Supplementary Information for

Magnesium-catalysed hydroboration of aldehydes and ketones

Merle Arrowsmith, Terrance J. Hadlington, Michael S. Hill,* Gabriele Kociok-Köhn

General Experimental Procedures

All manipulations were carried out using standard Schlenk line and glovebox techniques under an inert atmosphere of either nitrogen or argon. NMR experiments were conducted in Youngs tap NMR tubes made up and sealed in a Glovebox. NMR spectra were collected at 298 K on a Bruker AV300 spectrometer operating at 75.5 MHz (¹³C), 96.3 MHz (¹¹B). The spectra were referenced relative to residual solvent resonances or an external BF₃.OEt₂ standard (¹¹B). Solvents (Toluene, hexane) were dried by passage through a commercially available (Innovative Technologies) solvent purification system, under nitrogen and stored in ampoules over molecular sieves. C₆D₆ and d₈-toluene were purchased from Fluorochem Ltd. and dried over molten potassium before distilling under nitrogen and storing over molecular sieves. Di-nbutyImagnesium (1.0 M solution in n-heptane), pinacolborane (HBpin), aldehydes and ketones were purchased from Sigma-Aldrich Ltd. and used without further purification. [LMgⁿBu] (L = HC{(Me)CN(2,6-ⁱPr₂C₆H₃)}₂) was synthesised by a literature procedures.¹

Stoichiometric reactions

Reaction of 1 with 1 equivalent of HBpin.

In a Youngs tap NMR tube HBpin (14.54 µL, 0.1 mmol) was added to a solution of 1 (50 mg, 0.1 mmol) in C₆D₆. The resulting ¹¹B NMR spectrum showed complete consumption of HBpin after 10 minutes at room temperature and the appearance of a sharp singlet at 37.5 ppm attributable to the formation of ⁿBuBpin. ¹H NMR data confirmed the formation of [LMgH]₂ as the major product (~75%) along with other ill-defined species deemed to contain the loosely bound borate anions [H₂Bpin]⁻ and [HⁿBuBpin]⁻. ¹H NMR data for [LMgH]₂ (C₆D₆, 300 MHz): 7.01-7.18 (m, 6H, Ar-*H*), 4.84 (s, 1H, NCMeC*H*), 4.03 (s, 1H, Mg-*H*), 3.06 (sept, 4H, ⁱPr-C*H*, ³*J* = 6.8 Hz), 1.50 (s, 6H, NCC*H*₃), 1.12, 0.97 (two d, 12H each, ⁱPr-C*H*₃, ³*J* = 6.8 Hz). Lit: ¹H NMR (C₆D₆, 400 MHz): 6.96-7.15 (m, 6H, Ar-*H*), 4.84 (s, 1H, NCMeC*H*), 4.03 (s, 1H, Mg-*H*), 3.05 (sept, 4H, ⁱPr-C*H*, ³*J* = 6.9 Hz), 1.49 (s, 6H, NCC*H*₃), 1.12, 0.97 (two d, 12H each, ⁱPr-C*H*₃), 3*J* = 6.9 Hz). NMR data for the [ⁿBuBpin] by-product: ¹H NMR (C₆D₆, 300 MHz): 0.90-1.62 (m, 9H, ⁿBu-H), 1.04 (s, 12H, pin-H). ¹³C NMR (C₆D₆, 75 MHz): 82.7 (OC), 26.8, 25.8, 24.7, 14.2 (ⁿBu-C), 24.6 (OCCH₃). ¹¹B NMR (C₆D₆, 96 MHz): 37.5 (s).

Reaction of 1 with 1 equivalent of HBpin and benzophenone.

Addition of one equivalent of benzophenone (18.3 mg, 0.1 mmol) to a solution of **1** (50 mg, 0.1 mmol) and HBpin (14.54 μ L, 0.1 mmol) in C₆D₆ resulted in disappearance of the Mg-hydride singlet at 4.03 ppm accompanied by full conversion to [LMgOCHPh₂]₂, **3**, after 8 hours at room temperature, as identified by ¹H NMR. **3** was also synthesised independently by reduction of benzophenone with [LMg(pyrH)(pyr)]² (obtained by reaction of [LMgH] with two equivalents of pyridine; pyrH = 4-dihydropyridide). ¹H NMR (C₆D₆, 300 MHz): 7.80 (dm, 4H, *o*-Ph-*H*, ³*J* = 8.2 Hz), 7.46-7.48 (m, 4H, Ar-*H*), 6.91-7.33 (m, 8H, Ph/Ar-*H*), 6.06 (s, 1H, Ph₂CHOMg), 5.06 (s, 1H, HC(CMeNAr)₂), 3.44, 3.33, 2.76, 2.68 (four sept., 1H each,

ⁱPr-CH, ³J = 6.8 Hz), 1.72 (s, 6H, NCCH₃), 1.08, 1.05, 0.92, 0.89 (four d, 6H each, ⁱPr-CH₃, ³J = 6.8 Hz). ¹³C NMR (C₆D₆, 75 MHz): 169.0 (NCMe), 145.6 (*i*-Ar-C), 142.4 (*i*-Ph-C, *o*-Ar-C), 127.6 (*o*/*m*-Ph-C), 125.3, 125.2, (*p*-Ar/Ph-C), 124.8 (*m*-Ar-C), 93.8 (NCMeCH), 78.2 (OCHPh₂), 28.6 (ⁱPr-CH), 24.4, 24.1 (ⁱPr-CH₃). Elemental analysis calc. for C₄₂H₅₂MgN₂O: C, 80.69; H, 8.38; N, 4.48%. Found: C, 80.86; H, 8.40; N, 4.53%.

Reaction of 3 with one equivalent of benzophenone and HBpin.

Addition of a further equivalent of HBpin (14.54 μ L, 0.1 mmol) and benzaldehyde (18.3 mg, 0.1 mmol) to a solution of **3** (0.1 mmol) in C₆D₆ yielded colourless crystals of **4** suitable for X-ray crystallography after one day at room temperature. ¹H NMR (C₆D₆, 300 MHz): 7.50 (dm, 4H, *o*-Ph-*H*, ³*J* = 8.2 Hz), 7.32-7.34 (m, 4H, Ar-*H*), 7.02-7.21 (m, 18H, Ph/Ar-*H*), 6.50 (s, 1H, CHOBpin), 6.03 (s, 1H, CHOMg), 5.01 (s, 1H, HC(CMeNAr)₂), 3.19-3.52 (m, 4H, ⁱPr-CH), 1.11 (s, 6H, NCCH₃), 1.10 (d, 12H, ⁱPr-CH₃, ³*J* = 7.2 Hz), 1.03 (s, 12H, pin-CH₃), 0.97, 0.95 (two d, 6H each, ⁱPr-CH₃, ³*J* = 7.2 Hz). ¹³C NMR (C₆D₆, 75 MHz): 170.3 (ArNCMe), 144.3 (*i*-Ar-C), 140.4 (*o*-Ar-C), 147.4, 130.0, 129.4, 128.1 (broad, *Ph*₂CHOB), 143.9, 128.5, 127.5, 127.0 (sharp, *Ph*₂CHOMg), 126.8 (*m*-Ar-C), 125.9 (*p*-Ar-C), 97.2 (HC(CMeNAr)₂), 82.8 (pin-OC), 76.5 (CHOB), 76.2 (CHOMg), 29.7, 28.5 (broad, ⁱPr-CH), 25.3-26.4 (broad, ⁱPr-CH₃), 25.1 (NCCH₃), 25.0 (pin-CH₃). ¹¹B NMR (C₆D₆, 96 MHz): 15.9 (s, Ph₂CHOBpin).

Catalytic hydroboration of aldehydes and ketones.

5 to 100 μ L (0.05-1.00 mol%) of an 0.04 M stock solution of the magnesium precatalyst were added to 0.5 mL of a C₆D₆ solution containing 400 μ mol of the aldehyde or ketone and 58 μ L (400 μ mol) of pinacolborane. The mixture was transferred to a sealed Youngs tap NMR tube and the reaction was regularly monitored by ¹H and ¹¹B NMR at room temperature until complete conversion of the reactants. Scale-up reactions were carried out in dry toluene under argon with 2 mmol of the aldehyde/ketone, 2.05 mmol of pinacolborane and 0.05 - 1.00 mol% catalyst loading. Pinacolborane was added dropwise due to the highly exothermic nature of the reactions. After 8 hours stirring at room temperature the products were hydrolysed with methanol and 1M aqueous HCl. The mixture was refluxed for one hour prior to extraction with diethyl ether or dichloromethane. After drying over MgSO₄ and removal of organic solvents the resulting alcohols were either purified by Kugelrohr distillation or recrystallisation from methanol.

Benzaldehyde: 40.8 µL

2-benzyloxypinacolborane. ¹H NMR (C₆D₆, 300 MHz): 7.31-7.34 (dm, 2H, *H*-2, ³*J* = 7.3 Hz), 7.04-7.21 (m, 3H, *H*-3/4), 4.96 (s, 2H, *H*-5), 1.05 (s, 12H, *H*-7). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 140.0 (C-1), 128.5 (C-3), 127.5 (C-4), 127.0 (C-2), 82.7 (C-6), 66.9 (C-5), 24.7 (C-7). ¹¹B NMR (C₆D₆, 96 MHz): 26.0 (s, *B*-O).

Scale-up: 203 μL (2 mmol).

