2×H-15, 1×H-8), 5.08-4.92 (3H, 2×H-16, 1×H-8), 4.83- 4.60 (6H, 2×H-9, H-1ab, H-2ab), 4.45 (1H, 1×H-14), 4.41-4.10 (3H, 2×H-10a, 1×H-14), 4.23-4.03 (5H, 2×H-19ab, 1×H-10b), 4.00-3.69 (5H, 2×H-13a, 2×H-18, 1×H-10b) 3.50-3.31 (2H, 2×H-13b), 2.59-2.51 (4H, 2×H-11ab), 2.12, 2.09, 2.02, 2.01, 2.00, 1.97, 1.96, 1.95 (6×CH₃C=O), 2.00-1.58 (4H, 2×H-12ab). ¹³C NMR (75.5 MHz, CDCl₃): 170.70, 170.51, 170.39, 169.75 (C=O, acetyl), 166.08, 165.86, 165.35, 165.06 (C=O, benzoyl), 147.75 (2×C-4), 144.80, 144.45 (2×C-4), 133.85-133.29 (C, Ar), 130.21-129.45 (CH, Ar) 128.94-128.28 (CH, Ar), 122.67, 122.64, 122.34, 122.26 (4×C-3), 101.44 (2×C-14), 77.06, 76.66 (2×C-9), 73.82 (2×C-5, 2×C-14), 128.94-128.28 (CH, Ar), 122.67, 2.04

7), 72.50 (2×C-6), 71.9 (2×C-16), 70.80 (2×C-18), 69.20 (2×C-15, 2×C-13), 67.33 (2×C-17), 63.38, 62.64 (2×C-10), 61.50-61.00 (2×C-8, 2×C-19), 49.93 (C-2), 49.45 (C-1), 29.18 (2×C-12), 21.90, 21.78 (2×C-11), 20.89 (CH₃C=O). MS (ESI) *m/z* calcd for $C_{89}H_{74}N_{15}O_{21}$ (M+2H)²⁺ 996.34, found 996.95.

15. (0.07 g, 0.03 mmol, 80%) ¹H NMR (300 MHz, CDCl₃): 8.10-7.10 (45H, Ar), 7.92, 7.85, 7.74, 7.48, 7.44 (5H, 4×H-3), 6.326.15 (3H, 3×H-7), 5.85, 5.67, 5.64 (3H, 3×H-6), 5.52-5.42 (3H, 2×H-14, 1×H-12), 5.32-5.06 (7H, 3×H-5, 2×H-13, 3×H-8, 1×H-12), 4.85-4.50 (9H, H-1ab, H-2ab, 3×H-9, 2×H-11), 4.38- 4.25 (3H, 3×H-10a), 4.15-3.90 (7H, 3×H-10b, 2×H-16ab, 2×H-15), 2.11, 2.01, 1.99, 1.97, 1.93, 1.87, 1.85, 1.61 (6×CH₃C=O). ¹³C NMR (75.5 MHz, CDCl₃): 170.79-170.21, 169.98, 169.71 (C=O, acetyl), 166.03, 165.87, 165.33, 165.06 (C=O, benzoyl), 145.19, 145.12, 144.81, 144.74, 144.58 (5×C-4), 133.97-133.25 (C, Ar), 130.29-129.57, 129.46-128.19 (CH, Ar), 123.77, 123.76, 122.72, 122.51, 122.50 (5×C-3), 77.06 (3×C-9), 75.05 (2×C-15), 74.05-73.60 (3×C-5, 3×C-7, 2×C-11), 72.80-71.90 (3×C-6, 2×C-13), 69.00 (2×C-12), 67.82 (2×C-14), 62.80 (3×C-10), 61.85-61.00 (3×C-8, 2×C-16), 49.86 (C-2, C-1), 20.93 (CH₃C=O). MS (ESI) *m/z* calcd for C₈₉H₇₄N₁₅O₂₁ (M+2H)²⁺ 1201.37, found 1202.05.

