Selective colorimetric sensing of Co(II) in aqueous media with a spiropyran-amide-dipicolylamine linkage under UV irradiation

Yasuhiro Shiraishi,* Yoshinao Matsunaga and Takayuki Hirai

Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan E-mail: shiraish@cheng.es.osaka-u.ac.jp

Electronic Supplementary Information (ESI†)

CONTENTS

	page
Experimental	2
References	3
Table S1 Electronic transition properties of 1	4
Table S2 Key molecular orbitals of 1(MC).	4
Table S3 Bond lengths for metal-ligand coordination	5
Fig. S1–S6 Compound characterization data	7
Fig. S7 Absorption spectra of 1 measured with respective metal cations	13
Fig. S8 Effect of other metal cations on the Co^{2+} -induced isomerization	13
Fig. S9 Time-dependent change in absorption spectra of 1 with Co^{2+}	13
Fig. S10 Effect of pH on the absorbance of 1	14
Fig. S11 Job's plot of 1	14
Fig. S12 MS chart of 1 treated with Co ²⁺ under UV irradiation	15
Fig. S13 MS chart of 1 treated with Co ²⁺ in the dark	16
Fig. S14 MS chart of 1 treated with other metal cations in the dark	17
Fig. S15 Effect of visible light irradiation of 1 (MC)–Co ²⁺ complex	19
Fig. S16 Absorption spectra of 1 recovered	19
Cartesian coordinates	20

n0000

Experimental Synthesis

Synthesis of 2: $3^{[1]}$ (1.59 g, 5.4 mmol) and 2-chloroacetyl chloride (790 mg, 7.0 mmol) were refluxed in ethyl acetate (15 ml) for 1 h under nitrogen atmosphere and concentrated by evaporation. The residue was purified by recrystallization with CHCl₃, affording **2** as a red solid (1.91 g, 75 %). ¹H NMR (270 MHz, DMSO-d₆, TMS): $\delta = 1.76$ (s, 6H, $-C(CH_3)_2$), 4.08 (s, 3H, N-CH₃), 4.29 (s, 2H, C=O-CH₂-Cl), 7.12 (d, J = 8.74 Hz, 1H, Ar–H), 7.53–7.66 (m, 4H, Ar–H), 7.84–7.92 (m, 2H, Ar–H), 8.20 (s, 1H, -CHCNH), 8.45 (d, J = 16.3 Hz, 1H, N(CH₃)-C-CH-CH), 10.47 (s, 1H, NH). ¹³C NMR (100 MHZ, DMSO-d₆, TMS): $\delta = 25.8$, 34.1, 43.2, 51.8, 112.3, 115.0, 117.1, 120.7, 121.1, 122.7, 128.1, 128.9, 129.1, 130.6, 141.8, 143.1, 148.2, 156.0, 164.5, 181.7. FAB-MS: m/z: calcd for C₂₁H₂₁ClN₂O₂: 368.1; found: 369.2 [M + H⁺]; HR-MS (FAB): m/z: calcd for C₂₁H₂₂ClN₂O₂ [M + H⁺]: 369.1370; found: 369.1389.

Synthesis of 1: 2 (110 mg, 0.30 mmol), di-2-picolylamine (70 mg, 0.35 mmol), KI (30 mg), and diisopropylethylamine (DIPEA) (0.5 ml) were added to MeCN (40 ml), and the solution was refluxed for 10 h under nitrogen atmosphere. The resultant was concentrated by evaporation and purified by silica gel column chromatography (ethyl acetate/MeOH, 10/1), affording **1** as a red solid (103 mg, 65 %). ¹H NMR (270 MHz, CD₃CN-d₃, TMS): δ = 1.13 (s, 3H, -C(CH₃)₂), 1.26 (s, 3H, -C(CH₃)₂), 2.69 (s, 3H, N-CH₃), 3.38 (s, 2H, C=O-CH₂-N), 3.89 (s, 4H, N-CH₂-py), 5.78 (d, *J* = 10.2 Hz, 1H, -CCHCH), 6.52–6.59 (m, 2H, Ar–*H*), 6.80 (t, *J* = 7.4 Hz, 1H, Ar–*H*), 7.33 (d, *J* = 7.8 Hz, 2H, Ar–*H*), 7.07–7.16 (m, 2H, Ar–*H*), 7.19–7.24 (m, 2H, Ar–*H*), 7.33 (d, *J* = 7.8 Hz, 2H, Ar–*H*), 8.56–8.58 (m, 2H, Ar–*H*), 10.60 (s, 1H, NH). ¹³C NMR (68 MHZ, DMSO-d₆, TMS): δ = 19.9, 25.6, 28.5, 51.2, 57.6, 59.3, 103.5, 106.5, 114.2, 117.7, 118.2, 118.7, 119.7, 120.8, 121.2, 122.3, 122.9, 127.2, 129.1, 131.3, 136.0, 136.6, 147.6, 148.7, 149.8, 157.9, 168.3. FAB-MS: m/z: calcd for C₃₃H₃₃N₅O₂: 531.3; found: 532.2710.

Methods

Absorption spectra were measured in an aerated condition using a 10 mm path length quartz cell on an UV-visible photodiode-array spectrophotometer (Shimadzu; Multispec-1500) equipped with a temperature controller S-1700. Light irradiations (280 nm and 450 nm) were carried out with a Xenon lamp (300 W; Asahi Spectra Co. Ltd.; MAX-302) equipped with band-pass filters. The intensities of 280 nm and 450 nm light are 69.1 mW m⁻² and 42.8 mW m⁻², respectively. ¹H and ¹³C NMR spectra were obtained by a JEOL JNM-GSX270 Excalibur and JNM-AL400 spectrometer. FAB- and ESI-MS spectra were obtained by a JEOL JMS 700 Mass Spectrometer. Infrared spectra were recorded at room temperature using a FTIR–610 spectrometer (Jasco Corp.) with a liquid sample cell with a CaF₂ window.

Calculation details

Preliminary geometry optimizations were performed using the WinMOPAC version 3.0 software (Fujitsu Inc.) at the semiempirical PM3 level.^[2] The obtained structures were fully refined with the convergence criteria at the DFT level with the Gaussian 03 package,^[3] using the B3LYP/3-21G basis set. The excitation energies and the oscillator strength of each structure were calculated by the time-dependent density-functional response theory (TD-DFT)^[4] at the same level of optimization using the polarizable continuum model (PCM)^[5] with water as a solvent. Cartesian coordinates for compounds are summarized in the end of ESI[†].

