The acid free asymmetric intermolecular α-alkylation of aldehydes in fluorinated alcohols

Jian Xiao,^{†,‡} Kai Zhao,[†] and Teck-Peng Loh*,[†]

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 and Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian, P. R. China 116023

Supporting information

Table of contents

	Page
General methods	2
General procedure	3
Characterization of products	4
HPLC Spectra	9

[†]Nanyang Technological University. [†]Dalian Institute of Chemical Physics, The Chinese Academy of Sciences.

General methods

Experiments involving moisture and/or air sensitive components were performed in oven-dried glassware under a positive pressure of nitrogen using freshly distilled solvents. Commercial grade solvents and reagents were used without further purification.

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate.

Flash chromatography was performed using Merck silica gel 60 with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use.

Infrared spectra were recorded on a Bio-Rad FTS 165 FTIR spectrometer. The oil samples were examined under neat conditons.

High Resolution Mass (**HRMS**) spectra were obtained using Finnigan MAT95XP GC/HRMS (Thermo Electron Corporation).

Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker Avance DPX 300 and Bruker AMX 400 spectrophotometer (CDCl₃ as solvent). Chemical shifts for 1H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-*d* (δ 7.2600, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); ddd (doublets of doublets of doublet); dt (doublets of triplet); or m (multiplets). The number of protons (n) for a given resonance is indicated by nH. Coupling constants are reported as a *J* value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-*d* (δ 77.0, triplet).

Enantioselectivities were determined HPLC analysis employing a Daicel Chiracel column at 25 °C. Optical rotation was measured using a JASCO P-1030 Polarimeter equipped with a sodium vapor lamp at 589 nm. Concentration is denoted as c and was calculated as grams per deciliters (g / 100 mL) whereas the solvent. Absolute configuration of the products was determined by comparison with known compounds.

General procedure for the organocatalytic enantioselective acid free alkylation of aldehydes in fluorinated alcohols:

То a solution of xanthydrol (19.8 mg, 0.1 mmol) and (S)-2-(bis(3,5bis(trifluoromethyl)phenyl)(trimethylsilyloxy)methyl)pyrrolidine VII (6.0 mg, 0.01 mmol) in CF₃CH₂OH (0.5 mL) was added propanal (0.4 mmol). The resulting solution was stirred at room temperature or higher temperature for indicated time. Upon the completion of reaction as monitored by TLC, excessive NaBH₄ was then cautiously added to the yellow solution and stirred at room temperature for 0.5 h. The reaction was subsequently quenched with water (1 mL) and HCl (1M). The organic phase was separated and the aqueous solution was extracted with ethyl acetate (1 mL x 3). The combined organic phases were washed with brine and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the resulting yellow oil was purified by preparative chromatography (hexane/ethyl acetate = 4 : 1) to afford the desired product in colorless oil. Both enantiomeric excess and diastereomeric ratio were determined by HPLC using chiral AS-H, AD-H or OD-H columns. The absolute configuration of the products was determined by optical rotation in comparison with the literature reported values.¹

(R)-2-(9H-xanthen-9-yl)propan-1-ol

 $[\alpha]_{D}^{20} = + 3.1 \ (c = 1.5, \text{CHCl}_3)$. The enantiomeric excess was determined by HPLC with Chiralpack AD-H column at 220 nm; eluent: hexane:i-PrOH (95: 5), flow rate = 1 mL/min, $t_{\text{minor}} = 11.9 \text{ min}$, $t_{\text{major}} = 12.8 \text{ min}$. ¹**H NMR** (CDCl₃, 500 MHz) δ : 7.25-7.20 (m, 4H), 7.11-7.04 (m, 4H), 4.23 (d, *J* = 4.2 Hz, 1H), 3.57-3.42 (m, 2H), 2.04-1.95 (m, 1H), 0.64 (d, *J* = 6.9 Hz, 3H);

¹³C NMR (CDCl₃, 125 MHz) δ: 153.4, 153.1, 129.7, 128.8, 127.7, 127.5, 125.1, 123.3, 122.9, 122.5, 116.3, 116.2, 64.9, 45.1, 40.3, 12.0;

HRMS (**ESI**): calcd. for C₁₆H₁₇O₂ 241.1229 [M+H]⁺, found 241.1238 [M+H]⁺;

IR (thin film) v/cm⁻¹: 3350, 2970, 1460, 1379, 1256, 1161, 1128.