Benzyl alcohol: distillation in vacuo (75 $^{\circ}$ C, 0.3 mbar) yielded a colourless oil (126 mg, 1.17 mmol, 58%). ¹H NMR (CDCl₃, 300 MHz): 7.16-7.38 (m, 5H), 4.60 (s, 2H), 2.40 (br. s, 1H, O*H*). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 140.9, 128.4, 127.4, 127.0, 64.7. ESI-MS [M+Na]⁺ Calcd: 131.13; Found: 131.12.

Terephthaldialdehyde: 54 mg

A. 4-((*pinacolboran-2-yl*)*oxymethyl*)*benzaldehyde*. ¹H NMR (C₆D₆, 300 MHz): 9.65 (s, 1H, H-5), 7.51 (d, 2H, H-2, ${}^{3}J = 8.1$ Hz), 7.16 (d, 2H, H-3, ${}^{3}J = 8.1$ Hz), 4.80 (s, 2H, H-6), 1.04 (s, 12H, H-8). ${}^{13}C{}^{1}H$ NMR (C₆D₆, 75 MHz): 190.8 (C-5), 140.1 (C-1), 139.1 (C-4), 127.1 (C-2), 82.7 (C-7), 66.7 (C-6), 24.7 (C-8). ${}^{11}B$ NMR (C₆D₆, 96 MHz): 25.9 (s, *B*-O).

B. *phenyl-1,4-bis*(2-*methoxypinacolborane*). ¹H NMR (C₆D₆, 300 MHz): 7.24 (s, 4H, *H*-2), 4.88 (s, 4H, *H*-3), 1.03 (s, 12H, *H*-5). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 136.2 (C-1), 129.8 (C-2), 126.8 (C-3), 83.0 (C-4), 66.2 (C-3), 24.6 (C-5). ¹¹B NMR (C₆D₆, 96

MHz): 25.9 (s, *B*-O). Elemental analysis for $C_{20}H_{32}B_2O_6$ (M_W = 390.1). Calcd: C, 61.58; H, 8.27%. Found: C, 61.58; H, 8.19%.

Scale-up: 268 mg (2 mmol).

(*para-hydroxymethyl*)*benzyl* alcohol: recrystallisation from methanol yielded colourless crystals (260 mg, 1.94 mmol, 97%). ¹H NMR (CDCl₃/C₅D₅N 95:5, 300 MHz): 7.22 (s, 4H), 5.39 (br, 2H, OH), 4.57 (s, 4H). ¹³C{¹H} NMR (CDCl₃/C₅D₅N 95:5, 75 MHz): 140.6, 126.4, 63.8.

2,4,6-mesitylaldehyde: 59.0 µL

2-(*mesitylmethoxy*)*pinacolborane*. ¹H NMR (C₆D₆, 300 MHz): 6.70 (s, 2H, *H*-3), 5.00 (s, 2H, *H*-7), 2.34 (s, 6H, *H*-5), 2.10 (s, 3H, *H*-6), 1.03 (s, 12H, *H*-9). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 137.7 (C-2), 137.4 (C-4), 132.9 (C-1), 129.3 (C-3), 82.5 (C-8), 61.5 (C-7), 24.7 (C-9), 21.0 (C-6), 19.6 (C-5). ¹¹B NMR (C₆D₆, 96 MHz): 25.9 (s, *B*-O).

Scale-up: 295 µL (2 mmol).

Mesitylmethanol: distillation *in vacuo* (100 $^{\circ}$ C, 0.06 mbar) yielded a colourless oil (226 mg, 1.50 mmol, 75%). ¹H NMR (CDCl₃, 300 MHz): 6.89 (s, 1H), 6.85 (s, 2H), 4.50 (s, 2H), 2.59 (br. s, OH), 2.36 (s, 6H), 2.25 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 75 MHz): 137.7, 137.4, 131.4, 128.9, 66.6, 20.9, 19.5. ESI-MS [M+Na]⁺ Calcd: 173.21; Found: 173.08.

2-methoxybenzaldehyde: 54 mg

2-(2-methoxybenzyl)oxypinacolborane. ¹H NMR (C₆D₆, 300 MHz): 7.62 (ddd, 1H, *H*-6, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.9$ Hz, ${}^{4}J = 0.8$ Hz), 7.06 (td, 1H, *H*-4, ${}^{3}J = 8.2$ Hz, ${}^{4}J = 1.9$ Hz), 6.87 (td, 1H, *H*-5, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 0.8$ Hz), 6.47 (dd, 1H, *H*-3, ${}^{3}J = 8.2$ Hz, ${}^{4}J = 0.8$ Hz), 5.25 (s, 2H, *H*-7), 3.25 (s, 3H, *H*-10), 1.04 (s, 12H, *H*-9). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 156.8 (C-2), 135.5, 128.3, 127.4, 120.7, 110.1, 82.6, 62.6, 54.7, 24.7. ¹¹B NMR (C₆D₆, 96 MHz): 26.0 (s, *B*-O).

Scale-up: 272 mg (2 mmol).

2-methoxybenzyl alcohol: distillation in vacuo (125 °C, 0.05 mbar) yielded a colourless oil (242 mg, 1.75 mmol, 88%). ¹H NMR (CDCl₃, 300 MHz): 7.26 (ddd, 1H), 7.22 (td, 1H), 6.90 (td, 1H), 6.8 (dd, 1H), 4.62 (s, 2H), 3.74 (s, 3H), 2.96 (br. s, 1H, OH). ¹³C{¹H} NMR (CDCl₃, 75 MHz): 157.0, 129.3, 128.5, 128.4, 120.6, 110.1, 61.1, 55.1. ESI-MS [M+Na]⁺ Calcd: 161.15; Found: 161.06.

9-Anthralaldehyde: 83 mg

2-(anthracen-9-ylmethoxy)pinacolborane. ¹H NMR (C₆D₆, 300 MHz): 8.56 (dd, 2H, *H*-3, ³*J* = 9.0 Hz, ⁴*J* = 0.9 Hz), 8.09 (s, 1H, *H*-8), 7.73 (dm, 2H, *H*-6, ³*J* = 8.5 Hz), 7.31 (ddd, 2H, *H*-4, ³*J* = 9.0 Hz, ³*J* = 6.6 Hz, ⁴*J* = 1.5 Hz), 7.21 (ddd, 2H, *H*-5, ³*J* = 8.5 Hz, ³*J* = 6.6 Hz, ⁴*J* = 0.9 Hz), 5.88 (s, 2H, *H*-9), 1.00 (s, 12H, *H*-11). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 131.9 (C-1), 131.2 (C-2), 130.4 (C-7), 129.2 (C-6), 128.8 (C-8), 126.2 (C-4), 125.1 (C-3/5), 82.8 (C-10), 59.6 (C-9), 24.7 (C-11). ¹¹B NMR (C₆D₆, 96 MHz): 26.03 (s, *B*-O). Elemental analysis for C₂₁H₂₃BO₃ (M_W = 334.2). Calcd: C, 75.47; H, 6.94%. Found: C, 75.56; H, 6.96%.

Scale-up: 413 mg (2 mmol).

9-anthracenemethanol: recrystallisation from Et₂O yielded pale yellow crystals (350 mg, 1.68 mmol, 84%). ¹H NMR (CDCl₃, 300 MHz): 8.48 (s, 1H), 8.44 (d, 2H, ${}^{3}J = 8.9$ Hz), 8.03 (d, 2H, ${}^{3}J = 8.6$ Hz), 7.58 (ddd, 2H, ${}^{3}J = 8.9$, 6.5 Hz, ${}^{4}J = 1.3$ Hz), 7.49 (ddd, 2H, ${}^{3}J = 8.6$, 6.5 Hz, ${}^{4}J = 0.9$ Hz), 5.69 (s, 2H), 1.66 (br, 1H, OH). ¹³C{¹H} NMR (CDCl₃, 75 MHz): 131.5, 131.0, 130.2, 129.1, 128.4, 126.5, 125.1, 123.8, 57.4.

1-pyrenecarboxaldehyde: 92 mg

2-(*pyren-1-ylmethoxy*)*pinacolborane*. ¹H NMR (C₆D₆, 300 MHz): 8.06 (d, 1H, *H-1*, ³*J* = 7.7 Hz), 8.01 (d, 1H, *H-9*, ³*J* = 9.4 Hz), 7.78 (d, 1H, ³*J* = 8.1 Hz), 7.77 (d, 1H, *H-2*, ³*J* = 7.7 Hz), 7.75 (d, 1H, ³*J* = 7.7 Hz), 7.59-7.65 (m, 5H), 5.58 (s, 2H, *H-10*), 1.04 (s, 12H, *H-12*). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 132.9, 131.5, 131.2, 131.0, 127.7, 127.6, 127.3, 125.8, 125.7, 125.2, 125.0, 124.8, 123.1, 82.9 (C-11), 65.5 (C-10), 24.7 (C-12). ¹¹B NMR (C₆D₆, 96 MHz): 26.2 (s, *B*-O). Elemental analysis for C₂₃H₂₃BO₃ (M_W = 358.2). Calcd: C, 77.11; H, 6.47%. Found: C, 77.05; H, 6.56%.

Scale-up: 461 mg (2 mmol).

1-pyrenemethanol: recrystallisation from CH_2Cl_2 yielded pale orange crystals (265 mg, 1.14 mmol, 57%). ¹H NMR (CDCl₃/C₅D₅N 95:5, 300 MHz): 8.30 (d, 1H, ³*J* = 9.2 Hz), 8.02-8.05 (m, 4H), 7.97 (d, 1H, ³*J* = 9.2 Hz), 7.88-7.91 (m, 2H), 7.85 (t, 1H, ³*J* = 7.6 Hz), 5.35 (s, 2H), 4.49 (br, 1H, OH). ¹³C{¹H} NMR (CDCl₃/ C₅D₅N 95:5, 75 MHz): 135.1, 130.9, 130.5, 130.4, 128.2, 127.2, 127.1, 126.7, 125.5, 125.3, 124.7, 124.6, 125.5, 124.3, 123.0, 62.5. ESI-MS [M+Na]⁺ Calcd: 255.27; Found: 255.08.