References

- [1] T. Zimmermann, O. Brede, J. Heterocyclic Chem., 2003, 40, 611-616.
- [2] Y. Shiraishi, N. Saito, T. Hirai J. Am. Chem. Soc., 2005, 127, 8304-8306.
- [3] a) Gaussian 03, Revision B.05, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Jr., J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. b) GaussView, Version 3.09, R. Dennington II, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell, R. Gilliland, Semichem, Inc., Shawnee Mission, KS, 2003.
- [4] R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys., 1998, 109, 8218-8224.
- [5] M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett., 1996, 255, 327-335.

	Main orbital transition (CIC ^a)	$\frac{E (eV)}{[\lambda (nm)]}$	F
$S_0 \rightarrow S_1$	HOMO→LUMO (0.61)	2.6408 [469.49]	0.9302
$S_0 \rightarrow S_2$	HOMO-3→LUMO (0.66) HOMO-2→LUMO (-0.17) HOMO-1→LUMO (-0.10)	2.9142 [425.45]	0.0001
$S_0 \rightarrow S_3$	HOMO-3→LUMO (0.10) HOMO-1→LUMO (0.69)	3.2556 [380.83]	0.0535

Table S1. Calculated excitation energy (*E*), wavelength (λ) and oscillator strength (*f*) for low-laying singlet state (S_n) of **1**(MC).

^aCI expansion coefficients for the main orbital transitions.

Table S2. Interfact	ial plots of key 1	nolecular orbitals	of 1 (MC).
---------------------	--------------------	--------------------	-------------------

Table S3. Bond lengths for metal-ligand coordination.

2:1 1(SP)-Co²⁺ complex

	Å		Å
Co ²⁺ -N _{amine}	2.64427	Co ²⁺ -N _{amine} '	2.60387
Co ²⁺ -N _{pyridine}	2.35411	Co ²⁺ -N _{pyridine} '	2.35357
Co ²⁺ -N _{pyridine}	2.38778	Co ²⁺ -N _{pyridine} '	2.39741
Co ²⁺ –O	2.18546	Co ²⁺ –O'	2.19487
amide C=O	1.28994		

2:1 1(MC)–Co²⁺ complex

	Å		Å
Co ²⁺ -N _{amine}	2.62733	Co ²⁺ –N _{amine} '	2.60559
Co ²⁺ –N _{pyridine}	2.35461	Co ²⁺ –N _{pyridine} '	2.34568
Co ²⁺ –N _{pyridine}	2.39589	Co ²⁺ -N _{pyridine} '	2.39949
Co ²⁺ –O	2.18927	Co ²⁺ –O'	2.19571
amide C=O	1.27441		

1:1 1(SP)– Cu^{2+} complex

	Å		Å
Cu ²⁺ -N _{amine}	2.09511	Cu ²⁺ -N _{pyridine}	1.98067
Cu ²⁺ –N _{pyridine}	1.98067	amide C=O	1.25274

1:1 1(SP)- Zn^{2+} complex

	Å		Å
Zn ²⁺ -N _{amine}	2.45833	Zn ²⁺ -N _{pyridine}	2.14870
Zn ²⁺ -N _{pyridine}	2.10947	Zn ²⁺ –O	2.05082
amide C=O	1.27091		

1:1 1(SP)-Cd²⁺ complex

	Å		Å
Cd ²⁺ -N _{amine}	2.54979	Cd ²⁺ -N _{pyridine}	2.33312
Cd ²⁺ -N _{pyridine}	2.33155	Cd ²⁺ –O	2.28189
amide C=O	1.27052		

1:1 1(SP)-Ni²⁺ complex

	Å		Å
Ni ²⁺ -N _{amine}	2.19157	Ni ²⁺ -N _{pyridine}	2.10477
Ni ²⁺ -N _{pyridine}	2.07245	Ni ²⁺ –O	2.03796
amide C=O	1.27012		

Fig. S1 ¹H NMR chart of 2 (DMSO- d_6 , 270 MHz).

Fig. S2 13 C NMR chart of 2 (DMSO-d₆, 100 MHz).

Fig. S3 FAB-MS chart of 2.

Fig. S4 1 H NMR chart of 1 (CD₃CN-d₃, 270 MHz).

Fig. S5 ¹³C NMR chart of **1** (DMSO-d₆, 68 MHz).

Fig. S6 FAB-MS chart of 1.

Fig. S7 Absorption spectra of 1 (20 μ M) measured in a water/MeCN mixture (1/1 v/v; pH 7.4) with respective metal cations (1 equiv) after UV irradiation (280 nm) for 1 h.

Fig. S8 (a) Absorption spectra of **1** measured in a water/MeCN mixture (1/1 v/v; pH 7.4) with Co^{2+} (1 equiv) together with other respective metal cations (1 equiv) after UV irradiation (280 nm) for 1 h. (b) Absorbance of solutions at 472 nm.

Fig. S9 (a) Time-dependent change in absorption spectra of **1** (20 μ M) measured with Co²⁺ (1 equiv) in a water/MeCN mixture (1/1 v/v; pH 7.4) under UV irradiation (280 nm). (b) Change in absorbance at 472 nm.

Fig. S10 Effect of pH on the 472 nm absorbance of 1 (20 μ M) in a water/MeCN mixture (1/1 v/v; pH 7.4), measured (open) without and (closed) with Co²⁺ (1 equiv) after UV irradiation (280 nm) for 1 h.

Fig. S11 Job's plot analysis for coloration of **1** with Co^{2+} ($[\text{Co}^{2+}] + [1] = 20 \ \mu\text{M}$). The measurements were carried out in a water/MeCN mixture (1/1 v/v; pH 7.4) after UV irradiation (280 nm) for 1 h.

Fig. S12 (a) ESI-MS(+) chart of a water/MeCN (1/1 v/v) solution containing of 1 and 0.5 equiv of $Co(ClO_4)_2$ after UV irradiation for 1 h. (b) Observed isotopic pattern for the $[1 + 1 + Co^{2+} + ClO_4^{-}]^+$ signal and the calculated isotopic pattern.