(R)-2-(9H-xanthen-9-yl)butan-1-ol

 $[\alpha]_D^{20} = + 2.3 \ (c = 1.5, \text{CHCl}_3)$. The enantiomeric excess was determined by HPLC with Chiralpack AD-H column at 220 nm; eluent: hexane:i-PrOH (95: 5), flow rate = 1 mL/min, $t_{\text{minor}} = 10.9 \text{ min}$, $t_{\text{major}} = 12.7 \text{ min}$. ¹**H NMR** (CDCl₃, 500 MHz) δ : 7.18-7.14 (m, 4H), 7.03-7.00 (m, 4H), 4.21 (d, *J* = 4.3 Hz, 1H), 3.51-3.42 (m, 2H), 1.69-1.63 (m, 1H), 1.53 (br, 1H), 1.31-1.23 (m, 1H), 1.05-0.96 (m, 1H), 0.74 (t, *J* = 7.5 Hz, 3H); ¹³**C NMR** (CDCl₃, 125 MHz) δ : 153.2 (2C), 129.5, 128.9, 127.6 (2C), 124.9, 123.7, 123.2, 123.0, 116.3, 62.1, 52.0, 39.3, 19.7, 12.1;

HRMS (**ESI**): calcd. for C₁₇H₁₉O₂ 255.1385 [M+H]⁺, found 255.1373 [M+H]⁺; **IR** (thin film) v/cm⁻¹: 3019, 2399, 2358, 1520, 1420, 1261, 1215, 1080, 1016.

(R)-2-(9H-xanthen-9-yl)pentan-1-ol

 $[\alpha]_D^{20} = + 6.4 \ (c = 2.0, \text{CHCl}_3)$. The enantiomeric excess was determined by HPLC with Chiralpack AD-H column at 220 nm; eluent: hexane:i-PrOH (95: 5), flow rate = 1 mL/min, $t_{\text{minor}} = 9.7 \text{ min}$, $t_{\text{major}} = 11.5 \text{ min}$. ¹**H NMR** (CDCl₃, 300 MHz) δ : 7.19-7,13 (m, 4H), 7.03- 6.98 (m, 4H), 4.20 (d, *J* = 4.2 Hz, 1H), 3.45 (d, *J* = 5.7 Hz, 2H), 1.81-1.69 (m, 1H), 1.27-0.92 (m, 4H), 0.70 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ: 153.1, 129.5, 128.9, 127.6 (2C), 124.8, 123.8, 123.2, 123.0, 116.3 (2C),
62.6, 50.2, 39.4, 29.6, 26.5, 22.7, 13.9;
HRMS (ESI): calcd. for C₁₈H₂₁O₂ 269.1542 [M+H]⁺, found 269.1543 [M+H]⁺;
IR (thin film) v/cm⁻¹: 2984, 2359, 1697, 1557, 1472, 1263.

