Supporting Information for

Palladium-catalyzed direct phosphonation of azoles with dialkyl phosphites

Chaodong Hou,^{ab} Yunlai Ren,^b Rui Lang,^a Xiaoxue Hu,^a Chungu Xia^a and Fuwei Li*^a

^a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. Fax: (+86)-931-4968129; Email: fuweili@licp.cas.cn

^b School of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471003, China

Table of Contents

- 1. General information
- 2. General procedures for the synthesis of substituted azoles
- **3.** Experimental procedure for the Pd-catalyzed direct phosphonation of azoles
- 4. Optimization of reaction conditions
- 5. Experiments on the investigation of mechanism
- 6. Characterization data for products
- 7. ¹H NMR,¹³C NMR and ³¹P NMR copies of products

1. General information

All non-aqueous reactions and manipulations were performed using standard Schlenk techniques. All the chemicals were used as received without further purification. All solvents before use were dried and degassed by standard methods. All reactions were monitored by TLC and HPLC. Silica gel was purchased from Qing Dao Hai Lang Chemical Industry Co. NMR spectra of the products were recorded using a Bruker Avance TM III spectrometer operating at 400 MHz for ¹H and 100 MHz for ¹³C in CDCl₃ unless otherwise noted. ³¹P NMR (162 MHz) spectra were taken on Bruker Avance TM III spectrometer and were obtained in CDCl₃ or CD₃CN with H₃PO₄ ($\delta = 0$ ppm) as internal standard. NMR yields were determined by fine ³¹P NMR spectra with diphenylphosphine oxide as an internal standard. High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micrO TOF-Q II spectrometer. High performance liquid chromatography (HPLC) analysis was performed by Agilent 1260 Infinity equipped with an Agilent ZORBAX SB-C18 column using aqueous methanol as eluent and 2, 3-dimethylindole as inner standard.

2. General procedures for the synthesis of substituted azoles

General procedure for the preparation of substituted benzoxazole¹

2-Aminophenol derivative (5 mmol) and triethyl orthoformate(8 mL) were introduced into a 50 mL bake-dried Schlenk tube under an argon atmosphere, and the resulting mixture was refluxed for 12-18 h. After cooling to room temperature, the solvent was removed under reduced pressure, and then the residue was purified by column chromatography, affording the desired products in similar yields with the reported procedure.

General procedure for the preparation of substituted benzothiazole²

A 50 mL Schlenk tube was charged with 2-aminobenzothiazole derivative (6.5 mmol) and 10 mL of THF, and then isoamyl nitrite (14.3 mmol) was added slowly into the solution. The resultant mixture was refluxed for 30 minutes, and poured into ice-water, and the resultant aqueous mixture was extracted with ethyl acetate (3×30 mL). The organic extracts were combined and washed with brine, dried over MgSO₄, filtered, concentrated in vacuum and purified by column chromatography, giving the desired benzothiazoles in similar yields with the reported procedure.

^{1.} S. M. Guo, B. Qian, Y. J. Xie, C. G. Xia and H. M. Huang, Org. Lett., 2011, 13, 522.

^{2.} A. Tsuruoka, Y. Kaku, H. Kakinuma, I. Tsukada, M.Yanagisawa, K. Nara and T. Naito, *Chem. Pharm. Bull.*, 1998, **46**, 623.

3. Experimental procedure for the Pd-catalyzed direct phosphonation of azoles

Catalyst (0.025 mmol, 5 mol%), ligand (0.15 mmol, 30 mol%), oxidant (1.5 mmol), azole (0.5 mmol), dialkyl phosphites (1.0 mmol), solvent (3.0 mL) were sequentially introduced into a 25 mL bake-dried Schlenk tube, and the resulting mixture was stirred in a preheated oil bath at 100 °C for 24h. Reaction mixture was cooled to r. t. and diluted with NH₄Cl solution, and then the aqueous solution was extracted with ethyl acetate (3×15 mL). The organic extracts were combined and dried over MgSO₄, filtered and concentrated in vacuum. The crude product was purified by column chromatography on silica gel (dichloromethane/petroleum ether 1:3–5:1), giving the desired 2-phosphonated azoles as an oil or pale yellow solid.