Fig. S13 (a) ESI-MS(+) chart of a water/MeCN (1/1 v/v) solution containing of 1 and 0.5 equiv of Co(ClO₄)₂ after treatment in the dark for 1 h. (b) Observed isotopic pattern for the $[1 + 1 + Co^{2+} + ClO_4^{-}]^+$ signal and the calculated isotopic pattern.

Fig. S14 ESI-MS(+) chart of a solution containing **1** with (a) $Cu(ClO_4)_2$, (b) $Zn(ClO_4)_2$, or (c) $Cd(ClO_4)_2$ (1 equiv) after stirring for 1 h in the dark. (d) FAB-MS chart for **1**(SP)–Ni complex. A solution containing **1** with Ni(ClO₄)₂ (1 equiv) was stirred for 1 h in the dark. The solution was concentrated by evaporation, and the resulting solid was used for analysis.

Fig. S15 Time-dependent change in absorption spectra of 1(MC)–Co²⁺ complex measured in a water/MeCN mixture (1/1 v/v; pH 7.4) under irradiation of visible light (450 nm) for 1 h. The measurements were carried out as follows: UV light (280 nm) was irradiated to the solution containing 1 (20 μ M) with Co²⁺ (1 equiv) for 1 h at 25 °C. The spectral measurements were then started under visible light irradiation at 25 °C.

Fig. S16 Absorption spectra of (red) 1 recovered from the solution containing 1(MC)– Co^{2+} complex. The spectra for fresh 1 are also shown as black lines.

The measurements were carried out as follow:

UV light was irradiated to a water/MeCN mixture (1/1 v/v; pH 7.4) containing **1** with Co²⁺ for 1 h. Excess amount of MeCN was removed by evaporation, and EDTA (5 equiv of Co²⁺) was added to the resulting solution. The solution was extracted with CH₂Cl₂ and concentrated by evaporation. The resultant was again dissolved in a water/MeCN mixture and spectral measurements were carried out in a similar manner.

Cartesian Coordinates (in Å) of 1(SP)

С	-8.756111	1.114974	1.383846	С	4.960146	-1.630893	-0.468228	Н	-6.998649	-1.988018	-1.499013
С	-8.385195	0.320663	2.473241	С	4.431828	0.497836	0.648779	Н	-3.844969	-2.606392	1.441358
С	-7.271601	-0.534442	2.405126	С	4.551547	2.001740	0.565990	Н	-5.289308	-2.742026	2.457416
С	-6.548116	-0.573595	1.211788	С	6.278231	-1.965519	0.201260	Н	-4.197154	-1.344952	2.647807
С	-6.912511	0.222462	0.108573	С	7.451919	-1.244545	-0.071520	Н	-2.260283	-2.592499	-1.957194
С	-8.013095	1.063555	0.187930	С	8.646059	-1.633872	0.540788	Н	-4.640341	-2.704915	-1.402580
Ν	-5.414599	-1.342910	0.897120	С	8.639185	-2.732383	1.409582	Н	-2.204582	2.123691	0.947305
С	-4.775161	-0.811660	-0.300005	С	7.429160	-3.395215	1.630549	Н	0.228413	2.263988	0.415837
С	-5.977056	-0.086589	-1.057686	Ν	6.267882	-3.024231	1.046388	Н	-0.041012	-1.391387	-1.831460
С	-5.510988	1.149799	-1.842992	С	5.757261	2.661206	0.844264	Н	2.079522	1.437390	-0.626056
С	-6.689076	-1.075902	-2.019940	С	5.815295	4.054649	0.757190	Н	3.989672	1.291493	-1.922002
С	-4.644870	-2.037910	1.920798	С	4.665509	4.761394	0.385775	Н	4.355629	-0.267269	-2.679910
0	-3.835504	0.276649	0.166889	С	3.502762	4.040893	0.107716	Н	4.934535	-2.077798	-1.469335
С	-2.485407	0.303821	-0.152525	Ν	3.440479	2.692106	0.194574	Н	4.154951	-2.115584	0.104771
С	-1.885483	-0.698043	-0.936880	0	2.109483	-1.343263	-2.217403	Н	5.143042	0.123561	1.391219
С	-2.727559	-1.798489	-1.381384	Н	-9.615287	1.773452	1.458961	Н	3.420951	0.238871	1.004242
С	-4.039741	-1.860885	-1.085045	Н	-8.959535	0.367621	3.393648	Н	7.403801	-0.397678	-0.745888
С	-1.723384	1.367716	0.338211	Н	-6.984932	-1.135322	3.260987	Н	9.566910	-1.094254	0.342466
С	-0.365431	1.438791	0.034161	Н	-8.300784	1.681192	-0.658055	Н	9.545513	-3.065185	1.903461
С	0.252873	0.449477	-0.759133	Н	-4.771626	0.869964	-2.602837	Н	7.372673	-4.248904	2.298433
С	-0.515275	-0.622371	-1.237441	Н	-5.064734	1.893220	-1.181053	Н	6.629925	2.082081	1.124817
Ν	1.635649	0.605239	-1.030429	Н	-6.364282	1.604821	-2.359861	Н	6.738458	4.580578	0.976599
С	2.463816	-0.247305	-1.714538	Н	-6.039791	-1.349603	-2.859242	Н	4.669513	5.842598	0.309897
С	3.929605	0.207421	-1.793145	Н	-7.587743	-0.598883	-2.425099	Н	2.589904	4.541970	-0.194941
Ν	4.764153	-0.173573	-0.632111								

Cartesian Coordinates (in Å) of 1(MC)

С	-8.667164	0.561277	0.391523	С	3.903477	0.513641	2.089188	Н	-3.678710	-3.032314	-0.543119
С	-8.707671	-0.832304	0.401434	С	5.518024	1.017664	0.294313	Н	-5.296490	-3.296521	-1.261701
С	-7.550037	-1.600836	0.186224	С	5.977233	-0.379913	-0.066733	Н	-5.070827	-3.403121	0.518134
С	-6.362989	-0.912247	-0.035918	С	6.636657	-1.195470	0.876126	Н	-2.449857	-1.658875	-0.803559
С	-6.308651	0.513476	-0.050441	С	7.051723	-2.471052	0.489969	Н	-2.167110	1.434996	-0.912096

