Supporting Information

Amine-catalyzed Formal (3+3) Annulations of 2-(Acetoxymethyl)buta-2,3-dienoates with Sulfur Ylide: Synthesis of 4H-Pyran Bearing Vinyl Sulfide Group

Kun Li, Jian Hu, Hui Liu and Xiaofeng Tong *

Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China. E-mail: tongxf@ecust.edu.cn

Contents

I.	General Information		S2
П.	Optimization for DABCO-Catalyzed (3+3) Annulations	•••••	S3
III.	The Procedure for (3+3) Annulations		S4
IV.	Data for the Compounds 3aa-3ca		S5
V.	The Procedure for Synthesis of 4 and 6		S20

I. General information

Unless otherwise noted, all reagents were obtained commercially and used without further purification.

NMR spectrum: ¹H and ¹³C spectra were recorded on a Bruker AVANCE 400 spectrometer, operating at 400 MHz for ¹H NMR, 100 MHz for ¹³C NMR. For ¹H NMR, chemical shifts were reported downfield from CDCl₃ (δ : 7.27 ppm). For ¹³C NMR, chemical shifts were reported in the scale relative to the solvent of CDCl₃ (δ : 77.0 ppm) used as an internal reference.

Mass spectroscopy: Mass spectra were in general recorded on an AMD 402/3 or a HP 5989A mass selective detector.

Chromatography: Column chromatography was performed with silica gel (200-300 mesh ASTM).

II.Optimization for DABCO-Catalyzed (3+3) Annulations

—·—·—·OAc +		O ↓ ⊕¦	20 mol% DABCO 1.2 equiv.base		BnO ₂ C S	
CO ₂ Bn		Ph Br	solvent	-		
1a		2a			3aa	
Entry	1a/2a	Base	Solvent	Τ (°C)	Yield (%) ^{b}	
1	1:1.2	K ₂ CO ₃	benzene	r.t.	70	
2	1:2.1	K ₂ CO ₃	benzene	r.t.	53	
3	1:1.2	Cs_2CO_3	benzene	r.t.	59	
4	1:1.2	K ₂ CO ₃	PhMe	r.t.	27	
5	1:1.2	K ₂ CO ₃	CH_2Cl_2	r.t.	88	
6	1:1.2	K ₂ CO ₃	MeCN	r.t.	62	
7	1:1.2	K ₂ CO ₃	DMF	r.t.	47	
8	1:1.2	K ₂ CO ₃	Acetone	r.t.	96	
9	1:1.2	K ₂ CO ₃	Acetone	reflux	70	
10	1:1.2	Na ₂ CO ₃	Acetone	r.t.	88	

Table S1: Optimization for DABCO-catalyzed (3+3) Annulations of **1a** and **2a**^{*a*}

^{*a*}Reaction conditions: to the solution of **2a** (31.3 mg, 0.12 mmol, 1.2 equiv.), base (0.12 mmol, 1.2 equiv.), DABCO (2.3 mg, 0.02 mmol, 20 mol%) in acetone (1.3 mL), was slowly added the solution of **1a** (24.6 mg, 0.10 mmol) in acetone (1.3 mL) over 20 minutes. ^{*b*}Isolated yield.

Optimization was conducted with the model reaction between 1a and 2a in the presence of 20 mol% DABCO (Table S1). When 1.2 equivalents of K₂CO₃ were used as the base, compound 3aa could be isolated in 70% yield (entry 1, Table S1). This transformation seemed to be strongly dependent on the solvent (entries 4-8, Table S1) and solvent Acetone was found out to be the optimal one. To our delight, the yield reached as high as 96% when K₂CO₃ was used (entry 8, Table S1).

. The Procedure for (3+3) Annulations

In a 25 mL Schlenk tube, the mixture of 2 (0.12 mmol, 1.2 equiv.), DABCO (2.3 mg, 20 mol %) and K_2CO_3 (16.6 mg, 0.12 mmol, 1.2 equiv.) was introduced with acetone (1.3 mL). The mixture was stirred at room temperature. To this reaction mixture the solution of 1 (0.10 mmol) in acetone (1.3 mL) was slowly added over 20 minutes. The reaction mixture was monitored by TLC. When the reaction was finished, the mixture was directly subjected to silica gel column chromatography (petroleum ether: EtOAc 20:1) to give the product **3**.

IV. Data for the Compounds 3

= **3aa** Yield = 96%, 33.9 mg, slight yellow oil.