$(R) \hbox{-} 2 \hbox{-} (9 H \hbox{-} xan then \hbox{-} 9 \hbox{-} yl) hexan \hbox{-} 1 \hbox{-} ol$

 $[\alpha]_D^{20} = + 3.0 \ (c = 2.1, \text{CHCl}_3)$. The enantiomeric excess was determined by HPLC with Chiralpack AD-H column at 220 nm; eluent: hexane:i-PrOH (95: 5), flow rate = 1 mL/min, t_{minor} = 8.8 min, t_{major} = 10.7 min. ¹H NMR (CDCl₃, 500 MHz) δ : 7.19-7.14 (m, 4H), 7.03-6.99 (m, 4H), 4.20 (d, *J* = 4.2 Hz, 1H), 3.47-3.41 (m, 2H), 1.77-1.71 (m, 1H), 1.53 (s, 1H), 1.24-0.94 (m, 6H), 0.70 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ : 153.2 (2C), 129.5, 128.9, 127.6 (2C), 124.7, 123.7, 123.2, 123.0, 116.3

(2C), 62.5, 50.2, 39.3, 29.6, 26.5, 22.7, 13.9;

HRMS (**ESI**): calcd. for C₁₉H₂₃O₂ 283.1698 [M+H]⁺, found 283.1689 [M+H]⁺;

IR (thin film) v/cm⁻¹: 3018, 2253, 1477, 1422, 1382, 1265, 1215.

(*R*)-2-(9*H*-xanthen-9-yl)octan-1-ol

 $[\alpha]_{D}^{20} = + 2.5 \ (c = 1.0, \text{CHCl}_3)$. The enantiomeric excess was determined by HPLC with Chiralpack AD-H column at 220 nm; eluent: hexane:*i*-PrOH (95: 5), flow rate = 1 mL/min, t_{minor} = 7.8 min, t_{major} = 9.1 min. ¹H NMR (CDCl₃, 400 MHz) δ : 7.25-7.20 (m, 4H), 7.10-7.05 (m, 4H), 4.27 (d, *J* = 4.2 Hz, 1H), 1.85-1.78 (m, 1H), 1.28-1.12 (m, 11H), 0.82 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 153.21, 153.17, 129.50, 128.92, 127.59, 127.56, 124.76, 123.74, 123.20, 123.00, 116.29, 116.27, 62.54, 50.20, 39.37, 31.62, 29.32, 27.39, 26.80, 22.55, 14.02. HRMS (ESI): calcd. for C₂₁H₂₇O₂ 311.2011 [M+H]⁺, found 311.2014 [M+H]⁺; IR (thin film) v/cm⁻¹: 3016, 2399, 1477, 1458, 1256, 1215, 1096, 1016.

(R)-3-methyl-2-(9H-xanthen-9-yl)butan-1-ol

 $[\alpha]_D^{20} = +3.3 \ (c = 1.0, \text{CHCl}_3)$. The enantiomeric excess was determined by HPLC with Chiralpack AD-H column at 220 nm; eluent: hexane:i-PrOH (95: 5), flow rate = 1 mL/min, $t_{\text{minor}} = 9.6 \text{ min}$, $t_{\text{major}} = 11.3 \text{ min}$. ¹H NMR (CDCl₃, 500 MHz) δ : 7.28-7.21 (m, 4H), 7.13-7.08 (m, 4H), 4.32 (d, *J* = 4.6 Hz, 1H), 3.64 (s, 2H), 1.89 -1.83 (m, 1H), 1.00 (d, *J* = 7.0 Hz, 3H), 0.72 (d, *J* = 6.8, 3H);

¹³C NMR (CDCl₃, 125 MHz) δ: 153.2 (2C), 129.3, 128.8,127.8, 127.6, 125.1, 124.9,123.4, 123.2, 116.6,116.4, 60.6, 56.3, 39.0, 26.1, 23.0, 18.7;

HRMS (**ESI**): calcd. for C₁₈H₂₁O₂ 269.1542 [M+H]⁺, found 269.1531 [M+H]⁺;

IR (thin film) v/cm⁻¹: 3387, 2972, 1458, 1381, 1215, 1126, 1029.

(R)-2-(9H-thioxanthen-9-yl)propan-1-ol

 $[\alpha]_D^{20} = -15.6 \ (c = 1.9, \text{CHCl}_3)$. The enantiomeric excess was determined by HPLC with Chiralpack AD-H column at 220 nm; eluent: hexane:*i*-PrOH (95: 5), flow rate = 1 mL/min, t_{minor} = 11.5 min, t_{major} = 12.0 min.

