Supplementary Information

Ultrasensitive electrochemical detection of prostate-specific antigen (PSA) using gold-coated magnetic nanoparticles as 'dispersible electrodes'

Kyloon Chuah, Leo M. H. Lai, Ian Y. Goon, Stephen G. Parker, Rose Amal and J. Justin Gooding*

S1. Experimental materials and methods

Materials

Chemical	Abbreviation	Purity	Supplier
Polyethylenimine, Branched, 25 kDa	PEI	-	Sigma-Aldrich, Sydney
Gold (III) chloride trihydate	HAuCl ₄ .3H ₂ O	>99.9%	Sigma-Aldrich, Sydney
DL-α-lipoic (thioctic acid)	-	-	Fluka, Sydney
<i>N</i> -(3-dimethylaminopropyl)- <i>N</i> '- ethyl-carbodiimide hydrochloride	EDC	98%	Sigma-Aldrich, Sydney
N-hydroxysuccinimide	NHS	98%	Sigma-Aldrich, Sydney
Monoclonal anti-PSA antibody specific to epitope 3 of PSA (capture antibody)	Ab ₁	-	Abcam from Sapphire Bioscience, Sydney
Horseradish peroxidase (HRP) conjugated monoclonal anti-PSA antibody specific to epitope 1 of PSA (detection antibody)	Ab ₂	-	Abcam from Sapphire Bioscience, Sydney
Ferrocenemethanol	-	97%	Sigma-Aldrich, Sydney

Instrumentation

Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images were taken with a Philips CM 200 TEM operating at 200 kV and Hitachi s900 SEM respectively. A Thermo Scientific VG-ESCALAB 220-iXL spectrometer with a monochromated Al K α X-ray source (1486.6 eV) was used for X-ray photoelectron spectroscopy (XPS) analysis. The spectra were recorded at a take-off angle of 90° and an analyser pass energy of 20 eV. Chronoamperometry measurements were performed using a microAutolab Type III potentiostat and the data was analysed by General Purpose Electrochemical System (GPES) version 4.9 software.

Synthesis of Ab₁-Au@MNPs

Au@MNPs used in this work were synthesized using the method previously developed by Goon et al. Briefly, iron oxide (Fe₃O₄) nanoparticles were synthesised by mixing 0.7 g of FeSO₄ in 80 mL of Milli-Q water, and subsequently the addition of 10 mL of 2.0 M KNO₃ and 10 mL of 1.0 M NaOH in an oxygen-free environment. The Fe(OH)₂ formed initially was heated to 90°C for 2 hours, allowing the oxidation of Fe(OH)₂ to form Fe₃O₄ nanoparticles. The Fe₃O₄ nanoparticles were magnetically separated from the mixture using a magnet and the remaining solution discarded. The Fe₃O₄ nanoparticles collected were rinsed 3 times with MilliQ water followed by the addition of 20 mL of 20 g/L polyethylenimine (PEI) solution. The mixture was sonicated for 2 min with an ultrasonic probe (Misonix S3000 Sonicator) and allowed to incubate at 90°C for 4 hours. The PEI-coated Fe₃O₄ nanoparticles were then rinsed with MilliQ water 3 times and resuspended in 25 mL of MilliQ water. Next, 2 nm colloidal gold nanoparticles were produced by the reduction of 1% w/w HAuCl₄ in 90 mL of Milli-Q water by 0.075% NaBH₄ in 38.8 mM sodium citrate solution. The PEI-coated Fe₃O₄ nanoparticle solution previously prepared was sonicated for 2 min and added to 90 mL of the Au colloid solution. The mixture was allowed to stir at 400 rpm for 4 hours at room temperature. The AuNPs-seeded Fe₃O₄ nanoparticles were magnetically separated from the excess Au colloid solution and rinsed 3 times with MilliQ water. AuNPs-seeded PEI-coated Fe₃O₄ nanoparticles were then added to 20 mL of 5 g/L PEI solution. The mixture was again sonicated for 2 min and allowed to incubate at 90°C for 4 hours. These PEI-coated AuNPs-seeded Fe₃O₄ nanoparticles were then magnetically separated from the solution, rinsed 3 times with MilliQ water and resuspended in 20 mL of MilliQ water. Full gold coating on the AuNPs-seeded Fe₃O₄ nanoparticles was performed *via* three iterations of HAuCl₄ reduction. Firstly, 20 mL of the PEI-coated AuNPs-seeded Fe₃O₄ nanoparticle solution was sonicated for 2 min and 10 mL of the nanoparticle solution was added into 110 mL of 0.01 M NaOH solution (pH ~11.5). The mixture was stirred mechanically throughout the entire gold-coating process at 300 rpm. 0.725 mL of 1% HAuCl₄ was added to the mixture followed by the addition of 0.625 mL NH₂OH.HCl 5 min after. For the next two iterations, 0.5 mL of 1% HAuCl₄ and 0.281 mL of NH₂OH.HCl were added at 5 min intervals. The gold-coated magnetic nanoparticles (Au@MNPs) were magnetically separated from the solution, rinsed 3 times with MilliQ water and resuspended in 10 mL of MilliQ water.¹