¹H NMR(400 MHz, CDCl₃): δ 2.18(s, 3H), 2.34(s, 3H), 3.35(s, 2H), 5.25(s, 2H), 7.35-7.43(m, 8H), 7.54-7.57(m, 2H). ¹³C NMR(100 MHz, CDCl₃): δ 14.7, 18.9, 27.4, 66.0, 99.8, 107.6, 127.8, 128.0, 128.1, 128.6, 128.9, 133.6, 136.4, 147.1, 160.6, 167.2. HRMS (EI) Calcd for $C_{21}H_{20}O_3S$ 352.1133, found 352.1128.

S 5

Br **3ab** Yield = 86%, 37.0 mg, slight yellow solid, M.p.:

85-91°C (recrystallization from petroleum ether and ethyl acetate).

¹H NMR (400 MHz, CDCl₃): δ 2.19(s, 3H), 2.33(s, 3H), 3.32(s, 2H), 5.25(s, 2H), 7.34-7.41(m, 5H), 7.44(d, J = 8.4 Hz, 2H), 7.52(d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 14.5, 18.9, 27.3, 66.0, 99.8, 108.3, 122.9, 127.9, 128.1, 128.5, 130.4, 130.9, 132.4, 136.2, 145.9, 160.4, 167.0. HRMS (EI, Br⁷⁹) Calcd for C₂₁H₁₉BrO₃S 430.0238, found 430.0241.

 NO_2 3ac Yield = 75%, 29.8 mg, yellow solid, M.p. 57-61°C

(recrystallization from petroleum ether and ethyl acetate).

¹H NMR (400 MHz, CDCl₃): δ 2.23(s, 3H), 2.34(s, 3H), 3.36(s, 2H), 5.25(s, 2H), 7.35-7.41(m, 5H), 7.77(d, *J* =8.8 Hz, 2H), 8.24(d, *J* = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 14.4, 18.8, 27.5, 66.2, 99.9, 111.1, 123.0, 128.0, 128.2, 128.6, 129.8, 136.2, 139.7, 144.6, 147.4, 160.2, 166.9. HRMS (EI) Calcd for C₂₁H₁₉NO₅S 397.0984, found 397.0986.

Cl 3ad Yield = 84%, 32.5 mg, yellow solid, M.p. 77-82 °C

(recrystallization from petroleum ether and ethyl acetate).

¹H NMR (400 MHz, CDCl₃): δ 2.18(s, 3H), 2.33(s, 3H), 3.33(s, 2H), 5.24(s, 2H), 7.35-7.41(m, 7H), 7.50(d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 14.6, 18.9, 27.4, 66.0, 99.8, 108.2, 128.0, 128.1, 128.5, 130.2, 131.9, 134.6, 136.3, 146.0, 160.4, 167.1. HRMS (EI) Calcd for C₂₁H₁₉ClO₃S 386.0743, found 386.0746.

3ae Yield = 84%, 30.6 mg, yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 2.18(s, 3H), 2.33(s, 3H), 2.39(s, 3H), 3.33(s, 2H), 5.25(s, 2H), 7.21(d, J = 8.0 Hz, 2H), 7.34-7.45(m, 7H). ¹³C NMR (100 MHz, CDCl₃): δ 14.7, 19.0, 21.4, 27.3, 66.0, 99.8, 107.0, 127.9, 128.0, 128.5, 128.5, 128.7, 130.7, 136.4, 138.9, 147.2, 160.7, 167.3. HRMS (EI) Calcd for C₂₂H₂₂O₃S 366.1290, found 366.1292.

 NO_2 **3af** Yield = 83%, 33.0 mg, slight yellow oil.

¹H NMR(400 MHz, CDCl₃): δ 2.22(s, 3H), 2.35(s, 3H), 3.36(s, 2H), 5.25(s, 2H), 7.35-7.42(m, 5H), 7.56(t, *J* = 8.0 Hz, 1H), 7.90-7.92(m, 1H), 8.20-8.23(m, 1H), 8.46(t, *J* = 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 14.5, 18.9, 27.4, 66.2, 100.0, 110.1, 123.5, 123.9, 128.0, 128.2, 128.6, 128.7, 134.9, 135.1, 136.2, 144.7, 147.8, 160.2, 166.9. HRMS (EI) Calcd for C₂₁H₁₉NO₅S 397.0984, found 397.0987.

 \dot{O} **3ag** Yield = 88%, 30.2 mg, slight yellow oil.

¹H NMR(400 MHz, CDCl₃): δ 2.28(s, 3H), 2.37(s, 3H), 3.33(s, 2H), 5.24(s, 2H), 6.48(dd, J = 1.6 Hz, J = 3.2 Hz, 1H), 6.79(d, J = 3.2 Hz, 1H), 7.33-7.41(m, 5H), 7.49(s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 14.3, 18.9, 27.0, 66.1, 99.4, 108.5, 110.9, 111.6, 128.0, 128.1, 128.6, 136.3, 137.6, 142.2, 146.5, 160.3, 167.1. HRMS (EI) Calcd for C₁₉H₁₈O₄S 342.0926, found 342.0920.