17. (0.07 g, 0.03 mmol, 82%) ¹H NMR (300 MHz, CDCl₃): 8.00-7.10 (45H, Ar), 7.86 (2H, 2×H-3), 7.50, 7.34, 6.89 (3H, 3×H-3), 6.26-6.15 (3H, 3×H-7), 5.78-, 5.58 (3H, 3×H-6), 5.40-5.35 (2H, 2×H-17), 5.23-4.95 (10H, 3×H-5, 2×H-15, 3×H-8, 2×H-16), 4.83- 4.67 (5H, 1×H-9, H-1ab, H-2ab), 4.61, 4.54 (2H, 2×H-9), 4.45 (1H, 1×H-14), 4.40-4.25 (3H, 3×H-10a, 1×H-14), 4.23-4.05 (5H, 2×H-19ab, 1×H-10b), 4.00-3.69 (6H, 2×H-13a, 2×H-18, 2×H-10b), 3.50-3.33 (2H, 2×H-13b), 2.57-2.51 (4H, 2×H-11ab), 2.12, 2.09, 2.02, 2.01, 2.00, 1.98, 1.97, 1.96 (6×C<u>H</u>₃C=O), 1.67-1.57 (4H, 2×H-12ab). ¹³C NMR (75.5 MHz, CDCl₃): 170.69, 170.51, 170.38, 169.74 (C=O, acetyl), 166.07, 165.83, 165.34, 165.03 (C=O, benzoyl), 147.75 (2×C-4), 144.82, 144.74, 144.45 (3×C-4), 133.92-133.15 (C, Ar), 130.27-129.45 (CH, Ar) 128.97-128.18 (CH, Ar), 123.66 (1×C-3), 122.59 (2×C-3), 122.35, 121.28 (2×C-3), 101.65 (2×C-14), 77.09 (2×C-9), 76.67 (1×C-9), 74.00-73.70 (3×C-5, 3×C-7), 72.60 (3×C-6), 71.21 (2×C-16), 70.83 (2×C-18), 69.24 (2×C-15, 2×C-13), 67.36 (2×C-17), 63.30, 62.70 (3×C-10), 61.55-61.00 (3×C-8, 2×C-19), 49.96 (C-2), 49.46 (C-1), 29.92, 29.15

 $(2 \times C-12)$, 21.93, 21.78 $(2 \times C-11)$, 20.93 (<u>CH</u>₃C=O). MS (ESI) *m/z* calcd for C₈₉H₇₄N₁₅O₂₁ (M+2H)²⁺ 1258.92, found 1259.70.

General procedure for the removal of acetyl and benzoyl protecting groups, step b. Preparation of compounds 12, 14, 16, 18. A solution of the protected carbohydrate compounds 11, 13, 15, 17 in methanol (5 mL) was treated, respectively, with a solution of NaOMe in methanol (30%, 200 μ L) and the mixture was stirred for 4 h at r.t.. After neutralization with Dowex, the mixture was filtered and the methanol evaporated in vacuum to give the desired compound, which was purified by preparative HPLC.

12. (0.017 g, 0.017 mmol, 87%) ¹H NMR (300 MHz, D₂O): 8.34, 8.29, 8.00, 7.96 (4H, 4×H-3), 5.01 (4H, H-1ab, H-2ab), 4.95-4.75 (4H, 2×H-5, 2×H-8), 4.54, 4.45 (2H, 2×H-11), 4.34-4.27 (4H, 2×H-9, 2×H-7), 4.05-3.70 (14H, 2×H-14, 2×H-12, 2×H-6, 2×H-15, 2×H-13, 2×H-16ab), 3.56 (2H, 2×H-10a), 3.34-3.27 (2H, 2×H-10b). ¹³C NMR (125 MHz, D₂O): 143.40, 143.50, 142.30, 142.20 (4×C-4), 124.22, 124.15, 123.85, 123.83 (4×C-3), 77.98 (2×C-15), 76.98 (2×C-9), 73.41 (3×C-7), 72.80-72.38 (2×C-5, 2×C-11, 2×C-13), 71.80 (2×C-6), 68.98 (2×C-12), 67.85 (2×C-14), 60.99 (2×C-8), 59.98 (2×C-16), 58.75 (2×C-10), 48.90 (C-2, C-1). HRMS (MALDI TOF/TOF) *m/z* calcd for C₃₄H₅₁N₁₂O₁₈ (M+H)⁺ 915.3444 found 915.3411.