Figure S1: Outline of the modification process used for immobilization of Ab₁ onto Au@MNP.

Subsequently, the gold surface of Au@MNPs was modified with thioctic acid self-assembled monolayer (SAM) followed by tethering of monoclonal anti-PSA capture antibody (Ab₁) (Abcam) onto the thioctic acid SAM (Figure S1). Briefly, a 1 mL aliquot of the 10 mM thioctic acid solution was added into 10 mL of Au@MNPs solution. The mixture was sonicated for 2 min and allowed to incubate for 4 hours at room temperature. Next, the Au@MNPs were magnetically separated and rinsed 3 times with 75% ethanol and 25% water solution and subsequently with acetone. A stream of nitrogen gas was passed through the nanoparticles to facilitate the drying process. The mass of the thioctic acid modified Au@MNPs were first rinsed with 75% ethanol and 25% water. 1 mL of 10 mM EDC and 10mM NHS in 75% ethanol and 25% water solution was added to incubate for 1 hour at room temperature. The EDC/NHS-activated thioctic acid modified Au@MNPs were magnetically separated and rinsed 3 times with 75% ethanol and 25% water and then rinsed once with phosphate buffer saline (PBS) pH 7.4 followed by the addition of 500 μ L of 100 μ g/mL Ab₁ in PBS. The Au@MNPs were dispersed in solution

using a vortex mixer and allowed to incubate overnight at 4°C. The Ab₁-functionalised Au@MNPs (Ab₁-Au@MNPs) were magnetically separated and rinsed 3 times with PBS. Using the mass of Au@MNPs measured previously, the Ab₁-Au@MNPs were then dispersed in an appropriate amount of PBS such that the concentration of the Ab₁-Au@MNPs is 8 g/L.

Electrochemical detection of PSA via sandwich ELISA strategy

The Ab₁-Au@MNPs were used to capture and electrochemically detect standard solutions of PSA analyte in PBS. First, 50 μ L of the 8 g/L Ab₁-Au@MNPs solution were added to a 50 μ L standard PSA solution of 2 times (2X) concentration. The Ab₁-Au@MNPs were dispersed in solution using a vortex mixer and allowed to incubate for 2 hours at room temperature. Next, the Ab₁-Au@MNPs exposed to PSA were magnetically separated and rinsed 3 times with PBS. 50 μ L of 100 μ g/mL HRP-conjugated anti-PSA detection antibody (Ab₂) in PBS was added to the Au@MNPs. The Au@MNPs were then dispersed in solution using a vortex mixer and allowed to incubate for another 2 hours at room temperature. After that, the Au@MNPs were again magnetically separated, rinsed 3 times with PBS and resuspended in 4 mL of 1mM ferrocenemethanol in PBS solution.

Figure S2: Schematic illustration of the electrochemical cell setup used for electrochemical analysis of Au@MNPs. The anti-PSA capture antibody functionalised Au@MNPs were dispersed in the sample solution and then a magnet was used to attract the Au@MNPs to the gold working electrode surface.