3ah Yield = 80%, 30.4 mg, slight yellow oil.

¹H NMR(400 MHz, CDCl₃): δ 2.13(s, 3H), 2.29(s, 3H), 2.30(s, 3H), 2.36(s, 3H), 3.34(s, 2H), 5.25(s, 2H), 7.03-7.09(m, 2H), 7.15-7.18(m, 1H), 7.35-7.43(m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ 14.5, 18.9, 19.3, 21.3, 27.0, 66.0, 99.9, 108.3, 126.2, 128.0, 128.1, 128.6, 129.9, 130.7, 131.0, 136.4, 136.8, 139.1, 147.5, 160.8, 167.3. HRMS (EI) Calcd for $C_{23}H_{24}O_3S$ 380.1446, found 380.1440.

3ai Yield = 91%, 34.4 mg, slight yellow oil.

¹H NMR(400 MHz, CDCl₃): δ 2.16(s, 3H), 2.28(s, 3H), 2.29(s, 3H), 2.31(s, 3H), 3.32(s, 2H), 5.23(s, 2H), 7.14-7.17(m, 1H), 7.24-7.27(m, 2H), 7.33-7.40(m, 5H). ¹³C NMR(100 MHz, CDCl₃): δ 14.7, 19.0, 19.7, 19.8, 27.3, 66.0, 99.8, 106.9, 126.5, 127.95, 128.04, 128.5, 129.1, 129.8, 131.2, 136.1, 136.4, 137.7, 147.4, 160.7, 167.3. HRMS (EI) Calcd for $C_{23}H_{24}O_3S$ 380.1446, found 380.1448.

BnO₂C .S.

3aj Yield = 17%, 5.0 mg, slight yellow oil.

¹H NMR(400 MHz, CDCl₃): δ 2.04(s, 3H), 2.17(s, 3H), 2.24(s, 3H), 3.12(s, 2H), 5.20(s, 2H), 7.32-7.39(m, 5H). ¹³C NMR(100 MHz, CDCl₃): δ 14.7, 16.7, 18.9, 26.8, 65.9, 100.3, 104.9, 127.9, 128.0, 128.5, 136.4, 147.6, 160.2, 167.4. HRMS (EI) Calcd for $C_{16}H_{18}O_{3}S$ 290.0977, found 290.0969.

3ba Yield = 29%, 10.7 mg, slight yellow oil.

¹H NMR(400 MHz, CDCl₃): δ 1.24(t, J = 7.2 Hz, 3H), 1.95(s, 3H), 2.42(s, 3H), 4.09-4.18(m, 2H), 4.63(s, 1H), 7.21-7.26(m, 1H), 7.29-7.34(m, 2H), 7.38-7.42(m, 5H), 7.61-7.64(m, 2H). ¹³C NMR(100 MHz, CDCl₃): δ 14.2, 16.7, 19.0, 43.9, 60.3, 106.3, 112.2, 126.9, 127.9, 128.3, 128.3, 129.1, 133.6, 145.1, 149.2, 159.4, 166.9. HRMS (EI) Calcd for C₂₂H₂₂O₃S 366.1290, found 366.1288.

3ak Yield = 42%, 17.4 mg, slight yellow oil.

¹H NMR(400 MHz, CDCl₃): δ 2.36(s, 3H), 3.12(s, 2H), 5.17(s, 2H), 7.19-7.24(m, 1H), 7.30-7.35(m, 9H), 7.37-7.39(m, 3H), 7.57-7.60(m,2H). ¹³C NMR(100 MHz, CDCl₃): δ 18.8, 28.2, 65.9, 101.1, 104.8, 126.3, 127.9, 128.0, 128.5, 128.6, 128.7, 129.1, 129.3, 133.3, 134.0, 136.2, 151.9, 160.3, 167.0. HRMS (EI) Calcd for $C_{26}H_{22}O_3S$ 414.1290, found 414.1292.

3al-1 Yield =39%, 18.3 mg, slight yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 1.59-1.67(m, 2H), 1.75-1.83(m, 2H),2.34(s, 3H), 2.60(t, *J* = 7.2 Hz, 2H), 3.27-3.31(m, 4H), 5.25(s, 2H), 7.35-7.42(m, 8H), 7.52-7.55(m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 18.9, 27.7, 27.9, 29.8, 31.2, 33.0, 66.0, 100.0, 105.7, 127.7, 128.0, 128.1, 128.5, 128.9, 129.1, 133.5, 136.3, 149.1, 160.6, 167.1. HRMS (EI, Br⁷⁹) Calcd for C₂₄H₂₅BrO₃S 472.0708, found 472.0712.