20S/26S

С	-7.457711	1.248191	0.163628	С	6.811201	-2.908143	-0.816202	Н	1.912185	-2.307622	-1.761201
Ν	-5.054153	-1.426113	-0.263716	С	6.158262	-2.037413	-1.702310	Н	3.371050	-0.268823	-2.045013
С	-4.126895	-0.389514	-0.473041	Ν	5.747302	-0.792929	-1.344132	Н	-0.033653	2.294205	-1.307127
С	-4.877633	0.963844	-0.320768	0	4.330619	3.551095	-1.356570	Н	2.711257	2.530595	-2.889440
С	-4.321888	1.742545	0.872255	С	1.765451	-0.804642	1.658705	Н	2.328311	2.184672	0.772339
С	-4.796555	1.763532	-1.621205	С	2.453464	0.190428	2.376001	Н	3.825472	3.101264	1.109967
С	-4.766433	-2.862837	-0.395437	Ν	1.870907	0.898286	3.385473	Н	4.287719	1.255947	2.828275
С	-2.811404	-0.612210	-0.740273	С	0.580065	0.614405	3.701290	Н	4.501779	-0.417823	2.230510
С	-1.820672	0.389045	-0.952599	С	-0.170626	-0.362005	3.028352	Н	6.164522	1.449404	1.088960
С	-0.493489	0.159646	-1.208181	С	0.436288	-1.074824	1.989077	Н	5.658930	1.685413	-0.596010
С	0.096740	-1.199554	-1.290524	Н	-9.578315	1.131418	0.560969	Н	6.823045	-0.836092	1.884451
С	1.526607	-1.294060	-1.658745	Н	-9.653929	-1.344533	0.579013	Н	7.560886	-3.121128	1.201675
С	2.298213	-0.204452	-1.825446	Н	-7.592014	-2.684708	0.195601	Н	7.123045	-3.896827	-1.141176
С	1.710222	1.125753	-1.691484	Н	-7.437513	2.336233	0.157358	Н	5.951722	-2.328429	-2.739089
С	0.394794	1.294520	-1.401568	Н	-3.266521	2.006850	0.734772	Н	2.265339	-1.334063	0.845924
0	-0.537474	-2.219633	-1.042021	Н	-4.394487	1.160577	1.800568	Н	0.150287	1.199658	4.521498
Ν	2.558620	2.274941	-1.908392	Н	-4.878448	2.674225	1.029928	Н	-1.201632	-0.558087	3.307759
С	3.502119	2.733708	-0.981804	Н	-3.765887	2.055878	-1.858102	Н	-0.124555	-1.831358	1.431173
С	3.399402	2.290876	0.473192	Н	-5.394449	2.680793	-1.559636				
Ν	4.063033	0.962176	0.663536	Н	-5.177010	1.185526	-2.473844				

Cartesian Coordinates (in Å) of 2:1 1(SP)–Co²⁺ complex

Н	3.466325	-0.924403	3.845326	Ν	0.214194	0.157189	-2.473486	Н	-2.469289	-4.690545	-0.056680
Ν	3.428059	-0.585424	2.883629	Н	-1.125469	-0.561588	-4.010524	Н	-3.372182	4.278820	0.008532
С	2.209648	-0.337600	2.383547	Н	-0.525838	-1.761351	-2.840428	Н	5.715320	0.855095	-1.550393
С	1.013981	-0.685095	3.257174	Н	-3.301783	-1.138612	-3.512177	Н	14.480639	0.973855	0.675256
0	1.985065	0.147873	1.209721	Н	-1.075882	1.794577	-2.630765	С	4.950764	-0.006587	0.933513
Ν	-0.135721	0.098891	2.762373	Н	0.180728	1.788050	-3.884981	С	5.842550	-0.786219	3.040101
Н	1.231918	-0.508424	4.322257	С	2.108717	4.483483	-1.595949	Н	7.992709	-0.975715	3.151057
Н	0.775417	-1.746809	3.127687	Н	1.075234	4.006730	-3.432206	С	4.734648	-0.440286	2.246204
Co	0.054938	0.106936	0.165506	Н	3.063727	4.578230	0.343680	Н	4.105794	0.277627	0.320352
С	-0.042891	1.530363	3.149486	Н	3.084978	-4.364248	0.304897	Н	5.715080	-1.122210	4.066345
С	-1.445352	-0.503979	3.102444	С	3.383739	-3.419039	-1.620436	Н	-8.723863	-2.730738	0.621356
Ν	-1.088734	-1.804974	1.051057	Н	3.392309	-2.232877	-3.422886	С	-9.696910	-2.478697	0.183375
Ν	-1.197981	1.901037	1.031942	Н	2.262029	0.509675	-2.622788	С	-10.182219	-1.112755	0.684839
0	-1.867554	-0.036755	-0.863889	Н	1.659856	-0.562109	-3.901800	Н	-9.602465	-2.497505	-0.903862
Ν	1.121477	2.016666	-0.704723	Н	-2.910426	5.140777	2.320322	Н	-10.406016	-3.259185	0.482648
Ν	1.392212	-1.636169	-0.769817	Н	-3.612919	-4.539090	2.173609	С	-11.453743	-0.611995	0.017914
С	-0.973924	2.353147	2.289471	Н	2.487614	5.436213	-1.944254	С	-9.174243	0.057737	0.310725
Н	0.989539	1.849604	2.973220	Н	4.153949	-4.103637	-1.952618	С	-10.415205	-1.177984	2.212701