<u>3-pyridinecarboxaldehyde:</u> 37.5 µL

2-(*pyrid-3-ylmethoxy*)*pinacolborane*. ¹H NMR (300 MHz, C₆D₆): 8.78 (d, 1H, *H-1*, 1.09, ⁴*J* = 1.8 Hz), 8.57 (dd, 1H, *H-5*, ³*J* = 5.0, ⁴*J* = 1.2 Hz), 7.45 (dt, 1H, *H-3*, ³*J* = 7.8, ⁴*J* = 1.2 Hz), 6.85 (dd, 1H, *H-4*, ³*J* = 7.8, 5.0 Hz), 4.85 (s, 2H, *H-6*), 1.14 (s, 12H, *H-8*). ¹³C{¹H} NMR (75 MHz, C₆D₆): 149.3 (C-1), 149.2 (C-5), 134.9 (C-2), 134.3 (C-3), 123.2 (C-4), 82.9 (C-7), 24.6 (C-8). ¹¹B NMR (96 MHz, C₆D₆): 25.9 (s, *B*-O).

Scale-up: 188 µL (2 mmol).

Pyridine-3-methanol: neutralisation with NaOH_{aq} prior to extraction. Distillation *in vacuo* (100 °C, 0.1 mbar) yielded a colourless oil (120 mg, 1.10 mmol, 55%). ¹H NMR (CDCl₃, 300 MHz): 8.89 (br. s, 1H), 8.44 (d, 1H, ³*J* = 4.8 Hz), 7.72 (dt, 1H, ³*J* = 7.8, ⁴*J* = 1.7 Hz), 7.27 (dd, 1H, ³*J* = 7.8, 4.8 Hz), 4.70 (s, 2H), 3.82 (br. s, 1H, OH). ¹³C{¹H} NMR (CDCl₃, 75 MHz): 148.5, 148.2, 136.5, 135.0, 123.5, 62.4. ESI-MS $[M+H]^+$ Calcd: 110.06; Found: 110.06.

Ferrocenaldehyde: 86 mg

2-(ferrocenylmethoxy)pinacolborane. ¹H NMR (300 MHz, C_6D_6): 4.74 (s, 2H, H-5), 4.20 (br. s, 2H, H-3), 3.96 (s, 5H, H-4), 3.94 (br. s, 2H, H-2), 1.06 (s, 12H, H-7). ¹³C{¹H} NMR (75 MHz, C_6D_6): 86.0 (C-1), 82.6 (C-6), 69.0 (C-3), 68.8 (C-4), 68.5 (C-2), 63.4 (C-5), 24.8 (C-7). ¹¹B NMR (96 MHz, C_6D_6): 25.9 (s, B-O). Not enough ferrocenaldehyde available for scale-up.

Isobutyraldehyde: 36.5 µL

2-(*isobutyroxy*)*pinacolborane*. ¹H NMR (300 MHz, C₆D₆): 3.69 (d, 2H, *H*-1, ³*J* = 6.5 Hz), 1.77 (nonet, 1H, *H*-2, ³*J* = 6.5 Hz), 1.05 (s, 12H, *H*-5), 0.83 (d, 6H, *H*-3, ³*J* = 6.5 Hz). ¹³C{¹H} NMR (75 MHz, C₆D₆): 82.3 (C-4), 71.7 (C-1), 30.3 (C-2), 24.7 (C-5), 18.9 (C-3). ¹¹B NMR (96 MHz, C₆D₆): 25.7 (s, *B*-O).

Scale-up: 183 μ L (2 mmol).

Isobutanol: the borate ester was hydrolysed with aqueous HCl. After extraction with diethyl ether, drying over MgSO₄ and filtering, sodium isobutanolate was precipitated by addition of sodium metal. ESI-MS [M-H]⁻ Calcd: 73.11; Found: 73.08.

Benzophenone: 73 mg

2-(*diphenylmethoxy*)*pinacolborane*. ¹H NMR (C₆D₆, 300 MHz): 7.49 (dm, 4H, *H*-2, ${}^{3}J = 7.1$ Hz), 7.12-7.18 (m, 4H, *H*-3), 7.06 (tt, 2H, *H*-4, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.4$ Hz), 6.48 (s, 1H, *H*-5), 1.04 (s, 12H, *H*-7). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 143.8 (C-1), 128.5 (C-3), 127.5 (C-4), 126.9 (C-2), 82.8 (C-6), 78.5 (C-5), 24.6 (C-7). ¹¹B NMR (C₆D₆, 96 MHz): 26.0 (s, *B*-O).

Scale-up: 364 mg (2 mmol).

Diphenylcarbinol: recrystallised from toluene as a colourless solid (336 mg, 1.83 mmol, 92%). ¹H NMR (CDCl₃, 300 MHz): 7.24-7.37 (m, 10H), 5.25 (s, 1H), 3.39 (br. s, 1H, OH). ¹³C{¹H} NMR (CDCl₃, 75 MHz): 142.0, 128.4, 127.4, 126.9, 85.4. ESI-MS [M+Na]⁺ Calcd: 207.22; Found: 207.08.

9-fluorenone: 72 mg

2-(*fluoren-9-yloxy*)*pinacolborane*. ¹H NMR (C₆D₆, 300 MHz): 7.64-7.67 (m, 2H, *H*-3), 7.37-7.39 (m, 2H, *H*-6), 7.14 (dt, 2H, *H*-5, ${}^{3}J$ = 7.4 Hz, ${}^{4}J$ = 1.4 Hz), 7.09 (dt, 2H, *H*-4, ${}^{3}J$ = 7.4 Hz, ${}^{4}J$ = 1.4 Hz), 6.20 (s, 1H, *H*-1), 1.09 (s, 12H, *H*-9). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 145.1 (C-2), 140.8 (C-7), 129.2 (C-5), 127.8 (C-4), 125.6 (C-3), 120.2 (C-6), 83.2 (C-8), 76.9 (C-1), 24.7 (C-9). ¹¹B NMR (C₆D₆, 96 MHz): 26.7 (s, *B*-O).

Scale-up: 360 mg (2 mmol).

9-fluorenol: recrystallisation from a methanol/toluene solution yielded a colourless solid (300 mg, 1.65 mmol, 82%). ¹H NMR (CDCl₃, 300 MHz): 7.61-7.66 (m, 2H), 7.38 (dd, 2H, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.3$ Hz), 7.35 (dt, 2H, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.2$ Hz), 7.35 (dt, 2H, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.2$ Hz), 7.32 (dt, 2H, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.2$ Hz), 5.58 (br. s, 1H), 3.04 (s, 1H, OH). ${}^{13}C{}^{1}H$ NMR (CDCl₃, 75 MHz): 145.6, 139.9, 129.0, 127.7, 125.1, 119.9, 75.1. ESI-MS [M+Na]⁺: Calcd: 205.21; Found: 205.06.

4,4'-difluorobenzophenone: 87 mg

2-(*bis*(*parafluorophenyl*)*methoxy*)*pinacolborane*. ¹H NMR (C₆D₆, 300 MHz): 7.27 (dddd, 2H, *H*-2, ³*J*_{*H*-*H*} = 8.5 Hz, ⁴*J*_{*H*-*F*} = 5.4 Hz, ⁴*J* = 2.7 Hz, ⁵*J* = 2.1 Hz), 6.87 (tdd, 2H, *H*-3, ³*J*_{*H*-*H*} = 8.5 Hz, ³*J*_{*H*-*F*} = 8.8 Hz, ⁴*J* = 3.0 Hz, ⁵*J* = 2.1 Hz), 6.31 (s, 1H, *H*-5), 1.10 (s, 12H, *H*-7). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 162.5 (d, *C*-4, ¹*J*_{*C*-*F*} = 247 Hz), 139.4 (d, *C*-1, ⁴*J*_{*C*-*F*} = 3 Hz), 128.5 (d, *C*-2, ³*J*_{*C*-*F*} = 8 Hz), 115.4 (d, *C*-3, ²*J*_{*C*-*F*} = 22 Hz), 83.0 (C-6), 77.0 (C-5), 24.5 (C-7). ¹¹B NMR (C₆D₆, 96 MHz): 26.0 (s, *B*-O).

Scale-up: 170 mg (0.77 mmol).

Bis(parafluorophenyl)methanol: isolated as a low-melting colourless solid (133 mg, 0.60 mmol, 78%). ¹H NMR (CDCl₃, 300 MHz): 7.26-7.36 (m, 4H), 6.98-7.07 (m, 4H), 5.21 (s, 1H), 1.72 (br., 1H, OH). ¹³C{¹H} NMR (CDCl₃, 75 MHz): 162.0 (d, ¹*J*_{*C*-*F*} = 245 Hz), 137.6 (d, ⁴*J*_{*C*-*F*} = 3 Hz), 128.4 (d, ¹*J*_{*C*-*F*} = 8 Hz), 115.3 (d, ²*J*_{*C*-*F*} = 21 Hz), 84.0. ESI-MS [M+H]⁺ Calcd: 221.22; Found: 221.18.