14. (0.012 g, 0.012 mmol, 80%) ¹H NMR (300 MHz, D₂O): 8.33, 7.99, 7.93, 7.59 (4H, 4×H-3), 4.99-4.92 (4H, H-1ab, H-2ab), 4.85-4.70 (4H, 2×H-5, 2×H-8), 4.39-4.25 (6H, 2×H-9, 2×H-14, 2×H-7), 3.96-3.85 (6H, 2×H-6, 2×H-13a, 2×H-17), 3.79-3.62 (10H, 2×H-13b, 2×H-15, 2×H-16, 2×H-19ab), 3.56-3.49 (4H, 2×H-10a, 2×H-18), 3.31-3.24 (2H, 2×H-10b), 2.95, 2.74 (4H, 2×H-11ab), 1.99, 1.90 (4H, 2×H-12ab). ¹³C NMR (125 MHz, D₂O): 146.30, 143.30, 143.14 (4×C-4), 123.94, 123.75, 122.12, 122.05 (4×C-3), 101.34 (2×C-14), 76.90 (2×C-9), 73.90-73.00 (2×C-16, 2×C-7), 72.30-71.10 (2×C-15, 2×C-6, 2×C-5), 69.25 (2×C-18), 67.70-67.00 (2×C-17, 2×C-13), 60.90-60.50 (2×C-8), 59.49 (2×C-19), 58.53 (2×C-10), 48.75, 48.52 (C-2, C-1), 27.03, 26.92 (2×C-12), 19.54, 19.35 (2×C-11). HRMS (MALDI TOF/TOF) *m/z* calcd for C₄₀H₆₂N₁₂NaO₂₀ (M+Na)⁺ 1053.4096 found 1053.4061.

16. (0.017 g, 0.015 mmol, 75%) ¹H NMR (300 MHz, D₂O): 8.39, 8.38, 8.32, 8.02, 7.99 (5H, 5×H-3), 5.05 (4H, H-1ab, H-2ab), 4.92-4.78 (6H, 3×H-5, 3×H-8), 4.59, 4.49 (2H, 2×H-11), 4.40-4.32 (6H, 3×H-9, 3×H-7), 4.10-3.73 (15H, 2×H-14, 2×H-12, 3×H-6, 2×H-15, 2×H-13, 2×H-16ab), 3.63-3.58 (3H, 3×H-10a), 3.38-3.32 (3H, 3×H-10b). ¹³C NMR (125 MHz, D₂O): 144.57-143.10 (5×C-4), 124.01-123.40 (5×C-3), 77.83 (2×C-15), 76.81 (3×C-9), 73.24 (3×C-7), 72.53-72.18 (3×C-5, 2×C-11, 2×C-13), 71.70-71.60 (3×C-6), 68.90-68.70 (2×C-12), 67.70 (2×C-14), 60.82 (3×C-8), 59.75 (2×C-16), 58.55 (3×C-10), 48.70 (C-2, C-1). HRMS (MALDI TOF/TOF) *m/z* calcd for C₄₂H₆₂N₁₅O₂₂ (M+H)⁺ 1128.4193 found 1128.4012.

18. (0.016 g, 0.013 mmol, 70%) ¹H NMR (300 MHz, D₂O): 8.34 (2H, 2×H-3), 8.02, 7.96, 7.67 (3H, 3×H-3), 4.99-4.94 (4H, H-1ab, H-2ab), 4.87-4.72 (6H, 3×H-5, 3×H-8), 4.37-4.25 (8H, 3×H-9, 2×H-14, 3×H-7), 3.99-3.85 (7H, 3×H-6, 2×H-13a, 2×H-17), 3.78-3.60 (10H, 2×H-13b, 2×H-15, 2×H-16, 2×H-19ab), 3.57-3.47 (5H, 3×H-10a, 2×H-18), 3.32-3.24 (3H, 3×H-10b), 2.95, 2.76 (4H, 2×H-11ab), 1.99, 1.91 (4H, 2×H-12ab). ¹³C NMR (125 MHz, D₂O): 145.12, 145.09, 143.52, 143.25 (5×C-4), 123.95, 123.82, 122.54, 122.39 (5×C-3), 101.32 (2×C-14), 76.75 (3×C-9), 73.70-73.10 (2×C-16, 3×C-7), 72.50-71.20 (2×C-15, 3×C-6, 3×C-5), 69.27 (2×C-18), 67.60-67.10 (2×C-17, 2×C-13), 60.72 (3×C-8), 59.49 (2×C-19), 58.55 (3×C-10), 48.53 (C-2, C-1), 26.89 (2×C-12), 19.42, 19.15 (2×C-11). HRMS (MALDI TOF/TOF) *m/z* calcd for C₄₈H₇₄N₁₅O₂₄ (M+H)⁺ 1244.5031 found 1244.4996.