4. Optimization of the reaction conditions

		Catalyst (5 mol%) Ligand (30 mol%)	
1a	~S 2a	CH ₃ CN, K ₂ S ₂ O ₈	S 3a
Entry	Catalyst	Ligand	Yield ^b (%)
1	Pd(OAc) ₂	-	12
2	Pd(OAc) ₂	L1	56
3	PdCl ₂	L1	27
4	Pd(TFA) ₂	L1	47
5	Pd(COD)Cl ₂	L1	47
6	[Rh(COD)Cl] ₂	L1	12
7	CuBr ₂	L1	Trace

^a General conditions: **1a** (0.5 mmol), **2a** (1.0 mmol), catalyst (5 mol%), ligand (30 mol%), $K_2S_2O_8$ (1.5 mmol), CH₃CN (3.0 mL), 24 h, 100 °C, air atmosphere. ^bHPLC yields using 2,

L1

Trace

3-dimethylindole as an internal standard.

8

CuI

Table S2: Screening of oxidants^a

Entry	Oxidant	Yield ^b (%)	
1	$K_2S_2O_8$	56	
2	I_2	7	
3	PhI(OAc) ₂	<5	
4	Benzoyl peroxide	8	
5	1,4-Benzoquinone	<5	
6	Ag_2O	<5	
7	AgOAc	5	
8	TBP	<5	
9	TBHP	<5	
10	H_2O_2	<5	
11	Cu(OAc) ₂	<5	
12	CuBr ₂	<5	

^a General conditions: **1a** (0.5 mmol), **2a** (1.0 mmol), Pd(OAc)₂ (5 mol%), **L1** (30 mol%), oxidant (1.5 mmol), CH₃CN (3.0 mL), 24 h, 100 °C, air atmosphere. ^b HPLC yields using 2, 3-dimethylindole as an internal standard.

Table S3: Screening of Solvents^a

Entry	Solvent	Yield ^b (%)
1	CH ₃ CN	56
2	CH ₃ OH	<5
3	Toluene	5
4	THF	9
5	NMP	<5
6	1,4-Dioxane	8
7	EtOAc	13
8	$CH_3CN/Water$ (4/1)	21

^a General conditions: **1a** (0.5 mmol), **2a** (1.0 mmol), Pd(OAc)₂ (5 mol%), **L1** (30 mol%), K₂S₂O₈

(1.5 mmol), solvent (3.0 mL), 24 h, 100 °C, air atmosphere. ^b HPLC yields using 2,

3-dimethylindole as an internal standard.

Table S4: Screening of Ligands^a

Entry	Ligand	Yield ^b (%)
1	L2	48
2	L2 (10 mol%)	41
3	L1 (100 mol%)	33
4	L1 (50 mol%)	56
5	L1	56
6	L1(20 mol%)	53
7	L1(10 mol%)	43
8	L3	54
9	L4	34
10	L5	23
11	L6	41
12	L7	55
13	L8	16
14	Phenprobamate	34
15	Iminodiacetic acid	40
16	D-Alanine	43
17	Lactic acid	10
18	Malonic acid	22
19	Picolinic soid	23
	r connic aciu	
20		16

21		26
	2,6-Pyridinedicarboxylic acid	

^a General conditions: **1a** (0.5 mmol), **2a** (1.0 mmol), Pd(OAc)₂ (5 mol%), ligand (30 mol%), K₂S₂O₈ (1.5 mmol), CH₃CN (3.0 mL), 24 h, 100 °C, air atmosphere. ^b HPLC yields using 2, 3-dimethylindole as an internal standard.