Benzil: 84 mg

A. 2-(1,2-diphenylethoxy)pinacolborane. ¹H NMR from mixture of mono- and dihydroborated benzil (C_6D_6 , 300 MHz): 7.98-8.07 (m, 2H, *H*-2'), 7.56-7.61 (m, 2H, *H*-4'), 7.00-7.32 (m, Ph-*H*), 6.55 (s, 1H, *H*-5), 1.14 (s, 12H, *H*-7).

B. 2,2'-(1,2-diphenylethyl-1,2-dioxy)dipinacolborane. ¹H NMR (C₆D₆, 300 MHz): 7.00-7.32 (m, 10H, Ph-*H*), 5.67 (s, 1.2H, major diastereomer, 60%), 5.52 (s, 0.8H, minor diastereomer, 40%), 1.17 + 1.04 (two s, 7.2H each, *H*-7, major diastereomer), 1.22 + 1.05 (two s, 4.8H each, *H*-7, minor diastereomer); Elemental analysis for $C_{26}H_{36}B_2O_6$ (M_w = 466.18). Calcd: C, 66.99; H, 7.78%. Found: C, 67.03; H, 7.69.

Scale-up: 380 mg (1.80 mmol).

1,2-diphenylethane-1,2-diol: recrystallisation from a methanol/toluene solution yielded a colourless solid (276 mg, 1.29 mmol, 72%). ¹H NMR (CDCl₃, 300 MHz): 7.22-7.36 (m, 10H), 4.83 (s, 2H), 2.10 (br., 2H, OH). ¹³C{¹H} NMR (CDCl₃, 75 MHz): 139.7, 128.2, 128.1, 127.0, 78.0. ESI-MS $[M+Na]^+$ Calcd: 237.25; Found: 237.09.

Acetophenone: 46.8 µL

2-(*phenylethoxy*)*pinacolborane*.¹H NMR (C₆D₆, 300 MHz): 7.47 (dm, 2H, *H*-2, ${}^{3}J =$ 7.2 Hz), 7.22-7.28 (m, 2H, *H*-3, ${}^{3}J =$ 7.2 Hz), 7.16 (tt, 1H, *H*-4, ${}^{3}J =$ 7.4 Hz, ${}^{4}J =$ 1.4 Hz), 5.50 (q, 1H, *H*-5, ${}^{3}J =$ 6.6 Hz), 1.56 (d, 3H, *H*-6, ${}^{3}J =$ 6.6 Hz), 1.14 + 1.11 (two s, 6H each, *H*-8). ${}^{13}C{}^{1}H{}$ NMR (C₆D₆, 75 MHz): 145.3 (C-1), 128.5, 127.3, 125.7, 82.5 (C-7), 72.9 (C-5), 25.7 (C-6), 24.7 + 24.6 (C-8). ${}^{11}B$ NMR (C₆D₆, 96 MHz): 25.7 (s, *B*-O).

Scale-up: 233 µL (2 mmol).

1-phenylethanol: distilled by Kugelrohr as a colourless liquid at 70 °C, 1 mbar (164 mg, 13.4 mmol, 67%). ¹H NMR (C₆D₆, 300 MHz): 7.19-7.38 (m, 5H), 4.79 (q, 1H, ³J = 6.6 Hz), 2.80 (br. s, 1H, OH), 1.42 (d, 3H, ³J = 6.6 Hz). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 146.0, 128.5, 127.1, 125.4, 70.2, 25.2. ESI-MS [M+Na]⁺ Calcd: 145.15; Found: 145.13.

2,4,6-trimethylacetophenone: 66.6 µL

2-(*1-mesitylethoxy*)*pinacolborane*. ¹H NMR (C₆D₆, 300 MHz): 6.70 (s, 2H, *H-3*), 5.83 (q, 1H, *H*-7, ${}^{3}J$ = 6.7 Hz), 2.45 (s, 6H, *H*-5), 2.08 (s, 3H, *H*-6), 1.50 (d, 3H, *H*-8), 0.98 + 0.95 (two s, 6H each, *H*-10).

¹³C{¹H} NMR (C₆D₆, 75 MHz): 137.4 (C-2), 136.1 (C-4), 135.7 (C-1), 130.3 (C-3), 82.3 (C-9), 70.2 (C-7), 24.7 + 24.5 (C-10), 22.0 (C-6), 20.8 (C-5). ¹¹B NMR (C₆D₆, 96 MHz): 25.7 (s, *B*-O).

Scale-up: 333 µL (2 mmol).

1-mesitylethanol: isolated as a low-melting colourless solid (253 mg, 1.54 mmol, 77%). ¹H NMR (C₆D₆, 300 MHz): 6.82 (s, 2H), 4.75 (q, 1H, ${}^{3}J = 6.6$ Hz), 2.47 (br., 1H, OH), 2.40 (s, 6H), 2.22 (s, 3H), 1.52 (d, 3H, ${}^{3}J = 6.6$ Hz). ${}^{13}C{}^{1}H{}$ NMR (C₆D₆, 75 MHz): 136.2, 136.1, 135.5, 130.4, 76.5, 20.8, 20.7, 20.4. ESI-MS [M-H]⁺: 165.0429; [M+Na]⁺ Calcd: 187.23; Found: 187.20.

2-indanone: 53 mg

2-(*indan-2-yloxy*)*pinacolborane*. ¹H NMR (C₆D₆, 300 MHz): 7.00-7.04 (m, 4H, *H*-4/5), 5.01 (tt, 1H, *H*-1, ${}^{3}J$ = 4.6 Hz, ${}^{3}J$ = 5.9 Hz), 3.01 (d, 2H, *H*-2a, ${}^{3}J$ = 5.9 Hz), 2.99 (d, 2H, *H*-2b, ${}^{3}J$ = 4.6 Hz), 1.05 (s, 12H, *H*-7). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 141.1

(C-3), 126.8 (C-5), 124.9 (C-4), 82.5 (C-6), 75.6 (C-1), 42.0 (C-2), 24.7 (C-7). ¹¹B NMR (C_6D_6 , 96 MHz): 25.7 (s, *B*-O).

Scale-up: 183 mg (1.37 mmol)

2-*indanol:* isolated as a cream-coloured solid (171 mg, 1.27 mmol, 93%). ¹H NMR (CDCl₃, 300 MHz): 7.18-7.32 (m, 4H), 4.73 (tt, ${}^{3}J = 3.3$ Hz, ${}^{3}J = 5.8$ Hz), 3.60 (br., 1H, OH), 3.25 (dd, 2H, ${}^{2}J = 16.3$ Hz, ${}^{3}J = 5.8$ Hz), 2.94 (dd, 2H, ${}^{2}J = 16.3$ Hz, ${}^{3}J = 3.3$ Hz). ¹³C{¹H} NMR (CDCl₃, 75 MHz): 140.7, 126.6, 125.0, 73.2, 42.6. ESI-MS [M+Na]⁺ Calcd: 157.16; Found: 157.11.

<u>5-hexen-2-one:</u> 46.7 µL

2-(*hex-5-en-2-yloxy*)*pinacolborane*. ¹H NMR (C₆D₆, 300 MHz): 5.73 (ddt, 1H, *H-5*, ${}^{3}J_{cis} = 10.2$ Hz, ${}^{3}J_{trans} = 17.0$ Hz, ${}^{3}J = 6.7$ Hz), 4.98 (ddt, 1H, *H-6_{trans}*, ${}^{2}J = 2.1$ Hz, ${}^{3}J_{trans} = 17.0$ Hz, ${}^{4}J = 1.7$ Hz), 4.92 (ddt, 1H, *H-6_{cis}*, ${}^{2}J = 2.1$ Hz, ${}^{3}J_{cis} = 10.2$ Hz, ${}^{4}J = 1.3$ Hz), 4.28 (ddq, 1H, *H-2*, ${}^{3}J = 7.9$ Hz, ${}^{3}J = 4.8$ Hz, ${}^{3}J = 6.2$ Hz), 2.03-2.19 (m, 2H, *H-4a/b*), 1.60 (dddd, 1H, *H-3a*, ${}^{3}J = 6.7$ Hz, ${}^{3}J = 8.1$ Hz, ${}^{3}J = 8.7$ Hz, ${}^{2}J = 13.6$ Hz), 1.14 (d, 3H, *H-1*, ${}^{3}J = 6.2$ Hz), 1.05 (s, 12H, *H-8*).

¹³C{¹H} NMR (C₆D₆, 75 MHz): 138.6 (C-5), 114.7 (C-6), 82.2 (C-7), 70.3 (C-2), 37.8 (C-4), 30.3 (C-3), 24.7 (C-8), 22.8 (C-1). ¹¹B NMR (C₆D₆, 96 MHz): 25.6 (s, *B*-O).

Scale-up: 234 µL (2 mmol).

5-*hexen*-2-*ol:* purified by vacuum transfer as a colourless oil (133 mg, 1.33 mmol, 66%).¹H NMR (C₆D₆, 300 MHz): 5.92 (ddt, 1H, *H*-5, ${}^{3}J_{cis} = 10.1$ Hz, ${}^{3}J_{trans} = 17.0$ Hz, ${}^{3}J = 6.7$ Hz), 5.13 (ddt, 1H, *H*-6_{trans}, ${}^{2}J = 3.7$ Hz, ${}^{3}J_{trans} = 17.0$ Hz, ${}^{4}J = 1.3$ Hz), 5.03 (ddt, 1H, *H*-6_{cis}, ${}^{2}J = 2.3$ Hz, ${}^{3}J_{cis} = 10.1$ Hz, ${}^{4}J = 1.3$ Hz), 3.83-3.96 (m, 1H, *H*-2), 2.16-2.43 (m, 2H, *H*-4*a*/*b*), 1.52-1.76 (m, 1H, *H*-3*a*/*b*), 1.28 (d, 3H, *H*-1, ${}^{3}J = 6.2$ Hz), 1.16 (s, 1H, OH). ${}^{13}C{}^{1}H{}$ NMR (C₆D₆, 75 MHz): 139.2, 114.4, 66.7, 39.1, 30.7, 24.9. ESI-MS [M+H]⁺ Calcd: 101.17; Found: 101.10.