21S/26S

1				I I				I	1		
Н	-0.271281	1.688743	4.214385	Н	9.955786	-3.169088	-1.259826	С	-11.319800	0.762837	-0.233302
С	-1.711506	-1.725276	2.250570	С	9.350980	-2.386739	-0.786955	С	-12.634607	-1.266530	-0.291725
Н	-2.212266	0.244368	2.876227	С	9.864042	-1.004116	-1.208770	Ν	-10.057591	1.211238	0.178691
Н	-1.525994	-0.758397	4.169986	Н	8.312978	-2.531497	-1.109098	0	-8.645711	-0.238282	-1.023562
С	-1.377896	-2.868649	0.254885	Н	9.399425	-2.520607	0.295215	С	-8.077326	0.306780	1.307256
С	-2.062705	2.595093	0.249899	С	11.245357	-0.655395	-0.677091	Н	-9.514467	-1.510208	2.741637
С	-2.069971	-0.502097	-2.049821	С	9.001984	0.174260	-0.580849	Н	-11.215711	-1.894116	2.426162
С	0.837457	2.469243	-1.950375	С	9.888390	-0.912728	-2.752765	Н	-10.720744	-0.206919	2.615897
С	1.924180	2.778101	0.081724	С	11.246072	0.688503	-0.270650	С	-12.359398	1.495874	-0.803448
С	1.807126	-2.663832	0.018282	С	12.405940	-1.407891	-0.602774	С	-13.693310	-0.542470	-0.863830
С	1.974843	-1.497132	-1.984416	Ν	9.976571	1.252587	-0.455562	Н	-12.742830	-2.331889	-0.101231
С	-1.575730	3.511040	2.782083	0	8.633668	-0.236840	0.776605	С	-9.523689	2.467139	-0.317373
С	-2.614495	-2.699382	2.685113	С	7.804400	0.595854	-1.384848	С	-7.314640	-0.337042	-1.300562
С	-2.274089	-3.865545	0.615579	Н	8.904070	-1.131174	-3.182746	С	-6.772638	0.203762	1.012804
Н	-0.852857	-2.907206	-0.688144	Н	10.599544	-1.646090	-3.147232	Н	-8.476425	-0.107933	2.226274
С	-2.688794	3.763531	0.670488	Н	10.208000	0.077666	-3.093165	С	-13.549704	0.822295	-1.111220
Н	-2.265337	2.163509	-0.715973	С	12.402233	1.291917	0.221578	Н	-12.255692	2.555791	-1.014336
С	-0.866007	-0.725477	-2.952425	С	13.580619	-0.814681	-0.112197	Н	-14.621650	-1.047214	-1.115863
Ν	-3.273949	-0.827801	-2.540732	Н	12.410339	-2.449967	-0.914232	Н	-8.540687	2.637242	0.128648
С	-0.019378	1.579808	-2.822687	С	9.605464	2.474558	0.235423	Н	-10.179474	3.290561	-0.015840
С	1.315652	3.690784	-2.424547	С	7.347056	-0.288104	1.224069	Н	-9.421866	2.480062	-1.412592
С	2.425854	4.011104	-0.321322	С	6.545867	0.536885	-0.924270	С	-6.323333	-0.143453	-0.324960
Н	2.182338	2.348258	1.035269	Н	8.017898	0.974179	-2.378391	С	-6.949518	-0.636407	-2.614128
С	2.791031	-3.565496	-0.363083	С	13.570521	0.520191	0.290798	Н	-6.019902	0.395094	1.774298
Н	1.309804	-2.754257	0.972497	Н	12.404617	2.326073	0.551937	Н	-14.369724	1.377848	-1.559397
С	2.961223	-2.376541	-2.439728	Н	14.494866	-1.397480	-0.044279	С	-4.969562	-0.261747	-0.667471
С	1.569696	-0.312449	-2.833728	Н	8.587270	2.750080	-0.050161	С	-5.604290	-0.755233	-2.946599
С	-2.434621	4.237881	1.958473	Н	10.273976	3.286803	-0.068493	Н	-7.725584	-0.775471	-3.360139
Н	-1.379023	3.828481	3.798716	Н	9.650001	2.371682	1.329710	С	-4.599009	-0.573683	-1.980232
С	-2.908501	-3.779753	1.858219	С	6.252621	0.070013	0.420357	Н	-4.202758	-0.103862	0.079374
Н	-3.082122	-2.600138	3.656977	С	7.137339	-0.709716	2.538076	Н	-5.324281	-0.987347	-3.971310

Cartesian Coordinates (in Å) of 2:1 1(MC)–Co²⁺ complex

				-				-			
С	13.460156	-0.973089	-0.597071	0	-2.165185	0.650019	-0.186947	Н	1.902876	-0.841355	-4.703448
С	14.741132	-0.930932	-1.134556	Ν	-0.838842	2.235466	1.693618	С	2.456631	-2.340646	-3.253689
С	15.781220	-1.482844	-0.377245	Ν	-0.827325	-1.396281	1.011836	Н	2.782033	-3.638691	-1.551227
С	15.536276	-2.055122	0.874253	С	-0.418836	-0.500229	3.260895	Н	3.009868	5.162654	0.110557