Table S5: Optimization C-P bond formation of Substituted benzoxazole^a

	N H + H-	O II -P ⁻ (OEt) ₂ Pd(OAc) ₂ (5 I Ligand (30 m	mol%) ol%) → N	O -P(OEt) ₂
O Solvent, Oxidant				
	1d	2a	3	d
Entry	Ligand	Solvent	Oxidant	Yield ^b (%)
1	NO	CH ₃ CN	$K_2S_2O_8$	8
2	L1	CH ₃ CN	$K_2S_2O_8$	15
3	L2 (20 m%)	CH ₃ CN	$K_2S_2O_8$	57
4	L2	CH ₃ CN	$K_2S_2O_8$	60
5	L2 (50 m%)	CH ₃ CN	$K_2S_2O_8$	56
6 ^c	L2	CH ₃ CN	$K_2S_2O_8$	39
7^{d}	L2	CH ₃ CN	$K_2S_2O_8$	12
8 ^e	L2	CH ₃ CN	$K_2S_2O_8$	<5
9^{f}	L2	CH ₃ CN	$K_2S_2O_8$	37
10 ^g	L2	CH ₃ CN	$K_2S_2O_8$	49
11 ^h	L2	CH ₃ CN	$K_2S_2O_8$	59
12	L2	Toluene	$K_2S_2O_8$	<5
13	L2	1,4-Dioxane	$K_2S_2O_8$	<5
14	L2	1,2-Dimethoxyethane	$K_2S_2O_8$	<5
15	L2	CH ₃ CN	TBHP	<5
16	L2	CH ₃ CN	PhI(OAc) ₂	<5
17	L2	CH ₃ CN	1,4-Benzoquinone	<5
18	L3	CH ₃ CN	$K_2S_2O_8$	61
19	L4	CH ₃ CN	$K_2S_2O_8$	26
20	L5	CH ₃ CN	$K_2S_2O_8$	18
21	L6	CH ₃ CN	$K_2S_2O_8$	32
22	L7	CH ₃ CN	$K_2S_2O_8$	43
23	L8	CH ₃ CN	$K_2S_2O_8$	19

^a General conditions: benzoxazole (**1d**) (0.5 mmol), **2a** (1.0 mmol), Pd(OAc)₂ (5 mol%), ligand (30 mol%), oxidant (1.5 mmol), solvent (3.0 mL), 24 h, 100 °C argon atmosphere. ^{b 31}P NMR yields using an internal standard. ^cAir atmosphere. ^dOxygen atmosphere. ^e 80 °C ^f 120 °C ^g 18 h. ^h 30 h.

5. Experiments for the investigation of mechanism

5.1 Pd-catalyzed direct phosphonation of 1a with 2a in the presence of a radical scavenger (TEMPO)

A 25 mL bake-dried Schlenk tube was charged with $Pd(OAc)_2$ (0.025 mmol, 5 mol%), L1 (0.15 mmol, 30 mol%), $K_2S_2O_8$ (1.5 mmol), 1a (0.5 mmol), 2a (1.0 mmol), TEMPO (0.5 mmol, 1.0 equiv.) and 3.0 mL of CH₃CN. The resulting mixture was stirred in a preheated oil bath at 100 °C for 24 h. The crude reaction mixture was analyzed by HPLC and a 51% yield of 3a was obtained. This controll experiment possibly suggests that current oxidative C-P bond forming reaction may not be a radical involving reaction.

5.2 The effect of addition of Et₃N for the Pd-catalyzed direct phosphonation of 1a with 2a

A 25 mL bake-dried Schlenk tube was charged with $Pd(OAc)_2$ (0.025 mmol, 5 mol%), L1 (0.15 mmol, 30 mol%.), $K_2S_2O_8$ (1.5 mmol), 1a (0.5 mmol), 2a (1.0 mmol), Et₃N (1.0 mmol, 2.0 equiv.) and 3.0 mL of CH₃CN. The resulting mixture was stirred in a preheated oil bath at 100 °C for 24 h. The crude reaction mixture was analyzed by HPLC and an 18% yield of 3a was obtained. This experiment possibly indicates that the addition of a base (Et₃N) significantly obstructed the phosphonation, which is opposite to the radical C-P formation wherein base would help the abstraction of the H⁺ from dialkyl H-phosphonate cation radical and increase the catalytic activity.