Crystallographic experiments

Data were collected at 150 K on a Nonius KappaCCD diffractometer equipped with a low temperature device, using graphite monochromated MoK_{α} radiation (λ = 0.71073 Å). Data were processed using the Nonius Software.² Structure solution, followed by full-matrix least squares refinement was performed using the WinGX-1.70 suite of programs throughout.³

X-ray structure of 4

Table S1. Crystal data and structure refinement for 4.

Empirical formula	$C_{61}H_{75}BMgN_2O_4$	
Formula weight	935.35	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Orthorhombic, P b c a	
Unit cell dimensions	a = 19.2649(2) Å	$\alpha = 90^{\circ}$.
	b = 20.4622(3) Å	$\beta = 90^{\circ}$.
	c = 26.9490(4) Å	$\gamma = 90^{\circ}$.
Volume	10623.4(2) A3	-
Ζ,	8	
Calculated density	1.170 mg.m ⁻³	
Absorption coefficient	0.082 mm^{-1}	
F(000)	4032	
Crystal size	0.55 x 0.50 x 0.40 mm	
θ range for data collection	3.69 to 25.39°.	
Limiting indices	-23<=h<=23, -24<=k<=24	4, -32<=l<=32
Reflections collected / unique	115166 / 9691 [R(int) = 0.	0914]
Completeness to $\theta = 25.39$	99.2 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.9679 and 0.9563	
Refinement method	Full-matrix least-squares of	on F^2
Data / restraints / parameters	9691 / 0 / 636	
Goodness-of-fit on F^2	1.080	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0543, wR_2 = 0.1282$	1
R indices (all data)	$R_1 = 0.0893, wR_2 = 0.1463$	5
Largest diff. peak and hole	$0.276 \text{ and } -0.310 \text{ e.A}^{-3}$	

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A² x 10^3) for 4. U_(eq) is defined as one third of the trace of the orthogonalised U_{ij} tensor.

	х	У	Z	U _(eq)
Mg	5679(1)	2388(1)	3861(1)	24(1)
В	6617(1)	3340(1)	3753(1)	12(1)
N(1)	5399(1)	1576(1)	4264(1)	26(1)
N(2)	4873(1)	2327(1)	3371(1)	30(1)
O(1)	6564(1)	2640(1)	3542(1)	27(1)
O(2)	7315(1)	3389(1)	3937(1)	31(1)
O(3)	6035(1)	3222(1)	4171(1)	23(1)
O(4)	6367(1)	3849(1)	3440(1)	37(1)
C(1)	4721(1)	1421(1)	4272(1)	31(1)
C(2)	4438(1)	933(1)	4646(1)	41(1)
C(3)	4221(1)	1677(1)	3952(1)	35(1)
C(4)	4289(1)	2033(1)	3510(1)	35(1)
C(5)	3645(2)	2045(2)	3186(1)	55(1)
C(6)	5864(1)	1149(1)	4532(1)	28(1)
C(7)	6150(1)	1348(1)	4990(1)	28(1)
C(8)	5976(1)	2008(1)	5221(1)	31(1)
C(9)	5260(1)	2004(1)	5468(1)	42(1)
C(10)	6516(2)	2243(1)	5597(1)	42(1)
C(11)	6587(1)	916(1)	5238(1)	35(1)
C(12)	6744(1)	311(1)	5048(1)	39(1)
C(13)	6465(1)	121(1)	4601(1)	39(1)
C(14)	6021(1)	529(1)	4330(1)	33(1)
C(15)	5729(2)	285(1)	3838(1)	42(1)
C(16)	6304(2)	86(1)	3483(1)	55(1)
C(17)	5245(2)	-305(2)	3911(1)	61(1)
C(18)	4916(1)	2573(1)	2869(1)	34(1)
C(19)	5270(1)	2188(1)	2517(1)	41(1)
C(20)	5567(2)	1523(1)	2655(1)	50(1)
C(21)	6161(2)	1299(2)	2321(1)	72(1)
C(22)	4992(2)	999(2)	2663(1)	70(1)
C(23)	5307(2)	2410(2)	2032(1)	51(1)
C(24)	5006(2)	2991(2)	1895(1)	55(1)
C(25)	4680(2)	3371(2)	2244(1)	47(1)
C(26)	4629(1)	3184(1)	2737(1)	37(1)
C(27)	4273(1)	3639(1)	3102(1)	38(1)
C(28)	3522(2)	3790(2)	2953(1)	58(1)
C(29)	4683(2)	4281(1)	3138(1)	49(1)
C(30)	7278(1)	2416(1)	3476(1)	32(1)
C(31)	7288(1)	1678(1)	3495(1)	41(1)
C(32)	7520(2)	2660(1)	2968(1)	45(1)
C(33)	7657(1)	2765(1)	3912(1)	32(1)
C(34)	7559(1)	2407(1)	4406(1)	35(1)
C(35)	8423(1)	2407(1) 2885(2)	3821(1)	50(1)
C(36)	5751(1)	3769(1)	$\frac{3021(1)}{4441(1)}$	25(1)
C(30)	<i>1</i> 966(1)	3730(1)	4453(1)	23(1) 27(1)
C(38)	462/(1)	3144(1)	4538(1)	$\frac{2}{(1)}$
C(30)	3903(1)	3177(1) 3116(1)	4545(1)	41(1)
C(40)	3503(1) 3522(1)	3677(2)	4472(1)	49(1)
C(41)	3322(1) 3856(1)	A265(2)	$\sqrt{300(1)}$	$\frac{1}{50(1)}$
C(41)	$\sqrt{57}$	4203(2) /200(1)	4397(1) //300(1)	38(1)
C(42)	+37+(1) 6077(1)	$\frac{4}{290(1)}$	4050(1) /050(1)	26(1)
C(+3)	0077(1)	3023(1)	+222(1)	20(1)

C(44)	5677(1)	3933(1)	5380(1)	34(1)
C(45)	5985(2)	4021(1)	5840(1)	42(1)
C(46)	6700(1)	3999(1)	5888(1)	41(1)
C(47)	7100(1)	3896(1)	5473(1)	35(1)
C(48)	6795(1)	3814(1)	5011(1)	30(1)
C(49)	6798(1)	4374(1)	3291(1)	39(1)
C(50)	6588(1)	4978(1)	3585(1)	37(1)
C(51)	6072(1)	5397(1)	3424(1)	45(1)
C(52)	5854(2)	5913(1)	3720(1)	50(1)
C(53)	6151(2)	6014(1)	4178(1)	48(1)
C(54)	6667(2)	5601(1)	4341(1)	47(1)
C(55)	6882(1)	5091(1)	4044(1)	41(1)
C(56)	6767(1)	4481(1)	2736(1)	42(1)
C(57)	7114(2)	5008(2)	2532(1)	53(1)
C(58)	7106(2)	5128(2)	2029(1)	61(1)
C(59)	6746(2)	4713(2)	1715(1)	64(1)
C(60)	6409(2)	4181(2)	1913(1)	62(1)
C(61)	6416(2)	4065(2)	2420(1)	50(1)

Table S3. Bond lengths [Å] 4.

Mg-O(1)	1.9789(16)
Mg-O(3)	2.0194(16)
Mg-N(2)	2.044(2)
Mg-N(1)	2.0561(19)
Mg-B	2.673(2)
B-O(4)	1.424(3)
B-O(2)	1.438(3)
B-O(1)	1.544(3)
B-O(3)	1.606(3)
N(1)-C(1)	1.344(3)
N(1)-C(6)	1.446(3)
N(2)-C(4)	1.331(3)
N(2)-C(18)	1.446(3)
O(1)-C(30)	1.460(3)
O(2)-C(33)	1.439(3)
O(3)-C(36)	1.443(3)
O(4)-C(49)	1.416(3)
C(1)-C(3)	1.395(3)
C(1)-C(2)	1.520(3)
C(2)-H(2A)	0.9800
C(2)-H(2B)	0.9800
C(2)-H(2C)	0.9800
C(3)-C(4)	1.403(3)
C(3)-H(3)	0.9500
C(4)-C(5)	1.516(4)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(7)	1.411(3)
C(6)-C(14)	1.413(3)
C(7)-C(11)	1.392(3)
C(7)-C(8)	1.524(3)
C(8)-C(9)	1.531(3)
C(8)-C(10)	1.531(3)
C(8)-H(8)	1.0000
C(9)-H(9A)	0.9800