12 19b 19a ii AcO QA¢∕^{OAc} ÒAc 0 12 19c iii HO 'nн 12 19

S-20

Scheme 5. Synthesis of the PEG based ligand. i) DMAP, propargyl amine, Et₃N, EDCI, DCM, 93%; ii) CuSO₄, Na-ascorbate, DMF, 10% H₂O, 30', 80°C, microwave, 65%. b) MeONa, MeOH, 95%.

19b. Propargyl amine (0.05 mL, 0.70 mmol) was added to a solution of **19a** (0.20 g, 0.30 mmol), 4-dimethyl aminopyridine (DMAP, 0.01 g, 0.08 mmol) and triethylamine (0.01 mL, 0.03 mmol) in CH₂Cl₂ (15 mL). The mixture was cooled to 0°C and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, 0.11 g, 0.60 mmol) was added. The mixture was stirred for 1 h at 0°C and overnight at r.t.. The reaction was quenched with a 1M KHSO₄ solution (15 mL) and the organic layer was washed with NaHCO₃ saturated solution, water and brine (20 mL). The organic solution was dried over sodium sulfate and after evaporation of the solvent, **19b** was obtained as an oily product (0.21 g, 0.28 mmol, 93%). ¹H NMR (300 MHz, CDCl₃): 7.00 (2H, NH), 3.95 (m, 4H, H-3), 3.65 (t, 4H, J_{6.5}= 5.70 Hz, H-6), 3.60-3.50 (48H, (OCH₂CH₂)₁₂O), 2.41 (t, 4H, H-5, J_{6.5}= 5.70 Hz), 2.16 (t, 2H, H-1, J_{1.3}= 2.50 Hz). ¹³C NMR (75.5 MHz, CDCl₃): 171.28, 80.08, 71.01, 70.53-70.25, 70.21, 70.16, 66.92, 36.56, 28.76 MS (ESI) *m/z* calcd for C₃₆H₆₅N₂O₁₅ (M+H)⁺ 765.44, found 765.75.

19c. The general procedure for the "click reaction" was applied. Starting from compound **19b** (0.19 g, 0.25 mmol) and compound **25**²¹ (0.24 g, 0.55 mmol), after column chromatography, **19c** was obtained (0.19 g, 0.16 mmol, 65%). ¹H NMR (300 MHz, CDCl₃): 7.53 (s, 2H, H-6), 7.29 (2H, NH), 5.31 (d, 2H, $J_{13,12}$ = 3.15 Hz, H-13), 5.15 (dd, 2H, $J_{11,10}$ = 8.12 Hz, $J_{11,12}$ = 10.37 Hz, H-11), 4.95 (dd, 2H, $J_{12,11}$ = 10.37, Hz

20

J_{12,13}= 3.15 Hz, H-12), 4.46-4.22 (m, 10H, H-15ab, H-10, H-7), 4.07 (m, 4H, H-4), 3.88-3.76 (m, 4H, H-14, H-9a), 3.68 (t, 4H, J_{1,2}= 5.85 Hz), 3.60-3.50 (48H, (OCH₂CH₂)₁₂O), 3.38 (m, 2H, H-9b), 2.41 (t, 4H, J_{2,1} = 5.85 Hz, H-2), 2.11 (m, 4H, H-8), 2.11, 2.04, 1.98, 1.93 (24H, C=OC<u>H</u>₃). ¹³C NMR (75.5 MHz, CDCl₃): 171.28 (NHC=O), 170.32 (C=O), 170.18 (C=O), 170.02 (C=O), 169.56 (C=O), 145.13, 122.60, 101.14, 70.76, 70.65, 70.48-70.35, 70.21, 70.13, 68.76, 67.06, 66.97, 65.85, 61.18, 46.61, 36.71, 34.91, 30.13, 20.81, 20.65, 20.61, 20.5. MS (ESI) *m/z* calcd for $C_{70}H_{116}N_8O_{35}$ (M+2H)²⁺ 814.33, found 814.70.