5.3 The effect of addition of CH₃COOH for the Pd-catalyzed direct phosphonation of 1a with 2a

A 25 mL bake-dried Schlenk tube was charged with $Pd(OAc)_2$ (0.025 mmol, 5 mol%), L1 (0.15 mmol, 30 mol%), K₂S₂O₈ (1.5 mmol), 1a (0.5 mmol), 2a (1.0 mmol), CH₃COOH (1.0 mmol, 2.0 equiv.) and 3.0 mL of CH₃CN. The resulting mixture was stirred in a preheated oil bath at 100 °C for 24 h. The crude reaction mixture was analyzed by HPLC and an 8% yield of 3a was obtained. This experiment possibly suggests that the introducing of additional acid such as CH₃COOH into the reaction will greatly reduced the reactivity, which is inconsistent with Larhed's results.

5.4 ESI-MS experiment for the Pd-catalyzed direct phosphonation of 1a with 2b

 $Pd(OAc)_2$ (0.05 mmol, 5 mol%), L2 (0.3 mmol, 30 mol%), 1a (1.0 mmol), diisopropyl phosphate (2b) (2.0 mmol), K₂S₂O₈ (3.0 mmol) and CH₃CN (6.0 mL) were introduced into a 25 mL bake-dried tube under air. The resulting mixture was stirred in a preheated oil bath at 100 °C. The aliquots were taken from the reaction mixture at 20 min, 60 min after the start of reaction and diluted ten times with CH₃CN before ESI-MS analysis.

Figure S1 ESI-MS spectrum of the reaction mixture (20 min).

Figure S1 and S2 showed that two Pd species (**B** and **E**) were clearly detected and they are dominant in the reaction mixture

Figure S3 The magnification of peak around m/z 593 and 757.

This figure demonstrates that these two peaks (m/z 593 of **B** and m/z 757 of **E**) are monocationic Pd species.

Figure S4 Proposed mechanism for the direct phosphonation of azole with dialkyl phosphite.

6. Characterization data for products

Diethyl benzothiazole-2-ylphosphonate (3a)

A light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 7.9 Hz, 1H), 8.14 – 7.95 (m, 1H), 7.57 (m, 2H), 4.33 (m, 4H), 1.40 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9 (s), 154.7 (s), 154.5 (s), 136.42 (s), 126.9 (d, J = 16.1 Hz), 125.0 (s), 122.0 (d, J = 1.5 Hz), 64.1 (d, J = 5.9 Hz), 16.3 (d, J = 6.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 4.07 (s). HRMS (ESI) Calcd for C₁₁H₁₄NNaO₃PS: [M+Na]⁺, 294.0324; Found: 294.0318

Diethyl 6-methylbenzothiazole-2-ylphosphonate (3b)

A pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.5 Hz, 1H), 7.79 (s, 1H), 7.39 (dd, J = 8.5, 1.2 Hz, 1H), 4.44 – 4.21 (m, 4H), 2.53 (s, 3H), 1.40 (t, J = 7.1 Hz, 6H). ¹³C NMR(101 MHz, CDCl₃) δ 159.9 (s), 153.00 (s), 152.7 (s), 137.5 (s), 136.8 (s), 128.7 (s), 124.4 (s), 121.5 (d, J = 1.7 Hz), 64.0 (d, J = 5.9 Hz), 21.7 (s), 16.3 (d, J = 6.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 4.38 (s). HRMS (ESI) Calcd for C₁₂H₁₆NNaO₃PS: [M+Na]⁺, 308.0481; Found: 308.0478.