C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-C(12)	1.375(4)
C(11)-H(11)	0.9500
C(12)-C(13)	1.376(4)
C(12)-H(12)	0.9500
C(13)-C(14)	1.400(4)
C(13)-H(13)	0.9500
C(14)- $C(15)$	1 525(4)
C(15)-C(16)	1.525(4) 1 519(4)
C(15) - C(17)	1.519(4) 1.538(4)
C(15) = U(15)	1,0000
$C(15)$ - $\Pi(15)$ $C(16) \Pi(16A)$	0.0800
$C(10)-\Pi(10A)$	0.9800
$C(10) - \Pi(10D)$	0.9800
C(10)-H(10C)	0.9800
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(18)-C(19)	1.409(4)
C(18)-C(26)	1.412(4)
C(19)-C(23)	1.386(4)
C(19)-C(20)	1.522(4)
C(20)-C(21)	1.527(4)
C(20)-C(22)	1.543(4)
C(20)-H(20)	1.0000
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-C(24)	1.372(4)
C(23)-H(23)	0.9500
C(24)- $C(25)$	1 374(4)
C(24) C(25) C(24) - H(24)	0.9500
$C(24) \Pi(24)$ C(25) C(26)	1.385(4)
C(25) = C(25)	0.9500
$C(25)^{-11}(25)$ C(26) C(27)	1.518(4)
C(20)-C(27)	1.510(4) 1.522(4)
C(27) - C(20)	1.333(4) 1.527(4)
C(27)-C(29)	1.337(4)
C(27)-H(27)	1.0000
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800
C(28)-H(28C)	0.9800
C(29)-H(29A)	0.9800
C(29)-H(29B)	0.9800
C(29)-H(29C)	0.9800
C(30)-C(31)	1.510(3)
C(30)-C(32)	1.530(3)
C(30)-C(33)	1.557(3)
C(31)-H(31A)	0.9800
C(31)-H(31B)	0.9800
C(31)-H(31C)	0.9800
C(32)-H(32A)	0.9800
C(32)-H(32B)	0.9800
C(32)-H(32C)	0.9800
C(33)-C(35)	1.517(3)

C(33)-C(34)	1.531(3)
C(34)-H(34A)	0.9800
C(34)-H(34B)	0.9800
C(34)-H(34C)	0.9800
C(35)-H(35A)	0.9800
C(35)-H(35B)	0.9800
C(35) - H(35C)	0.9800
C(36) C(37)	1.514(3)
C(36) - C(37)	1.514(3) 1.525(2)
C(30)-C(43)	1.0000
$C(30) - \Pi(30)$	1.0000
C(37)-C(42)	1.383(3)
C(37)-C(38)	1.38/(3)
C(38)-C(39)	1.391(3)
C(38)-H(38)	0.9500
C(39)-C(40)	1.379(4)
C(39)-H(39)	0.9500
C(40)-C(41)	1.377(4)
C(40)-H(40)	0.9500
C(41)-C(42)	1.385(4)
C(41)-H(41)	0.9500
C(42)-H(42)	0.9500
C(43)-C(44)	1.388(3)
C(43)-C(48)	1.390(3)
C(44)- $C(45)$	1.387(4)
C(44)-H(44)	0.9500
C(45)- $C(46)$	1384(4)
C(45)-H(45)	0.9500
C(46)- $C(47)$	1374(4)
C(46)-H(46)	0.9500
C(47)- $C(48)$	1 389(3)
C(47)-H(47)	0.9500
C(48)-H(48)	0.9500
C(49)- $C(56)$	1 513(4)
C(49) - C(50)	1.513(1) 1.523(4)
C(49)- $H(49)$	1,0000
C(50)- $C(55)$	1.0000 1.379(4)
C(50) - C(53)	1.377(4) 1.384(4)
C(51) - C(51)	1.386(4)
C(51) - C(52) C(51) - H(51)	0.9500
$C(51)$ - $\Pi(51)$ C(52) $C(53)$	1.378(4)
C(52)- $C(53)C(52)$ $H(52)$	0.9500
$C(52) \cdot \Pi(52)$ $C(53) \cdot C(54)$	1.376(4)
C(53) - C(54) C(53) - U(53)	0.0500
$C(53)-\Pi(53)$ C(54) C(55)	1.370(4)
C(54) - C(55)	0.0500
$C(54) - \Pi(54)$	0.9300
$C(55) - \Pi(55)$ C(56) C(61)	0.9300
C(50)- $C(01)$	1.301(4) 1.292(4)
C(50)-C(57)	1.363(4) 1.277(4)
C(57) - C(58)	1.577(4)
$C(57) - \Pi(57)$	0.9300
C(30)- $C(39)$	1.383(3)
C(38) - H(38)	0.9500
C(39) - C(00)	1.3/3(3)
$C(39) - \Pi(39)$	0.9500
C(00)- $C(01)$	1.385(4)
$C(00)-\Pi(00)$	0.9300
C(01)-H(01)	0.9500

Table S4. Angles [^o] for **4**

O(1) Mg $O(3)$	70 51(6)
O(1)-Mg- $O(3)$	70.51(0)
O(1)-Mg-N(2)	112.90(8)
O(2) M. $N(2)$	105 04(9)
O(3)-Mg-N(2)	125.24(8)
O(1)-Mg-N(1)	131 82(8)
	191.02(0)
O(3)-Mg-N(1)	123.65(8)
$N(2) M_{\alpha} N(1)$	05 21(9)
$\ln(2)$ - $\ln(1)$	95.51(8)
O(1)-Mg-B	34.91(6)
O(3)-Mg-B	36.82(6)
$N(2) - M \sigma - B$	119 16(8)
14(2)-141g-D	117.10(0)
N(1)-Mg-B	145.50(8)
O(4) P O(2)	119 02(17)
O(4)-D- $O(2)$	116.02(17)
O(4)-B- $O(1)$	115.95(16)
O(2) D O(1)	104 < 4(15)
O(2)-D- $O(1)$	104.04(13)
O(4)-B-O(3)	106.83(16)
O(2) D O(2)	114.04(16)
O(2)-B- $O(3)$	114.94(16)
O(1)-B-O(3)	94.20(13)
	111 ((12)
O(4)-B-Mg	111.66(13)
O(2)-B-Mg	130.23(13)
	150.25(15)
O(1)-B-Mg	47.17(8)
O(3)-B-Mg	18 89(8)
O(3)-D-Mg	+0.07(0)
C(1)-N(1)-C(6)	116.80(18)
C(1) N(1) M _a	117.04(15)
C(1)- $N(1)$ - N	117.04(15)
C(6)-N(1)-Mg	126.15(14)
C(4) N(2) C(18)	1191(2)
C(4)-IN(2)-C(10)	110.1(2)
C(4)-N(2)-Mg	119.17(16)
$C(18) N(2) M_{\alpha}$	122 72(15)
C(10)-IN(2)-INIg	122.72(13)
C(30)-O(1)-B	105.98(15)
$C(30) O(1) M_{\pi}$	1/1/1/3(1/1)
C(30)-O(1)-Wig	141.43(14)
B-O(1)-Mg	97.92(11)
\mathbf{P} $\mathbf{O}(2)$ $\mathbf{C}(22)$	110.50(16)
D-O(2)-C(33)	110.30(10)
C(36)-O(3)-B	120.06(15)
$C(26) O(2) M_{2}$	127.06(12)
C(30)-O(3)-Mg	157.20(15)
B-O(3)-Mg	94.29(10)
C(40) O(4) D	101(0(10))
C(49)-O(4)-B	121.60(18)
N(1)-C(1)-C(3)	1250(2)
N(1) = C(1) = C(3)	123.0(2)
N(1)-C(1)-C(2)	121.0(2)
C(3)-C(1)-C(2)	$114\ 1(2)$
	100 5
C(1)-C(2)-H(2A)	109.5
C(1)-C(2)-H(2B)	109 5
	100.5
H(2A)-C(2)-H(2B)	109.5
C(1)-C(2)-H(2C)	109 5
	100.5
H(2A)-C(2)-H(2C)	109.5
H(2B)-C(2)-H(2C)	109 5
	100.00
C(1)-C(3)-C(4)	130.9(2)
C(1)-C(3)-H(3)	114.6
	111.0
C(4)-C(3)-H(3)	114.6
N(2)-C(4)-C(3)	1237(2)
	123.7(2)
N(2)-C(4)-C(5)	121.4(2)
C(3)-C(4)-C(5)	114.9(2)
	100 5
C(4)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5B)	109 5
	102.5
H(3A)-C(5)-H(5B)	
	109.5
C(4) - C(5) - H(5C)	109.5
C(4)-C(5)-H(5C)	109.5
C(4)-C(5)-H(5C) H(5A)-C(5)-H(5C)	109.5 109.5 109.5
C(4)-C(5)-H(5C) H(5A)-C(5)-H(5C) H(5B)-C(5)-H(5C)	109.5 109.5 109.5 109.5
C(4)-C(5)-H(5C) H(5A)-C(5)-H(5C) H(5B)-C(5)-H(5C)	109.5 109.5 109.5 109.5
C(4)-C(5)-H(5C) H(5A)-C(5)-H(5C) H(5B)-C(5)-H(5C) C(7)-C(6)-C(14)	109.5 109.5 109.5 109.5 120.8(2)
C(4)-C(5)-H(5C) H(5A)-C(5)-H(5C) H(5B)-C(5)-H(5C) C(7)-C(6)-C(14) C(7)-C(6)-N(1)	$ 109.5 \\ 109.5 \\ 109.5 \\ 109.5 \\ 120.8(2) \\ 120.4(2) $