С	13.201603	-1.544088	0.655806	Ν	0.761508	2.759012	-0.663156	Н	1.161888	1.657458	-3.082789
С	14.236104	-2.088076	1.399762	Ν	0.897340	-0.827267	-1.481038	Н	0.136822	0.817013	-4.262197
Ν	12.234146	-0.496953	-1.137796	С	-0.183116	2.469881	2.856332	Н	-1.921438	5.132862	4.043263
С	11.184442	-0.730097	-0.301600	Н	1.882834	1.928547	2.726275	Н	-2.894095	-4.373501	2.416081
С	11.710677	-1.438276	0.964198	Н	1.120883	1.506287	4.274282	Н	1.724326	6.387421	-1.664189
С	11.491253	-0.565147	2.228425	С	-0.998827	-1.555488	2.345373	Н	3.059229	-2.920687	-3.941217
С	11.095493	-2.854993	1.110149	Н	-1.194319	0.248271	3.454796	Н	-6.614844	-0.201273	-1.838011
С	12.106231	0.168725	-2.448698	Н	-0.133016	-0.947107	4.225044	С	-6.365307	-0.185063	-0.778389
С	9.888713	-0.350597	-0.641731	С	-1.402262	-2.309512	0.184245	С	-7.424517	-0.347979	0.152287
С	8.748096	-0.530555	0.134424	С	-1.903756	3.020873	1.392785	С	-5.055465	-0.011436	-0.389324
С	7.444019	-0.140146	-0.236190	С	-2.752144	0.399709	-1.289905	С	-8.736087	-0.510858	-0.341419
С	7.158334	0.516283	-1.531823	С	0.088967	3.412565	-1.641492	С	-7.126139	-0.339431	1.602062
С	5.755892	0.854249	-1.749667	С	1.800997	3.397974	-0.068877	С	-4.736414	0.009762	1.008076
С	4.767142	0.595809	-0.852791	С	1.522223	-1.966128	-1.079221	С	-9.871633	-0.682714	0.443594
С	5.074954	-0.042734	0.392989	С	1.052754	-0.442260	-2.769748	Н	-8.839222	-0.494766	-1.423809
С	6.379127	-0.389408	0.668600	С	-0.549300	3.500539	3.721802	С	-5.719059	-0.145995	1.934936
0	8.035412	0.778564	-2.405320	С	-1.727005	-2.622391	2.878921	0	-7.996824	-0.484213	2.508749
Н	16.356533	-2.475920	1.442052	С	-2.149508	-3.385471	0.643342	Н	-3.708801	0.158572	1.298868
Н	16.789652	-1.463829	-0.771513	Н	-1.232194	-2.160524	-0.871841	С	-11.176315	-0.836638	-0.017623
Н	14.944869	-0.492057	-2.102167	С	-2.317484	4.072948	2.202807	Н	-9.685333	-0.689996	1.510914
Н	14.051305	-2.532871	2.370775	Н	-2.437976	2.756388	0.495596	Н	-5.490495	-0.129503	2.993365
Н	10.426477	-0.448737	2.447282	С	-1.925412	0.381389	-2.575175	Ν	-12.218279	-0.997514	0.844730
Н	11.933220	0.425015	2.088052	Ν	-4.058809	0.123197	-1.407228	С	-11.723144	-0.857265	-1.460196
Н	11.975281	-1.045268	3.085075	С	-1.032244	2.657421	-2.318531	С	-13.457324	-1.136448	0.161077
Н	10.018085	-2.799365	1.286672	С	0.412784	4.713867	-2.025163	С	-12.071175	-1.023143	2.312998
Н	11.564729	-3.365936	1.957123	С	2.171335	4.699085	-0.392148	С	-13.215958	-1.060866	-1.216873
Н	11.275331	-3.442114	0.205447	Н	2.352915	2.817812	0.651863	С	-11.481790	0.502742	-2.167775
Н	11.456346	-0.416580	-3.105294	С	2.305047	-2.741598	-1.923167	С	-11.146721	-2.052505	-2.264544
Н	13.093721	0.253389	-2.899046	Н	1.362482	-2.250514	-0.049767	С	-14.735790	-1.320057	0.674242
Н	11.679456	1.167319	-2.320865	С	1.814213	-1.181787	-3.679087	Н	-11.423750	-1.852655	2.610699
Н	9.712919	0.132928	-1.595320	С	0.417973	0.862078	-3.199135	Н	-13.053813	-1.151952	2.763492
Н	8.840731	-1.005154	1.108378	С	-1.622116	4.325737	3.386358	Н	-11.632491	-0.084158	2.661747
Н	5.536544	1.339867	-2.692433	Н	-0.005930	3.643807	4.647660	С	-14.266184	-1.169581	-2.114045
Н	3.742423	0.866358	-1.051069	С	-2.317984	-3.545955	2.021697	Н	-10.414274	0.684956	-2.317668
Н	6.619423	-0.875448	1.612767	Н	-1.830231	-2.715789	3.953030	Н	-11.899555	1.319600	-1.572999
Н	4.427812	-0.853143	2.179689	Н	-2.586813	-4.082966	-0.058748	Н	-11.977291	0.493138	-3.143906
Ν	4.072628	-0.348676	1.366919	Н	-3.175211	4.668321	1.918989	Н	-10.069260	-1.943587	-2.414180
С	2.763108	-0.062642	1.364690	Ν	-0.725963	1.204691	-2.324831	Н	-11.634315	-2.095913	-3.243827
С	1.937681	-0.614259	2.526912	Н	-2.513113	0.721918	-3.442391	Н	-11.336926	-2.992104	-1.738696
0	2.170645	0.607224	0.456491	Н	-1.591957	-0.644517	-2.768333	С	-15.791738	-1.428830	-0.238353
Ν	0.709120	0.201088	2.606241	Н	-4.414652	-0.007754	-2.354492	Н	-14.925771	-1.379280	1.737658
Н	2.512813	-0.622709	3.466257	Н	-1.957049	2.794333	-1.748345	С	-15.564242	-1.355159	-1.615518
Η	1.641567	-1.644050	2.297224	Н	-1.196923	3.054000	-3.332113	Н	-14.095373	-1.113621	-3.182900
Co	-0.001703	0.683843	0.146405	С	1.458524	5.376061	-1.383032	Н	-16.798777	-1.572232	0.133203
С	0.965900	1.544866	3.185326	Н	-0.142712	5.192843	-2.822007	Η	-16.396573	-1.442057	-2.302525

Cartesian Coordinates (in Å) of 1:1 1(SP)-Cu²⁺ complex

	0.656106	0.025204	0.000000		0.044501	1 51 10 55	1 (0002(0		5 201 (15	0.0000000	0.045055
N	0.656106	0.035384	-0.920796	н	2.964701	1.511257	1.690363	Н	-5.301615	-2.803358	0.345355
С	1.590803	0.010950	0.060385	Н	3.661701	4.031657	1.570114	Н	-5.860081	-2.142349	-1.212857
С	3.045261	0.021137	-0.474826	Н	5.082413	5.714597	0.393288	Н	-6.910090	-3.230450	-0.270832
Ν	4.063616	-0.006516	0.628758	Н	6.948820	4.933713	-1.079482	Н	-6.502706	-2.099174	2.515594
С	3.994727	-1.300065	1.412835	н	7.307490	2.408987	-1.316969	Н	-8.111991	-2.350180	1.803038
С	4.000592	1.249742	1.471372	Н	3.633201	-4.080917	1.377926	Н	-7.686959	-0.758318	2.459980
С	4.754985	2.364684	0.766322	н	7.290638	-2.350381	-1.430806	0	-4.940603	-0.024030	-0.642593
С	4.480645	3.718205	0.935404	н	6.913018	-4.880641	-1.313343	С	-4.864500	-0.033958	1.851426
С	5.279578	4.656525	0.272393	Н	5.040595	-5.716611	0.121126	Н	-5.167714	2.513335	1.266672
С	6.323981	4.225743	-0.552136	Н	-10.842988	-0.641593	-1.947788	Н	-6.758012	3.224199	0.934815
С	6.544903	2.859777	-0.692906	С	-9.986594	-0.229535	-1.428296	Н	-5.683577	2.782112	-0.422101
Ν	5.771363	1.965737	-0.036120	С	-9.843179	1.152388	-1.305852	С	-3.570859	0.002478	-0.650832
0	1.357428	-0.018597	1.290842	С	-9.019838	-1.090080	-0.878932	Н	-5.386718	-0.016172	2.798596
С	4.454585	-3.743842	0.758664	С	-8.739353	1.711474	-0.644120	С	-3.524996	-0.047899	1.796515
С	4.739507	-2.386017	0.654470	Н	-10.590530	1.810553	-1.733740	С	-2.805937	-0.027236	0.529975
Ν	5.758512	-1.956942	-0.128994	н	-9.130709	-2.164742	-0.973041	С	-2.922877	0.055164	-1.890147
С	6.525033	-2.824482	-0.828088	С	-7.929341	-0.545731	-0.225030	Н	-2.939384	-0.055874	2.710196
С	6.293774	-4.193924	-0.752361	С	-7.790982	0.848004	-0.105063	С	-1.409318	-0.015138	0.462071
С	5.246106	-4.655548	0.051085	н	-8.633453	2.786044	-0.566684	С	-1.537077	0.064534	-1.952523
Cu	5.950733	0.008491	-0.281210	С	-6.781627	-1.221087	0.521769	Н	-3.525133	0.081301	-2.787791
Н	0.982169	0.059789	-1.885512	Ν	-6.609995	1.154028	0.605389	Н	-0.816982	-0.037672	1.363403
Н	3.219585	0.923129	-1.071442	С	-6.169818	-2.425733	-0.207049	С	-0.766798	0.027498	-0.778477
Н	3.216161	-0.852933	-1.112498	С	-7.297413	-1.629639	1.924645	Н	-1.049604	0.098832	-2.921662
Н	2.957698	-1.564359	1.622811	С	-5.754484	-0.017420	0.642985	0	7.466261	0.029518	-1.363791
Н	4.506971	-1.124702	2.366366	С	-6.020401	2.497051	0.583512	Н	8.317274	0.012440	-0.844035
Н	4.508107	1.027159	2.417558								