¹**H NMR** (CDCl₃, 300 MHz) δ: 7.36-7.33 (m, 2H), 7.27-7.24 (m, 1H), 7.20-7.09 (m, 5H), 3.89 (d, *J* = 9.96 Hz, 1H), 3.37 (dd, *J* = 10.8, 4.0 Hz, 1H), 3.24 (dd, *J* = 10.8, 5.0 Hz, 1H), 2.28 - 2.15 (m, 1H), 0.75 (d, *J* = 6.9 Hz, 3H);

¹³C NMR (CDCl₃, 75 MHz) δ: 132.9, 132.8, 132.2, 129.6, 127.2, 127.1, 126.5, 126.4, 126.3, 126.0, 65.7, 51.8, 34.9, 15.7;

HRMS (ESI): calcd. for $C_{16}H_{17}OS 257.1000 [M+H]^+$, found 257.1003 $[M+H]^+$;

IR (thin film) v/cm⁻¹: 3019, 2399, 1520, 1464, 1215, 1096, 1022.

(R)-2-(3,6-bis(dimethylamino)-9H-xanthen-9-yl)propan-1-ol

 $[\alpha]_D^{20} = -16.9 \ (c = 1.7, \text{CHCl}_3)$. The enantiomeric excess was determined by HPLC with Chiralpack OD-H column at 220 nm; eluent: hexane:i-PrOH (85: 15), flow rate = 1 mL/min, $t_{\text{major}} = 10.2 \text{ min}$, $t_{\text{minor}} = 15.9 \text{ min}$.

¹**H** NMR (CDCl₃, 500 MHz) δ : 7.16-7.13 (m, 4H), 6.67-6.64 (m, 4H), 3.58 (dd, *J* = 10.8, 4.1 Hz, 1H), 3.50 (d, *J* = 10.8 Hz, 1H), 3.41 (dd, *J* = 10.8, 5.7 Hz, 1H), 2.88 (s, 6H), 2.87 (s, 6H), 2.49- 2.40 (m, 1H), 1.62- 1.54 (m, 1H), 0.94 (d, *J* = 6.7, 3H);

¹³C NMR (CDCl₃, 125 MHz) δ: 149.0, 148.9, 132.9 (2C), 128.5, 128.3, 113.1, 112.9, 67.2, 53.7, 40.8 (2C), 39.6, 16.4;

HRMS (ESI): calcd. for C₂₀H₂₉N₂O 313.2280 [M+H]⁺, found 313.2280 [M+H]⁺;

IR (thin film) v/cm⁻¹: 3019, 2399, 1612, 1518, 1476, 1422, 1215, 1018.

Both enantiomeric excess and diastereomeric ratio were determined by HPLC with Chiralpack OD-H column at 220 nm, eluent: hexane:i-PrOH (95: 5), 1.0 mL/min; diastereomer 1: $t_{minor} = 15.0 \text{ min}$, $t_{major} = 22.3 \text{ min}$, diastereomer 2: $t_{minor} = 20.4 \text{ min}$, $t_{major} = 28.0 \text{ min}$.

¹**H NMR** (CDCl₃, 400 MHz) *δ*: 7.30-7.18 (m, 5H), 4.11-3.97 (m, 4H), 3.73 (s, 2H), 3.67 (s, 2H), 3.43-3.30 (m, 3H), 2.07-1.90 (m, 1H), 1.52 (br s, 1H), 0.83 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 144.6, 128.7, 128.2, 126.4, 92.2, 70.0, 68.6, 68.2, 67.1, 66.7, 66.6, 49.3, 42.7, 16.2.

HRMS (ESI): calcd. for C₂₄H₃₁OFe 391.1724[M+H]⁺, found 391.1716 [M+H]⁺; **IR** (thin film) v/cm⁻¹: 3053, 2961, 1720, 1265, 1026, 739, 704.