19. The general procedure for the removal of acetyl protecting groups was applied. Starting from **19c** (0.07 g, 0.04 mmol), compound **19** was obtained (0.05 g, 0.04 mmol, 95%). ¹H NMR (300 MHz, D₂O): 7.95 (s, 2H), 4.56 (t, 4H, J=6.85 Hz), 4.49 (s, 4H), 4.37 (d, 2H, J=7.74 Hz), 3.96-3.87 (m, 4H), 3.84-3.50 (m, 64H), 2.58 (t, 4H, J=5.93 Hz), 2.23 (p, 4H, J=6.39 Hz). ¹³C NMR (125 MHz, D₂O): 171.30 (NHC=O), 143.68 (C, Tr), 122.40 (CH, Tr), 101.14, 73.47, 71.06, 69.07, 68.75-67.20, 66.98, 65.04, 64.65, 59.33, 45.46, 34.28, 32.84, 27.92. HRMS (MALDI TOF/TOF) *m/z* calcd for $C_{54}H_{99}N_8O_{27}$ (M+H)⁺ 1291.6619 found 1291.6371.

21. BF₃·Et₂O (2.6 mL, 20.48 mmol) was added dropwise to a solution of β-D-galactose pentaacetate (2 g, 5.12 mmol) and 3-butyn-1-ol (1.55 mL, 20.48 mmol) in CH₂Cl₂ (50 mL) previously cooled at 0°C. The mixture was stirred overnight at room temperature. The solution was neutralized with a saturated NaHCO₃ solution and the organic phase was washed with water (30 mL) and once with brine (30 mL). After drying over sodium sulfate, the solvent was removed and the compound purified by column chromatography to give **20** as a white solid (1.48 g, 3.58 mmol, 70%). ¹H NMR (300 MHz, CDCl₃): δ 5.30 (d, 1H, J_{9,8}=2.57 Hz, H-9), 5.10 (t, 1H, J_{7,6}=J_{7,8}=9.10 Hz, H-7), 4.94 (dd, 1H, J_{8,7}= 9.10 Hz, J_{8,9}=2.57 Hz, H-8), 4.41 (d, 1H, J_{6,7}=9.10 Hz, H-6), 4.07 (m, 2H, H-11ab), 3.88 (m, 2H, H-10, H-5a), 3.56 (m, 1H, H-5b), 2.18 (m, 2H, H-3), 2.18 (1H, H-1), 2.06, 1.99, 1.96, 1.90 (C=OC<u>H</u>₃), 1.73 (m, 2H, H-4). ¹³C NMR (75.5 MHz, CDCl₃): δ ppm 170.19, 170.10, 169.95, 169.31 (4×C=O), 101.37,

83.29, 70.75, 70.49, 68.83, 68.77, 68.18, 66.96, 61.18, 28.11, 20.61 (C=OC<u>H</u>₃), 20.53 (2×C=OC<u>H</u>₃), 20.45 (C=O<u>C</u>H₃), 14.63. MS (ESI) *m/z* calcd for $C_{19}H_{26}KO_9$ (M+K)⁺ 437.12, found 437.15.

20. The general procedure for the removal of acetyl protecting groups was applied. Starting from **21** (0.19 g, 0.48 mmol), compound **20**²² was obtained (0.12 g, 0.47 mmol, 98%). ¹H NMR (300 MHz, CD₃OD): δ ppm 4.21 (d, 1H, J_{6,7}=6.83 Hz, H-6), 3.96 (dt, 1H, J_{5a,4}=6.50 Hz, J_{5a,5b}=9.90 Hz, H-5a), 3.84 (s, 1H, H-9), 3.73 (d, 2H, J_{11ab,10}=6.36 Hz, H-11ab), 3.65 (dt, 1H, J_{5b,4}=6.50 Hz, J_{5b,5a}=9.90 Hz, H-5b), 3.55-3.43 (m, 3H, H-7, H-8, H-10), 2.30 (dt, 2H, J_{3,4}=7.00 Hz, J_{3,1}=2.60 Hz, H-3), 2.20 (t, 1H, J_{1,3}=2.60 Hz, H-1), 1.80 (p, 2H, J_{4,3}=J_{4,5}=6.50 Hz, H-4). ¹³C NMR (75.5 MHz, CD₃OD): δ ppm 104.94, 84.70, 76.45, 74.86, 72.47, 70.17, 69.63, 69.24, 62.34, 29.99, 15.75. HRMS (MALDI TOF/TOF) *m/z* calcd for C₁₁H₁₈NaO₆ (M+Na)⁺ 269.0996 found 269.0928.

Scheme 6. a) CuSO₄, Na-ascorbate, DMF, 10% H₂O, 30', 80°C, microwave, 60%; b) MeONa, MeOH, quant..