Cartesian Coordinates (in Å) of 1:1 1(SP)–Zn²⁺ complex

Ν	4.408912	0.004909	-1.337760	Н	6.991969	-4.979565	0.141827	Н	-5.114349	2.319608	0.501953
С	4.502459	1.421626	-1.803055	Н	5.758669	-4.616359	2.292908	Н	-6.454722	3.254321	-0.207070
С	5.708035	-0.721527	-1.390900	Н	4.515399	-2.444421	2.603057	Н	-7.073618	1.571052	-2.650187
С	5.719946	-1.885469	-0.411849	Н	5.938635	3.809181	-1.975167	Н	-8.312901	2.051453	-1.470669
С	6.426075	-3.060303	-0.659899	Н	4.789075	2.304199	2.570870	Н	-8.129784	0.338954	-1.893107
С	6.447705	-4.059831	0.316718	Н	6.004480	4.564645	2.272733	0	-4.418114	0.088613	0.081088
С	5.760218	-3.862909	1.517081	Н	6.583327	5.270744	-0.057674	С	-5.270574	-0.424321	-2.208603
С	5.068056	-2.670009	1.698916	Н	-9.477782	1.287591	3.257622	Н	-5.279659	-2.769842	-1.034636
Ν	5.047495	-1.706247	0.748261	С	-8.856183	0.730900	2.567198	Н	-6.645979	-3.307753	-0.041552
0	2.100759	-0.151994	0.129286	С	-8.740909	-0.653465	2.692581	Н	-5.167870	-2.688915	0.746671
С	5.703877	3.521807	-0.957972	С	-8.165583	1.406668	1.545872	С	-3.145817	-0.083794	-0.385162
С	5.029153	2.331304	-0.700572	С	-7.936240	-1.396649	1.815566	Н	-6.103977	-0.569982	-2.882482
Ν	4.745527	1.956408	0.561206	Н	-9.274034	-1.168073	3.483538	С	-4.005368	-0.528679	-2.639339
С	5.085900	2.735514	1.616950	Н	-8.255831	2.482738	1.446558	С	-2.872459	-0.375313	-1.737498
С	5.743414	3.946503	1.424442	С	-7.371333	0.679989	0.677322	С	-2.085872	0.047475	0.519725
С	6.061543	4.338394	0.120409	С	-7.259651	-0.714478	0.809810	Н	-3.799911	-0.747883	-3.682343
Zn	3.908501	0.087516	1.067678	Н	-7.845866	-2.469300	1.930201	С	-1.547428	-0.517042	-2.150716
Н	0.878506	-0.749548	-2.750983	С	-6.585723	1.123737	-0.554560	С	-0.768902	-0.090985	0.103851
Н	3.122754	-0.532069	-2.993632	Ν	-6.407366	-1.225005	-0.193733	Н	-2.317712	0.268725	1.552556
Н	3.480186	-1.811909	-1.810637	С	-5.772506	2.411566	-0.361783	Н	-1.346810	-0.741195	-3.194892
Н	3.484042	1.747862	-2.048482	С	-7.586668	1.274616	-1.728228	С	-0.491992	-0.375250	-1.244175
Н	5.115031	1.517425	-2.709971	Н	4.480084	-0.089458	3.513167	Н	0.041627	0.022466	0.804434
0	3.825759	0.367049	2.925180								

Cartesian Coordinates (in Å) of 1:1 1(SP)–Cd²⁺ complex

-				1							
Ν	-0.510952	-0.502251	2.082628	Н	-5.529416	-0.712666	2.776914	Н	5.047239	-2.580976	-1.148335
С	-1.623688	-0.324409	1.355184	Н	-6.793151	-2.826418	2.275534	Н	5.909893	-2.436282	0.404412
С	-2.944488	-0.607476	2.092201	Н	-7.170796	-4.720415	0.693909	Н	6.737556	-3.106224	-1.023418
Ν	-4.051636	0.138676	1.446861	Н	-6.168284	-4.624630	-1.596475	Н	5.820981	-1.153107	-3.157307
С	-4.012627	1.603386	1.730510	Н	-4.750727	-2.554043	-2.199550	Н	7.530819	-1.550904	-2.879153
С	-5.389981	-0.478601	1.712353	Н	-5.583618	3.827698	2.041853	Н	7.021261	0.147689	-2.887777
С	-5.605982	-1.721140	0.857551	Н	-5.055142	2.392804	-2.622083	0	4.921023	-0.296169	0.738158
С	-6.368361	-2.807883	1.279665	Н	-6.378293	4.456848	-2.146661	С	4.377097	0.504343	-1.563829
С	-6.578107	-3.866659	0.388729	Н	-6.652459	5.182807	0.238400	Н	4.821840	2.731381	-0.246943
С	-6.017823	-3.818550	-0.891026	Н	10.967278	-1.007239	0.629017	Н	6.458066	3.378854	-0.028943
С	-5.250710	-2.711177	-1.245599	С	10.031888	-0.492712	0.446538	Н	5.672359	2.488971	1.305278
Ν	-5.061712	-1.691409	-0.373922	С	9.888929	0.845530	0.812466	С	3.583841	-0.311189	1.014820
0	-1.622778	0.008589	0.129077	С	8.963055	-1.176930	-0.158520	Н	4.708467	0.841892	-2.536598
С	-5.481738	3.541738	1.002706	С	8.685112	1.532511	0.593497	С	3.072714	0.423072	-1.265784
С	-4.744465	2.408359	0.664957	Н	10.716049	1.366340	1.280728	С	2.607667	0.014588	0.052588
Ν	-4.606530	2.020216	-0.627200	Н	9.074414	-2.217028	-0.444381	С	3.182397	-0.673053	2.307513