Diethyl 6-chlorobenzothiazole-2-ylphosphonate (3c)

A brown oil. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.8 Hz, 1H), 7.99 (s, 1H), 7.54 (d, J = 8.8 Hz, 1H), 4.49 – 4.21 (m, 4H), 1.41 (t, J = 7.1 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 162.0 (s), 159.6 (s), 137.6 (d, J = 1.6 Hz), 133.3 (s), 127.9 (s), 125.6 (s), 121.5 (d, J = 1.6 Hz), 64.3 (d, J = 5.9 Hz), 16.3 (d, J = 6.2 Hz).³¹P NMR (162 MHz, CDCl₃) δ 3.37 (s). HRMS (ESI) Calcd for C₁₁H₁₃CINCINaO₃PS: [M+Na]⁺, 327.9934; Found: 327.9936.

Diisopropyl benzothiazole-2-ylphosphonate (3d)

A pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.33 – 8.14 (m, 1H), 8.08 – 7.94 (m, 1H), 7.67 – 7.43 (m, 2H), 4.93 (m, 1.4 Hz, 2H), 1.43 (d, J = 6.2 Hz, 6H), 1.34 (d, J = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.7 (s), 160.29 (s), 154.8 (s), 154.5 (s), 136.5 (d, J = 1.4 Hz), 126.8 (d, J = 1.2 Hz), 124.9 (s), 121.9 (d, J = 1.5 Hz), 73.2 (d, J = 6.0 Hz), 24.1 (d, J = 4.1 Hz), 23.8 (d, J = 5.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 1.97 (s). HRMS (ESI) Calcd for C₁₃H₁₈NNaO₃PS: [M+Na]⁺, 322.0637; Found: 322.0634.

Diisopropyl 6-methylbenzothiazole-2-ylphosphonate (3e)

A pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 1H), 7.70 (s, 1H), 7.30 (d, *J* = 8.5 Hz, 1H), 4.83 (m, 2H), 2.45 (s, 3H), 1.35 (d, *J* = 6.2 Hz, 6H), 1.26 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 161.3 (s), 158.9 (s), 137.3 (s), 136.8 (d, *J* = 1.3 Hz), 128.5 (s), 124.4 (s), 121.4 (d, *J* = 1.6 Hz), 73.1 (d, *J* = 5.9 Hz), 24.0 (d, *J* = 4.1 Hz), 23.8 (d, *J* = 4.9 Hz), 21.7 (s). ³¹P NMR (162 MHz, CDCl₃) δ 2.27 (s). HRMS (ESI) Calcd for C₁₄H₂₀NNaO₃PS: [M+Na]⁺, 336.0795; Found: 336.0794.

Diisopropyl 6-chlorobenzothiazole-2-ylphosphonate (3f)

A pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.8 Hz, 1H), 7.98 (d, J = 2.0 Hz, 1H), 7.53 (dd, J = 8.8, 2.0 Hz, 1H), 4.93 (ddd, J = 12.4, 6.2, 1.3 Hz, 2H), 1.44 (d, J = 6.2 Hz, 6H), 1.35 (d, J = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.4 (s), 161.0 (s), 137.6 (d, J = 1.4 Hz), 133.2 (s), 127.8 (s), 125.6 (s), 121.5 (d, J = 1.7 Hz), 73.4 (d, J = 6.0 Hz), 24.0 (d, J = 4.1 Hz), 23.8 (d, J = 4.9 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 1.32 (s). HRMS (ESI) Calcd for C₁₃H₁₇ClNNaO₃PS: [M+Na]⁺, 356.0255; Found: 356.0247.

Diethyl benzoxazole-2-ylphosphonate (3g)

A tan oil. ¹H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 7.9 Hz, 1H), 7.65 (d, J = 8.1 Hz, 1H), 7.46 (m, 2H), 4.51 – 4.29 (m, 4H), 1.44 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl3) δ 155.4 (s), 151.1 (d, J = 5.8 Hz), 140.2 (d, J = 16.3 Hz), 127.4 (s), 125.3 (s), 121.6 (s), 111.6 (s), 64.6 (d, J = 5.8 Hz), 16.3 (d, J = 6.3 Hz). ³¹P NMR (162 MHz, CDCl3) δ -2.17 (s). HRMS (ESI) Calcd for C₁₁H₁₄NNaO₄P: [M+Na]⁺, 278.0553; Found: 278.0551.