24. The general procedure for the "click reaction" was applied. Starting from compound **2** (0.05 g, 0.15 mmol) and compound **23**²³ (0.02 g, 0.22 mmol), after column chromatography, **24** was obtained (0.04 g, 0.09 mmol, 60%). ¹H NMR (300 MHz, CDCl₃): 7.77 (s, 1H, H-3),5.49 (d, 1H, $J_{8,7}$ = 3.15 Hz, H-8), 5.35 (t, 1H, $J_{6,5}$ = $J_{6,7}$ = 10.10 Hz, H-6), 5.16 (dd, 1H, $J_{7,6}$ = 10.10 Hz $J_{7,8}$ = 3.15 Hz, H-7), 4.74 (d, 1H, $J_{5,6}$ = 10.10 Hz, H-5), 4.48 (m, 2H, H-1ab), 4.17-4.08 (m, 3H, H-9, H-10ab), 3.98 (m, 2H, H-1ab), 2.70 (s, 1H, OH), 2.19, 2.04, 2.00, 1.91 (12H, C=OCH₃). ¹³C NMR (75.5 MHz, CD₃Cl): 170.77 (C=O), 170.51 (C=O), 170.45 (C=O), 170.35 (C=O), 144.69 (C-4), 124.04 (C-3), 75.11 (C-9), 74.09 (C-5), 72.00 (C-7) 69.47 (C-6), 67.93 (C-8), 61.96 (C-10), 61.48 (C-1), 53.14 (C-2), 20.99(C=OCH₃). MS (ESI) *m/z* calcd for C₁₈H₂₅N₃O₁₀ (M+H)⁺ 444.16, found 444.70.

22. The general procedure for the removal of acetyl protecting groups was applied. Starting from **24** (0.03 g, 0.07 mmol), compound **22** was obtained (0.02 g, 0.07 mmol, quant). ¹H NMR (300 MHz, CD₃OD): δ ppm 8.05 (s, 1H, H-3), 4.49 (t, 2H, J_{2ab,1ab}=5.55 Hz, H-2ab), 4.34 (d, 1H, J_{5,6}=9.55 Hz, H-5), 3.97-3.83 (m, 4H, H-8, H-9, H-10ab), 3.80-3.63 (m, 3H, H-1ab, H-6), 3.60 (dd, 1H, J_{7,8}=3.15 Hz, J_{7,6} =9.55 Hz, H-7). ¹³C NMR (75.5 MHz, CD₃OD): δ ppm 147.00 (C-4), 125.43 (C-3), 80.93 (C-9), 76.24 (C-5), 76.20 (C-7) 72.23 (C-6), 70.91 (C-8), 62.83 (C-10), 61.58 (C-1), 54.02 (C-2). HRMS (MALDI TOF/TOF) *m/z* calcd for C₁₀H₁₈N₃O₆ (M+H)⁺ 276.1196 found 269.1135.

Calculation of the effective length of the spacer of compound 19

The spacer of compound **19** contains one of the longest commercially available homogeneous PEG molecule. The spacer is of similar length as an all PEG spacer with 20 PEG units (CH₂CH₂O), since they both contain 61 atoms. Using the Flory equation²⁴ for PEG, $Rf = aN^{\frac{3}{5}}$, where R_f is the length, N is the number of PEG units, and a is the length of one monomer (taken to be 3.5 Å), an effective length of 21.1 Å is calculated. Considering that the spacer of **19** contain two amide bonds and two triazole units, it is likely that its effective length is longer than that. Furthermore flexible PEG and PEG-hybrid spacers are known to give a broad distance distribution, both theoretically²⁵ and experimentally.⁹ Therefore the spacer of **19** is expected to adequately cover the distance between the two binding sites of LecA of 26 Å, measured between the anomeric oxygens of bound galactosides of X-ray structure with pdb code 10KO.^{12b}

Estimating the potential for bivalent binding of 12 and 14

The complex between the rigid and flexible molecule and lectin 1 from *Pseudomonas aeruginosa* was modeled using the X-structure of this lectin complexed to galactose as a template (PDB ID: 10KO). First, one of the terminal sugar moieties of either the rigid or flexible molecule was superimposed onto the galactose moiety of molecule A in the X-structure with respect to the atoms comprising the sugar-ring. Subsequently, the galactose moieties of molecules A and B were deleted from the structure and the other terminal sugar of either the rigid or the flexible molecule was pulled to the binding site of galactose B using restrained molecular dynamics. The superimposed

sugar and the protein units A and B were kept in a fixed position during the simulation. Restraints were used based on a limited number of hydrogen bonds present between residues of protein unit B and the galactose of B. In the top structure (A) our worst ligand, compound 12 was modeled (see yellow structure). Clearly the left galactose of 12 cannot reach the position of galactose B of the X-ray structure (shown in blue). In contrast, as shown in the bottom structure (B), both galactosides of our best ligand 14 can bind in both binding sites simultaneously. Modeling was accomplished using the Yasara Structure software (version 11.9.18).