A custom glass electrochemical cell setup (Figure S2) was used for all electrochemical analysis experiments involving Au@MNPs. A 1 cm x 1 cm gold foil was first rinsed with piranha solution and then polished with 1.0, followed by 0.5 and 0.05 µm alumina/water slurry for 3 minutes each on microcloth pads prior to use in the electrochemical cell. Trace alumina was removed from the gold electrode surface by rinsing with Milli-Q water. The polished gold foil was then assembled into the electrochemical cell and connected to the working electrode lead of a potentiostat as shown in Figure S1. The Au@MNPs in ferrocenemethanol solution was added into the electrochemical cell. A magnetic field was applied at the base of the cell for 5 min using a neodymium disc magnet in order to attract Au@MNPs to the gold working electrode. 0.2 mL of 10 mM H₂O₂ was later added as a substrate for the reaction catalyzed by HRP. Subsequently, the platinum flag counter electrode and Ag/AgCl reference electrode were immersed in the electrochemical cell solution and chronoamperometry measurements were performed via a potentiostat. Multiple samples of Ab₁-AuNPs added to a range of standard PSA solutions with different 2X concentrations were prepared. The current recorded at t = 200 s were used for construction of a calibration curve.

Figure S3: A chronoamperometry plot indicating the current response of various PSA standard samples at a potential of +0.15 V versus Ag/AgCl.

S3. X-ray photoelectron spectroscopy (XPS) characterization evidence for surface modification of Au@MNPs

Figure S4: XPS spectra of Ab₁-Au@MNPs taken at various stages during the surface modification process. (a) S 2p region after self-assembly of thioctic acid; (b) C 1s region after self-assembly of thioctic acid; (c) N 1s region after self-assembly of thioctic acid; (d) N 1s region after EDC and NHS activation; (e) N 1s region after attachment of Ab₁.

The presence of thioctic acid self-assembled monolayer on the Au@MNPs after surface modification is evidenced by the occurrence of several characteristic peaks in the high-resolution XPS spectra of the S 2p and C 1s regions (Figure S4a and S4b). Triplet peaks were

observed in the S 2p region occurring at 162.08, 163.38 and 164.48 eV which are attributed to thioctic acid molecules chemisorbed onto gold.² In addition, the peaks at 285.4 and 288.5 eV in the C 1s region which correspond to the presence of methylene and carboxylic groups respectively further support the successful surface modification of Au@MNPs with thioctic acid. Activation of the carboxylic group in thioctic acid by EDC and NHS results in the emergence of a peak in the N 1s region of the spectra (Figure S4d) which was not present previously (Figure S4c). Subsequently, the attachment of Ab₁ onto the Au@MNPs is confirmed by the increased signal counts of the 397.3 eV peak in the N 1s region (Figure S4e) relative to the same peak observed before incubation of Au@MNPs with Ab₁ (Figure S4d).

S4: Scanning electron microscopy (SEM) characterization of magnetically assembled Au@MNPs

Figure S5: SEM image of magnetically assembled Au@MNPs shows the packing of Au@MNPs on gold electrode.

S5. Relationship between the measured reduction current and incubation time of Ab₁-Au@MNPs with PSA and PSA- Ab₁-Au@MNPs with Ab₂.

Figure S6: A plot of the reduction current measured from Ab_2 -PSA- Ab_1 -Au@MNPs at a potential of +0.15 V versus Ag/AgCl as a function of the incubation time of Ab_1-Au@MNPs in 5 pg/mL PSA in PBS and subsequently PSA-Ab_1-Au@MNPs in 100 µg/mL Ab_2 in PBS.

Figure S6 above illustrates the increase of the measured reduction current from Ab₂-PSA-Ab₁-Au@MNPs as the incubation time increases. The reduction current saturates after 60 min of incubation time suggests that the performance of Ab₁-Au@MNPs electrochemical immunosensor is limited by the antibody-antigen binding kinetics between Ab₁ and PSA, and, PSA and Ab₂.

References

- 1. I. Y. Goon, L. M. H. Lai, M. Lim, P. Munroe, J. J. Gooding and R. Amal, *Chemistry of Materials*, 2009, **21**, 673-681.
- E. Chow, T. R. Gengenbach, L. Wieczorek and B. Raguse, Sens. Actuator B-Chem., 2010, 143, 704-711.