3al-2 Yield =22%, 9.8 mg, slight yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 1.52-1.60(m, 4H), 2.02(s, 3H), 2.32(s, 3H), 2.60(t, J = 6.8 Hz, 2H), 3.30(s, 2H), 3.97(t, J = 6.4 Hz, 2H), 5.24(s, 2H), 7.36-7.41(m, 8H), 7.50-7.54(m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 19.0, 20.9, 25.8, 27.4, 27.9, 30.3, 63.9, 66.0, 100.0, 105.9, 127.7, 128.0, 128.1, 128.6, 128.9, 129.1, 133.6, 136.3, 149.0, 160.6, 167.2, 171.1. HRMS (EI) Calcd for C₂₆H₂₈O₅S 452.1657, found 452.1661.

EtO₂C S O Ph 3

Ph 3ca Yield = 20%, 5.6 mg, slight yellow oil.

¹H NMR(400 MHz, CDCl₃): δ 1.31(t, J = 6.8 Hz, 3H), 1.96(s, 3H), 2.83(dd, J = 7.2 Hz, J = 14.4 Hz, 1H), 3.05(dd, J = 7.2 Hz, J = 14.0 Hz, 1H), 4.23(q, J = 7.2 Hz, 2H), 4.59(t, J = 7.2 Hz, 1H), 5.69(s, 1H), 6.27(s, 1H), 7.45-7.49(m, 2H), 7.55-7.59(m, 1H), 7.98-8.01(m, 2H). ¹³C NMR(100 MHz, CDCl₃): δ 11.1, 14.2, 31.8, 44.5, 60.8, 128.1, 128.4, 128.6, 133.1, 135.8, 136.8, 166.8, 193.8. HRMS (EI) Calcd for C₁₅H₁₈O₃S 278.0977, found 278.0975.

V. The Procedure for synthesis 4 and 6:

In a 25 mL Schlenk tube, the mixture of 2m or 2a (0.12 mmol, 1.2 equiv.) and K₂CO₃ (16.6 mg, 0.12 mmol, 1.2 equiv.) was introduced with acetone (1.3 mL). The mixture was stirred at room temperature. To this reaction mixture the solution of 5 (0.10 mmol) in acetone (1.3 mL) was slowly added over 20 minutes. The reaction mixture was monitored by TLC. When the reaction was finished, the mixture was directly subjected to silica gel column chromatography (petroleum ether: EtOAc 20:1) to give the product 4 or 6.

EtO₂C

 \dot{CO}_2Bn **4** Yield = 53%, 14.3 mg, slight yellow oil.

¹H NMR(400 MHz, CDCl₃): δ 1.30(t, J = 7.2 Hz, 3H), 1.85(dd, J = 4.4 Hz, J = 8.8 Hz, 1H), 1.92(dd, J = 4.4 Hz, J = 7.2 Hz, 1H), 2.27(s, 1H), 2.62(t, J = 8.4 Hz, 1H), 4.23(q, J = 7.2 Hz, 2H), 5.22(s, 2H), 7.34-7.40(m, 5H). ¹³C NMR(100 MHz, CDCl₃): δ 14.3, 23.0, 23.3, 31.5, 61.5, 67.9, 71.4, 77.5, 128.0, 128.4, 128.6, 135.2, 167.8, 169.4. HRMS (EI) Calcd for C₁₆H₁₆O₄ 272.1049, found 272.1057.

PhOC

 \dot{CO}_2Bn 6 Yield = 68%, 20.7 mg, slight yellow oil.

¹H NMR(400 MHz, CDCl₃): δ 1.94(dd, J = 4.0 Hz, J = 8.0Hz, 1H), 2.16(s, 1H), 2.24(dd, J = 4.0 Hz, J = 7.2 Hz, 1H), 3.51(t, J = 8.0 Hz, 1H), 5.31(s, 2H), 7.37-7.45(m, 5H), 7.46-7.50(m, 2H), 7.58-7.63(m, 1H), 7.94-7.97(m, 2H). ¹³C NMR(100 MHz, CDCl₃): δ 22.5, 25.4, 34.6, 67.9, 71.6, 77.2, 127.9, 128.4, 128.6, 128.7, 133.5, 135.3, 136.9, 169.7, 192.4. HRMS (EI) Calcd for C₂₀H₁₆O₃ 304.1099, found 304.1098.

S 21

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