C(14)-C(6)-N(1)	118.9(2)
C(11)-C(7)-C(6)	118.3(2)
C(11)-C(7)-C(8)	120.0(2)
C(6)-C(7)-C(8)	121.7(2)
C(7)-C(8)-C(9)	111.8(2)
C(7)-C(8)-C(10)	113.5(2)
C(9)-C(8)-C(10)	109.0(2)
C(7)-C(8)-H(8)	107.4
C(9)- $C(8)$ - $H(8)$	107.4
C(10)- $C(8)$ -H(8)	107.4
$C(8)_{-}C(9)_{-}H(9\Delta)$	109.5
C(8) C(9) H(9R)	109.5
U(0A) C(0) U(0B)	109.5
$\Gamma(3A) - C(3) - \Pi(3B)$ $\Gamma(8) - C(0) - \Pi(9B)$	109.5
U(0, A) C(0) U(0, C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(8)-C(10)-H(10A)	109.5
C(8)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(8)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(12)-C(11)-C(7)	121.7(2)
C(12)-C(11)-H(11)	119.2
C(7)-C(11)-H(11)	119.2
C(11)-C(12)-C(13)	119.7(2)
C(11)-C(12)-H(12)	120.1
C(13)-C(12)-H(12)	120.1
C(12)-C(13)-C(14)	121.7(2)
C(12)-C(13)-H(13)	119.1
C(14)-C(13)-H(13)	119.1
C(13)-C(14)-C(6)	117.8(2)
C(13)-C(14)-C(15)	118.8(2)
C(6)-C(14)-C(15)	123.4(2)
C(16)-C(15)-C(14)	1115(2)
C(16)-C(15)-C(17)	108.2(2)
C(14)- $C(15)$ - $C(17)$	100.2(2) 1117(2)
C(14) C(15) C(17) C(16) C(15) H(15)	108.4
C(10)- $C(15)$ - $H(15)$	108.4
C(17) C(15) H(15)	108.4
$C(17)$ - $C(15)$ - $\Pi(15)$ $C(15)$ $C(16)$ $\Pi(16A)$	100.4
C(15) - C(16) - H(16R)	109.5
$U(15)-U(10)-\Pi(10D)$	109.5
$\Pi(10A) - U(10) - \Pi(10D)$ $\Gamma(15) - \Gamma(16) - \Pi(16C)$	109.5
U(15)-U(10)-H(10U)	109.5
H(10A)-C(10)-H(10C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(15)-C(17)-H(17A)	109.5
C(15)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(15)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(19)-C(18)-C(26)	121.1(2)
C(19)-C(18)-N(2)	117.6(2)
C(26)-C(18)-N(2)	121.3(2)
C(23)-C(19)-C(18)	118.4(3)
C(23)-C(19)-C(20)	120.4(3)
C(18)-C(19)-C(20)	121.1(2)
C(19)-C(20)-C(21)	114.0(3)
C(19)-C(20)-C(22)	110.7(3)

C(21)-C(20)-C(22)	109.7(3)
C(19)-C(20)-H(20)	107.4
C(21)-C(20)-H(20)	107.4
C(22)-C(20)-H(20)	107.4
C(20)-C(21)-H(21A)	109.5
C(20)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(20)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(20)-C(22)-H(22A)	109.5
C(20)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(20)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(24)-C(23)-C(19)	121.1(3)
C(24)-C(23)-H(23)	119.4
C(19)-C(23)-H(23)	119.4
C(23)-C(24)-C(25)	119.9(3)
C(23)-C(24)-H(24)	120.1
C(25)-C(24)-H(24)	120.1
C(24)-C(25)-C(26)	122.3(3)
C(24)-C(25)-H(25)	118.9
C(26)-C(25)-H(25)	118.9
C(25)-C(26)-C(18)	117.2(3)
C(25)-C(26)-C(27)	119.0(2)
C(18)-C(26)-C(27)	123.9(2)
C(26)-C(27)-C(28)	112.4(2)
C(26)-C(27)-C(29)	109.4(2)
C(28)-C(27)-C(29)	109.2(2)
C(26)-C(27)-H(27)	108.6
C(28)-C(27)-H(27)	108.6
C(29)-C(27)-H(27)	108.6
C(27)-C(28)-H(28A)	109.5
C(27)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28B)	109.5
C(27)-C(28)-H(28C)	109.5
H(28A)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C)	109.5
C(27)-C(29)-H(29A)	109.5
C(27)-C(29)-H(29B)	109.5
H(29A)-C(29)-H(29B)	109.5
C(27)-C(29)-H(29C)	109.5
H(29A)-C(29)-H(29C)	109.5
H(29B)-C(29)-H(29C)	109.5
O(1)-C(30)-C(31)	108.85(19)
O(1)-C(30)-C(32) C(21)-C(20)-C(22)	107.04(19)
C(31)- $C(30)$ - $C(32)$	110.0(2) 101.88(17)
C(21) C(20) C(22)	101.00(17) 115.2(2)
C(31)-C(30)-C(33) C(32) $C(30)$ $C(33)$	113.3(2) 112.5(2)
C(32)- $C(30)$ - $C(33)C(30)$ $C(31)$ $H(31A)$	112.3(2)
C(30)-C(31)-H(31R)	109.5
H(31A) - C(31) - H(31B)	109.5
C(30)-C(31)-H(31C)	109.5
H(31A)-C(31)-H(31C)	109.5
H(31B)-C(31)-H(31C)	109.5
C(30)-C(32)-H(32A)	109.5
C(30)-C(32)-H(32B)	109.5

H(32A)-C(32)-H(32B)	109.5
C(30)-C(32)-H(32C)	109.5
H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5
O(2)-C(33)-C(35)	108.0(2)
O(2)-C(33)-C(34)	109.11(19)
C(35)-C(33)-C(34)	109.8(2)
O(2)-C(33)-C(30)	$103\ 16(18)$
C(35)- $C(33)$ - $C(30)$	1142(2)
C(34)- $C(33)$ - $C(30)$	117.2(2) 112 3(2)
C(34) - C(33) - C(30) C(34) - U(34A)	100.5
$C(33)$ - $C(34)$ - $\Pi(34A)$	109.5
$U(33) - U(34) - \Pi(34D)$	109.5
$\Pi(34A) - C(34) - \Pi(34D)$	109.5
U(33)-U(34)-H(34U)	109.5
H(34A)-C(34)-H(34C)	109.5
H(34B)-C(34)-H(34C)	109.5
C(33)-C(35)-H(35A)	109.5
C(33)-C(35)-H(35B)	109.5
H(35A)-C(35)-H(35B)	109.5
C(33)-C(35)-H(35C)	109.5
H(35A)-C(35)-H(35C)	109.5
H(35B)-C(35)-H(35C)	109.5
O(3)-C(36)-C(37)	110.44(17)
O(3)-C(36)-C(43)	111.14(17)
C(37)-C(36)-C(43)	113.11(18)
O(3)-C(36)-H(36)	107.3
C(37)-C(36)-H(36)	107.3
C(43)- $C(36)$ - $H(36)$	107.3
C(42)- $C(37)$ - $C(38)$	118 5(2)
C(42) - C(37) - C(36)	120.0(2)
C(38) C(37) C(36)	120.0(2) 121.5(2)
C(30)- $C(37)$ - $C(30)$	121.3(2) 120.0(2)
C(37)- $C(30)$ - $C(39)$	120.9(2)
$C(37)-C(38)-\Pi(38)$	119.0
C(39)-C(38)-H(38)	119.6
C(40)- $C(39)$ - $C(38)$	119.7(3)
C(40)-C(39)-H(39)	120.2
C(38)-C(39)-H(39)	120.2
C(41)-C(40)-C(39)	120.0(2)
C(41)-C(40)-H(40)	120.0
C(39)-C(40)-H(40)	120.0
C(40)-C(41)-C(42)	120.1(3)
C(40)-C(41)-H(41)	119.9
C(42)-C(41)-H(41)	119.9
C(37)-C(42)-C(41)	120.8(2)
C(37)-C(42)-H(42)	119.6
C(41)-C(42)-H(42)	119.6
C(44)-C(43)-C(48)	118.2(2)
C(44)-C(43)-C(36)	121.9(2)
C(48)-C(43)-C(36)	119.8(2)
C(45)-C(44)-C(43)	120.9(2)
C(45)- $C(44)$ - $H(44)$	119.5
C(43) C(44) H(44)	119.5
C(45) - C(45) - C(44)	117.5 120.4(2)
C(40)- $C(45)$ - $C(44)$	120.4(2)
$C(40) - C(43) - \Pi(43)$ $C(44) - C(45) - \Pi(45)$	117.0
C(44)-C(45)-H(45)	119.8
C(47) - C(40) - C(45)	119.1(2)
C(47)-C(46)-H(46)	120.5
C(45)-C(46)-H(46)	120.5
C(46)-C(47)-C(48)	120.8(2)
C(46)-C(47)-H(47)	119.6

C(48)-C(47)-H(47)	119.6
C(47)-C(48)-C(43)	120.6(2)
C(47)-C(48)-H(48)	119.7
C(43)-C(48)-H(48)	119.7
O(4)-C(49)-C(56)	111.5(2)
O(4)-C(49)-C(50)	108.2(2)
C(56)-C(49)-C(50)	112.7(2)
O(4)-C(49)-H(49)	108.1
C(56)-C(49)-H(49)	108.1
C(50)-C(49)-H(49)	108.1
C(55)-C(50)-C(51)	118.2(3)
C(55)-C(50)-C(49)	119.5(2)
C(51)-C(50)-C(49)	122.1(2)
C(50)-C(51)-C(52)	120.6(3)
C(50)-C(51)-H(51)	119.7
C(52)-C(51)-H(51)	119.7
C(53)-C(52)-C(51)	120.3(3)
C(53)-C(52)-H(52)	119.8
C(51)-C(52)-H(52)	119.8
C(54)-C(53)-C(52)	119.5(3)
C(54)-C(53)-H(53)	120.3
C(52)-C(53)-H(53)	120.3
C(53)-C(54)-C(55)	119.8(3)
C(53)-C(54)-H(54)	120.1
C(55)-C(54)-H(54)	120.1
C(54)-C(55)-C(50)	121.6(3)
C(54)-C(55)-H(55)	119.2
C(50)-C(55)-H(55)	119.2
C(61)-C(56)-C(57)	118.1(3)
C(61)-C(56)-C(49)	122.7(3)
C(57)-C(56)-C(49)	119.2(3)
C(58)-C(57)-C(56)	121.7(3)
C(58)-C(57)-H(57)	119.1
C(56)-C(57)-H(57)	119.1
C(57)-C(58)-C(59)	119.8(3)
C(57)-C(58)-H(58)	120.1
C(59)-C(58)-H(58)	120.1
C(60)-C(59)-C(58)	119.0(3)
C(60)-C(59)-H(59)	120.5
C(58)-C(59)-H(59)	120.5
C(59)-C(60)-C(61)	120.9(3)
C(59)-C(60)-H(60)	119.5
C(61)-C(60)-H(60)	119.5
C(56)-C(61)-C(60)	120.5(3)
C(56)-C(61)-H(61)	119.8
C(60)-C(61)-H(61)	119.8