Diethyl 5-methylbenzoxazole-2-ylphosphonate (3h)

A pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.30 (d, J = 9.6 Hz, 1H), 4.46 – 4.27 (m, 4H), 2.50 (s, 3H), 1.43 (td, J = 7.1, 0.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 158.0 (s), 155.4 (s), 149.4 (d, J = 5.9 Hz), 135.4 (d, J = 0.9 Hz), 128.8(s), 121.2 (s), 110.9 (s), 64.6 (d, J = 5.8 Hz), 21.5 (s), 16.3 (d, J = 6.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ -1.95 (s). HRMS (ESI) Calcd for C₁₂H₁₆NNaO₄P: [M+Na]⁺, 292.0709; Found: 292.0709.

Diethyl 5-tert-butylbenzoxazole-2-ylphosphonate (3i)

A pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.57 (d, J = 1.0 Hz, 2H), 4.50 – 4.28 (m, 4H), 1.44 (dd, J = 7.3, 6.9 Hz, 6H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 158.1 (s), 155.4 (s), 149.1 (dd, J = 14.3, 3.3 Hz), 140.2 (d, J = 16.3 Hz), 125.5 (s), 117.74 (s), 110.7 (s), 64.5

(d, J = 5.9 Hz), 35.0 (s), 31.7 (s), 16.3 (d, J = 6.3 Hz).³¹P NMR (162 MHz, CDCl₃) δ -2.08 (s). HRMS (ESI) Calcd for C₁₂H₂₂NNaO₄P: [M+Na]⁺, 334.1179; Found: 334.1179.

Diethyl 5-chlorobenzoxazole-2-ylphosphonate (3j)

A tan oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 2.0 Hz, 1H), 7.58 (d, *J* = 8.7 Hz, 1H), 7.47 (m, 1H), 4.50 – 4.30 (m, 4H), 1.45 (td, *J* = 7.1, 0.5 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 156.9 (s), 149.7 (d, *J* = 5.9 Hz), 141.3 (d, *J* = 16.5 Hz), 131.0 (d, *J* = 1.5 Hz), 127.9 (s), 121.4 (s), 112.4 (s), 64.8 (d, *J* = 5.9 Hz), 16.3 (d, *J* = 6.2 Hz).³¹P NMR (162 MHz, CDCl₃) δ -2.89 (s). HRMS (ESI) Calcd for C₁₁H₁₃CINNaO₄P: [M+Na]⁺, 312.0156; Found: 312.0163.

Diethyl 6-methylbenzoxazole-2-ylphosphonate (3k)

A brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 1H), 7.44 (s, 1H), 7.24 (d, *J* = 8.2 Hz, 1H), 4.48 – 4.24 (m, 4H), 2.52 (s, 3H), 1.43 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.4 (s), 154.75 (s), 151.5 (d, *J* = 5.7 Hz), 138.3 (s), 126.8 (s), 120.9 (s), 111.5 (s), 64.5 (d, *J* = 5.9 Hz), 21.9 (s), 16.3 (d, *J* = 6.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ -1.94 (s). HRMS (ESI) Calcd for C₁₂H₁₆NNaO₄P: [M+Na]⁺, 292.0709; Found: 292.0719.

Diisopropyl benzoxazole-2-ylphosphonate (3l)

A pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.84 (m, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.53 – 7.37 (m, 2H), 5.10 – 4.87 (m, 2H), 1.45 (d, J = 6.2 Hz, 6H), 1.40 (d, J = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 159.0 (s), 156.4 (s), 151.1 (d, J = 5.8 Hz), 140.3 (d, J = 16.4 Hz), 127.3 (s), 125.2 (s), 121.6 (s), 111.5 (s), 73.9 (d, J = 5.9 Hz), 24.0 (d, J = 4.1 Hz), 23.7 (d, J = 5.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ -4.29 (s). HRMS (ESI) Calcd for C₁₃H₁₈NNaO₄P: [M+Na]⁺, 306.0870; Found: 306.0866.