2-methyl-3-phenyl-3-(2-phenyl-1H-indol-3-yl)propan-1-ol

The enantiomeric excess was determined by HPLC with Chiralpack AD-H column at 220 nm; eluent: hexane:i-PrOH (90: 10), flow rate = 0.5 mL/min, diastereomer 1: $t_{minor} = 50.5$ min, $t_{major} = 98.6$ min, diastereomer 2: $t_{major} = 80.2$ min, $t_{minor} = 94.2$ min.

¹**H** NMR (CDCl₃, 400 MHz) δ : 7.97 (br s, 1H), 7.88-7.83 (m, 1H), 7.43-7.24 (m, 8H), 7.18-7.04 (m, 5H), 4.06-4.04 (m, 1H), 3.51-3.46 (m, 1H), 3.33-3.26 (m, 1H), 2.89-2.82 (m, 1H), 1.13-1.00 (m, 1H), 0.85 (d, J = 6.8 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 144.7, 136.2, 136.1, 133.3, 129.2, 128.7, 128.5, 128.4, 128.3, 127.6, 126.0, 121.9, 121.2, 119.7, 114.8, 111.0, 66.7, 46.1, 38.6, 15.9.

HRMS (ESI): calcd. for C₂₄H₂₄NO 342.1858 [M+H]⁺, found 342.1871 [M+H]⁺;

IR (thin film) v/cm⁻¹: 3400, 2967, 2930, 1597, 1454, 1265, 1030, 735, 702.

References

 (a) Cozzi, P. G.; Benfatti, F.; Zoli, L. Angew. Chem., Int. Ed. 2009, 48, 1313. (b) Benfatti, F.; Benedetto, E.; Cozzi, P. G. Chem. Asian J. 2010, 5, 2047. (c) Benfatti, F.; Benedetto, E.; Cozzi, P. G. Chem. Eur. J. 2010, 5, 9. (d) Benfatti, F.; Capdevila, M. G.; Benedetto, E.; Zoli, L.; Cozzi, P. G. Chem. Commun. 2009, 5919. (e) Ho, X. H.; Mho, S.; Kang, H.; Jang, H. Y. Eur. J. Org. Chem. 2010, 4436. (f) Bauer, J. O.; Stiller, J.; Marqués-López, E.; Strohfeldt, K.; Christmann, M.; Strohmann, C. Chem. Eur. J. 2010, 16, 12553. (g) Xiao, J.; Zhao, K.; Loh, T. P. Chem. Asian J. 2011, 6, 2890.

Representative HPLC Spectra

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	10.209 11.841	MM MM MM	0.3026 0.2657	1.80140e4 1.67220e4	992.18854 1048.99866	51.8598 48.1402	 1 2	9.955 11.561	 MM MM	0.6241 0.7954	 1072.38330 5892.77881	28.63899 123.48148	 15.3964 84.6036

Signal 1: MWD1 D, Sig=220,16 Ref=360,100

Signal 1: MWD1 D, Sig=220,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	8.579 10.079	MM MM	0.2871	1.24908e4 1.20522e4	725.05658 653.40631	50.8937 49.1063	 1 2	8.952	 ММ ММ	0.5507	262.50311 1643.26123	7.94413 41.03031	 13.7742 86.2258

Signal 1: MWD1 D, Sig=220,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak # 	RetTime [min]	Туре 	Width [min]	Àrea [mAU*s] 	Height [mAU]	Area %
	9.263	 MM	0.2852	4071.84595	237.93983	49.0854	1	9.064	MM	0.2345	515.09698	36.61646	11.0033
2	11.113	MM	0.2817	4223.58984	249.85394	50.9146	2	10.694	MM	0.2879	4166.21240	241.18961	88.9967

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

2.6803 2.10766e4

119.11897

32.3164

4

110.84552

62.4906

	-
1	Э
т	Э
	_