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

С	-5.190399	2.750369	-1.608930	С	7.773676	-0.505595	-0.377790	Н	2.324848	0.683269	-2.007923
С	-5.929067	3.898156	-1.336987	С	7.636748	0.842790	-0.006347	С	1.251177	-0.041442	0.382918
С	-6.078087	4.298651	-0.008471	Н	8.582504	2.567918	0.892266	С	1.835597	-0.726958	2.630002
Cd	-3.574684	-0.028688	-1.052326	С	6.492256	-0.958170	-1.074504	Н	3.943873	-0.914694	3.035996
Н	-0.634305	-0.752007	3.063251	Ν	6.344036	1.303360	-0.340005	Н	0.503350	0.203823	-0.354136
Н	-2.851863	-0.387923	3.166605	С	6.012707	-2.361363	-0.678010	С	0.857276	-0.415696	1.670366
Н	-3.167336	-1.675265	1.974826	С	6.722689	-0.866249	-2.604422	Н	1.541475	-1.019080	3.633041
Н	-2.957830	1.902739	1.713870	С	5.482197	0.171507	-0.605036	Н	-2.637675	-1.169230	-3.226719
Н	-4.419520	1.844039	2.722670	С	5.794172	2.544694	0.215284	0	-3.537439	-0.895896	-2.902866
Н	-6.139958	0.269067	1.428469								

Cartesian Coordinates (in Å) of 1:1 1(SP)–Ni²⁺ complex

N 0.	.941949	-0.593489	-1 688002	п	6 556022	0.005000	0 700 407		5 0 4 4 0 0 0	0.454016	
			1.000002	11	0.330022	-0.03/200	-0./9949/	н	-5.044889	2.454916	-1.474877
C 2.	.102215	-0.448685	-1.032522	Н	6.108102	-1.035383	-2.208225	Н	-5.014699	2.310673	0.301437
C 3.	.384985	-0.774367	-1.809729	Н	7.120496	-3.165173	-1.339624	Н	-6.336732	3.189628	-0.506125
N 4.	.500967	0.008104	-1.194762	Н	6.933940	-5.048272	0.291491	Н	-6.937880	1.293607	-2.799102
C 4.	.588936	1.400686	-1.760556	Н	5.379439	-4.814395	2.243055	Н	-8.186083	1.898853	-1.687734
C 5.	.804356	-0.730024	-1.197690	Н	4.075905	-2.692216	2.487217	Н	-8.021857	0.152279	-1.946337
C 5.	.708367	-1.939461	-0.279042	Н	5.730829	3.920447	-2.002232	0	-4.333060	0.039871	0.089341
C 6.	.460672	-3.093164	-0.484149	Н	4.496353	2.571264	2.562962	С	-5.165891	-0.662567	-2.157073
C 6.	.353782	-4.144510	0.429825	Н	5.407978	4.931695	2.178035	Н	-5.221540	-2.900470	-0.781717
C 5.	.488243	-4.018551	1.518664	Н	6.047704	5.572793	-0.157076	Н	-6.586798	-3.324653	0.266385
C 4.	.758511	-2.841996	1.661144	Н	-9.405064	1.573691	3.090660	Н	-5.098735	-2.644061	0.982069
N 4.	.865137	-1.821667	0.778424	С	-8.783940	0.950921	2.458709	С	-3.055178	-0.135566	-0.361983
O 2.	.197841	-0.107106	0.187062	С	-8.682159	-0.417043	2.711028	Н	-5.993841	-0.885984	-2.816086
C 5.	.449568	3.675771	-0.985392	С	-8.080598	1.524302	1.384851	С	-3.897312	-0.780873	-2.573534
C 4.	.898504	2.431475	-0.687149	С	-7.878773	-1.244394	1.911689	С	-2.771107	-0.525556	-1.686532
N 4.	.555085	2.100475	0.573245	Н	-9.225238	-0.852512	3.541759	С	-2.001105	0.091053	0.530706
C 4.	.747357	2.975059	1.589775	Н	-8.160370	2.587529	1.187087	Н	-3.683382	-1.091097	-3.591409
C 5.	.270157	4.243009	1.355356	С	-7.287088	0.714347	0.592589	С	-1.441968	-0.668554	-2.086297
C 5.	.627046	4.596616	0.050703	С	-7.189061	-0.663192	0.852727	С	-0.679862	-0.049193	0.128013
Ni 4.	.073137	0.120689	0.951695	Н	-7.799035	-2.302633	2.125410	Н	-2.241608	0.387572	1.542540
Н 0.	.993641	-0.861393	-2.669962	С	-6.483157	1.038022	-0.664763	Н	-1.233247	-0.970233	-3.109112
Н 3.	.282827	-0.579868	-2.884636	Ν	-6.332309	-1.269989	-0.091930	С	-0.392761	-0.431591	-1.192931
Н 3.	.600046	-1.838457	-1.665913	С	-5.660391	2.331099	-0.576325	Н	0.127585	0.137257	0.816782
Н 3.	.604230	1.637818	-2.180952	С	-7.467479	1.091997	-1.860961	Н	4.250682	-0.271477	3.415777
Н 5.	.323101	1.450965	-2.574711	С	-5.561680	-0.249073	-0.770024	0	4.265968	0.452849	2.739375
C -5.	.772776	-2.609958	0.115900								