Diisopropyl 5-methylbenzoxazole-2-ylphosphonate (3m)

A pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.29 (d, *J* = 7.8 Hz, 1H), 5.09 – 4.80 (m, 2H), 2.49 (s, 3H), 1.45 (d, *J* = 6.2 Hz, 6H), 1.39 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.3 (s), 149.4 (d, *J* = 5.8 Hz), 140.6 (d, *J* = 16.3 Hz), 135.2 (s), 128.6 (s), 121.3 (s), 110.8 (s), 73.8 (d, *J* = 5.9 Hz), 24.0 (d, *J* = 4.1 Hz), 23.7 (d, *J* = 5.0 Hz), 21.4 (s). ³¹P NMR (162 MHz, CDCl₃) δ -4.15 (s). HRMS (ESI) Calcd for C₁₄H₂₀NNaO₄P: [M+Na]⁺, 320.1022; Found: 320.1013.

Diisopropyl 5-tert-butylbenzoxazole-2-ylphosphonate (3n)

A light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.55 (s, 2H), 4.95 (d, J = 7.7 Hz, 2H), 1.45 (d, J = 6.2 Hz, 6H), 1.40 (d, J = 5.2 Hz, 15H). ¹³C NMR (101 MHz, CDCl₃) δ 159.0 (s), 156.4 (s), 149.1 (d, J = 5.8 Hz), 148.7 (s), 140.2 (d, J = 16.3 Hz), 125.2 (s), 117.7 (s), 110.6 (s), 73.7 (d, J = 5.9 Hz), 65.7 (s), 34.9 (s), 31.6 (s), 23.9 (d, J = 4.1 Hz), 23.6 (d, J = 5.0 Hz), 15.2 (s). ³¹P NMR (162 MHz, CDCl₃) δ -4.18 (s). HRMS (ESI) Calcd for C₁₇H₂₆NNaO₄P: [M+Na]⁺, 362.1492; Found: 362.1478.

Diisopropyl 5-chlorobenzoxazole-2-ylphosphonate (30)

A tan oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 2.0 Hz, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.45 (m, 1H), 5.03 – 4.90 (m, 2H), 1.46 (d, J = 6.2 Hz, 6H), 1.40 (d, J = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5 (s), 157.9 (s), 149.6 (d, J = 5.9 Hz), 141.4 (d, J = 16.5 Hz), 130.8 (d, J = 1.4 Hz), 127.7 (s), 121.4 (s), 112.3 (s), 74.2 (d, J = 6.0 Hz), 24.0 (d, J = 4.1 Hz), 23.7 (d, J = 5.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ -5.03 (s). HRMS (ESI) Calcd for C₁₃H₂₇ClNNaO₄P: [M+Na]⁺, 340.0476; Found: 340.0463.

Diisopropyl 6-methylbenzoxazole-2-ylphosphonate (3p)

A tan oil. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.2 Hz, 1H), 7.43 (s, 1H), 7.23 (dd, J = 8.2, 0.8 Hz, 1H), 5.11 – 4.82 (m, 2H), 2.52 (s, 3H), 1.44 (d, J = 6.2 Hz, 6H), 1.39 (d, J = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 158.4 (s), 155.7 (s), 151.5 (d, J = 5.7 Hz), 138.0 (s), 126.7 (s), 120.9 (s), 111.4 (s), 73.8 (d, J = 5.9 Hz), 24.0 (d, J = 4.1 Hz), 23.7 (d, J = 5.0 Hz), 21.9 (s). ³¹P NMR (162 MHz, CDCl₃) δ -4.16 (s). HRMS (ESI) Calcd for C₁₄H₂₀NNaO₄P: [M+Na]⁺, 320.1022; Found: 320.1015.

7. ¹H NMR and ¹³C NMR copies of products.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

-4.383

-10 -20 -30 -40 -50 -60 -70 -80

-10

-10 -20 -30 -40 -50 -60 -70 -80

-1.322

-10 -20 -30 -40 -50 -60 -70 -80

---1.945

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

-4.292