A

B

References

- 19 J. W. Goding, J. Immunol. Methods, 1976, 13, 215-226.
- 20 L. A. Howell, A. Howman, M.A. O'Connell, A. Mueller, M. Searcey, *Bioorg. Med. Chem. Lett.*, 2009, **19**, 5880-5883.
- 21 J. A. F. Joosten, V. Loimaranta, C. C. M. Appeldoorn, S. Haataja, F. A. El Maate, R.M.J. Liskamp, J. Finne and R. J. Pieters, *J. Med. Chem*, 2004, 47, 6499-6508.
- 22 W.-Y. Lu, X.-W. Sun, C. Zhu, J.-H. Xu, G.-Q. Lin, *Tetrahedron*, 2010, **66**, 750-757.
- 23 O. Norberg, L.Deng, T. Aastrup, M. Yan, O. Ramström, *Anal. Chem.*, 2011, **83**, 1000-1007.

- 24 Flory, P, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, USA, 1971.
- 25 P. I. Kitov, H. Shimizu, S. W. Homans, D. R. Bundle J. Am. Chem. Soc. 2003, **125**, 3284-3294.

2 in CDCl₃

28

6 in CDCl₃

29

7a in CDCl₃

9 in CDCl₃

8 in CDCl₃

10 in CDCl₃

14 in D_2O 2×13b+ 2×15 2×15 +2×16+ 2×19ab 2×6+ 2×13a +2×17 1ab +2ab 2×9+2×14 +2×7 2×10a +2×18 2×5+ 2×8 M \bigwedge 2×10b M M 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 f1 (ppm) 2×11ab 2×12ab 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 F 110 - 10 - 20 120 . ----f1 (ppm) - 30 130 40 140 50 • 60 8.5 8.0 7.5 f2 (ppm) 7.0 ------ 70 ----• f1 (ppm) - 80 - 90 100 ... 110 120 5 -130 140 150 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 f2 (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5

19b in CDCl₃ 1H Std proton 1 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 f1 (ppm) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13C Std Carbon experiment 90 80 f1 (ppm) 0 60 50 40 30 20 10 100 170 160 150 130 120 110 70 140

21 in CDCl₃ 1H OAc OAc . 11ab ç AcO 4ab <u>_</u>1 OAc 5ab 3ab 3ab 11ab 5a,10 9 6 7 4ab 5b M 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 f1 (ppm) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13C Std Carbon experiment 90 80 f1 (ppm) 50 40 . 80 . 170 . 160 150 140 130 120 110 100 70 60 . 30 20 10 0

24 in CDCl₃

24 in CDCl₃

22 in CD₃OD

22 in CD₃OD

12 IC₅₀=314 ± 62 μ M

LOGIC50	-3,503
IC50 (M)	0,0003141
LOGIC50 (error)	0,07849
R ²	0,9915

14 IC₅₀=223 \pm 23 nM

16 IC₅₀=1.76 ± 0.34 μ M

LOGIC50	-5,753
IC50 (M)	1,766e-006
LOGIC50 (error)	0,07599
R ²	0,9957

18 IC₅₀=383 ± 61 nM

IC50 (M)

R²

LOGIC50 (error)

-6,417 3,830e-007 0,06460 0,9929

19 IC₅₀= $2.06 \pm 0.59 \ \mu M$

LOGIC50	-5,687
IC50 (M)	2,056e-006
LOGIC50 (error)	0,1108
R ²	0,9902

20 IC₅₀=133 ± 60 μ M

LOGIC50	-3,877
IC50 (M)	0,0001327
LOGIC50 (error)	0,1646
R ²	0,9644

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

S-57

22 IC₅₀=92 ± 37 μ M

LOGIC50	-4.035
IC50 (M)	9,224e-005
LOGIC50 (error)	0,1636
R ²	0,9595

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