<u>Table S5.</u> Anisotropic displacement parameters (A² x 10³) for publication. The anisotropic displacement factor exponent takes the form: $-2 \pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a* b* U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
Mg	26(1)	26(1)	21(1)	1(1)	-1(1)	-3(1)	

В	13(1)	11(1)	11(1)	0(1)	-2(1)	1(1)
N(1)	28(1)	26(1)	25(1)	2(1)	0(1)	-3(1)
N(2)	35(1)	32(1)	23(1)	1(1)	-5(1)	-4(1)
O(1)	26(1)	32(1)	24(1)	-2(1)	4(1)	-1(1)
O(2)	35(1)	27(1)	30(1)	2(1)	-1(1)	-4(1)
O(3)	24(1)	24(1)	22(1)	-2(1)	4(1)	-1(1)
O(4)	33(1)	38(1)	41(1)	0(1)	-4(1)	-2(1)
C(1)	33(1)	29(1)	30(1)	-1(1)	2(1)	-7(1)
C(2)	38(2)	43(2)	42(2)	10(1)	3(1)	-11(1)
C(3)	27(1)	41(1)	38(2)	3(1)	-2(1)	-9(1)
C(4)	33(1)	38(1)	34(1)	0(1)	-9(1)	-7(1)
C(5)	47(2)	63(2)	55(2)	14(2)	-21(2)	-18(2)
C(6)	28(1)	27(1)	28(1)	7(1)	4(1)	-5(1)
C(7)	28(1)	27(1)	29(1)	5(1)	2(1)	-5(1)
C(8)	36(1)	33(1)	24(1)	4(1)	-1(1)	-5(1)
C(9)	49(2)	45(2)	33(2)	-1(1)	12(1)	-4(1)
C(10)	57(2)	36(1)	34(2)	3(1)	-11(1)	-5(1)
C(11)	35(1)	37(1)	34(1)	9(1)	-4(1)	-8(1)
C(12)	38(2)	33(1)	46(2)	16(1)	-3(1)	0(1)
C(12)	46(2)	25(1)	47(2)	5(1)	4(1)	0(1)
C(13)	37(1)	23(1) 27(1)	34(1)	5(1)	3(1)	-5(1)
C(15)	57(1) 56(2)	$\frac{27(1)}{31(1)}$	39(2)	-4(1)	-4(1)	3(1)
C(15)	73(2)	$\frac{31(1)}{41(2)}$	50(2)	-9(1)	10(2)	-11(2)
C(10) C(17)	73(2) 58(2)	$\frac{1}{2}$	50(2)	-20(2)	-3(2)	-17(2)
C(18)	37(1)	$\frac{1}{4}$	22(1)	-20(2)	-3(2) 8(1)	$\frac{-1}{(2)}$
C(10)	51(2)	44(2)	22(1) 25(1)	$\frac{2(1)}{5(1)}$	-0(1) 8(1)	-0(1)
C(19)	51(2) 67(2)	$\frac{47(2)}{53(2)}$	23(1) 30(2)	-3(1) 13(1)	-0(1)	-4(1)
C(20)	07(2) 04(3)	33(2) 81(2)	30(2)	-13(1) 10(2)	-9(1) 1(2)	$\frac{7(2)}{28(2)}$
C(21)	94(3)	47(2)	59(2)	-19(2) 13(2)	-1(2)	$\frac{20(2)}{7(2)}$
C(22)	55(3)	47(2)	$\frac{02(2)}{27(2)}$	-13(2)	-27(2)	-7(2)
C(23)	60(2)	72(2)	27(2) 24(2)	-0(1) 11(1)	-4(1)	-3(2)
C(24)	54(2)	$\frac{72(2)}{54(2)}$	24(2) 33(2)	11(1) 12(1)	-7(1) 10(1)	-0(2)
C(25)	34(2) 36(1)	$\frac{J^{4}(2)}{4A(2)}$	30(1)	5(1)	-10(1)	$\frac{-2(1)}{5(1)}$
C(20)	30(1) 37(2)	$\frac{44(2)}{41(1)}$	36(1)	$\frac{J(1)}{7(1)}$	-9(1) 8(1)	-3(1) 2(1)
C(27)	$\frac{37(2)}{42(2)}$	41(1) 68(2)	50(2) 64(2)	2(2)	-0(1) 13(2)	-2(1) 5(2)
C(20)	42(2) 52(2)	45(2)	$\frac{04(2)}{48(2)}$	$\frac{2(2)}{6(1)}$	-13(2)	J(2) = 4(1)
C(29)	33(2) 20(1)	43(2) 25(1)	40(2) 21(1)	1(1)	-7(1)	-4(1)
C(30)	29(1) 13(2)	33(1) 37(2)	$\frac{31(1)}{44(2)}$	A(1)	9(1)	5(1) 5(1)
C(31)	45(2)	57(2) 54(2)	44(2)	-4(1)	$\frac{4(1)}{17(1)}$	3(1) 2(1)
C(32)	40(2) 28(1)	34(2) 22(1)	35(2) 25(1)	2(1)	$\frac{1}{(1)}$	$\frac{3(1)}{1(1)}$
C(33) C(34)	20(1) 27(1)	33(1) 32(1)	33(1) 26(1)	$\frac{2(1)}{6(1)}$	2(1) 2(1)	$\frac{1(1)}{2(1)}$
C(34)	37(1) 30(2)	57(2)	50(1)	6(2)	-3(1) 5(1)	2(1)
C(35)	30(2) 27(1)	$\frac{37(2)}{22(1)}$	$\frac{02(2)}{24(1)}$	$\frac{0(2)}{2(1)}$	$\frac{J(1)}{2(1)}$	-2(1)
C(30)	27(1) 28(1)	23(1) 22(1)	24(1) 21(1)	-2(1)	$\frac{3(1)}{1(1)}$	0(1) 1(1)
C(37)	20(1) 26(1)	33(1) 38(1)	21(1) 28(1)	-2(1)	1(1)	1(1) 1(1)
C(30)	20(1) 21(1)	30(1)	20(1) 44(2)	-2(1)	4(1)	7(1)
C(39)	25(1)	49(2)	44(2) 57(2)	-9(1)	1(1)	-7(1)
C(40)	23(1) 27(2)	55(2)	57(2)	-7(2)	2(1)	1(1)
C(41)	37(2) 25(2)	25(2)	30(2)	1(2) 1(1)	2(1)	10(1)
C(42) C(42)	33(2) 32(1)	33(1) 32(1)	43(2) 25(1)	-1(1)	O(1)	4(1) 1(1)
C(43)	32(1) 34(1)	22(1) 28(1)	23(1) 20(1)	-1(1)	2(1)	-1(1)
C(44)	34(1)	30(1)	30(1)	-0(1)	2(1) 2(1)	0(1)
C(43)	47(2) 51(2)	47(2)	29(1) 20(2)	-10(1)	3(1) 11(1)	7(1)
C(40)	31(2) 32(1)	39(2) 33(1)	32(2)	-3(1)	-11(1)	-/(1)
C(47)	32(1) 30(1)	33(1) 30(1)	39(2) 30(1)	2(1) 2(1)	-0(1)	-0(1)
C(40)	30(1) 34(1)	30(1)	30(1)	2(1) 0(1)	$1(1) \\ 3(1)$	-3(1)
C(49)	34(1) 33(1)	40(2)	43(2) 38(2)	2(1)	-3(1)	$\frac{2(1)}{2(1)}$
C(50)	33(1)	40(2) 45(2)	30(2) 19(2)	-2(1)	U(1)	-3(1)
C(51)	43(2)	40(2)	40(2)	-7(1) -8(2)	-0(1) 2(1)	J(1) = A(1)
C(52)	43(2)	$\frac{1}{48(2)}$	54(2)	-0(2)	$\frac{2(1)}{13(1)}$	-8(1)
(JJ)	13(4)	10(4)	5 7(4)	12(1)	13(1)	

C(54)	51(2)	52(2)	38(2)	-6(1)	2(1)	-10(1)
C(55)	42(2)	41(2)	41(2)	0(1)	-1(1)	-5(1)
C(56)	38(2)	48(2)	41(2)	-6(1)	3(1)	1(1)
C(57)	55(2)	59(2)	44(2)	-5(2)	2(1)	0(2)
C(58)	69(2)	66(2)	49(2)	5(2)	7(2)	-1(2)
C(59)	67(2)	85(3)	38(2)	2(2)	1(2)	14(2)
C(60)	65(2)	78(2)	44(2)	-4(2)	-4(2)	-4(2)
C(61)	53(2)	56(2)	40(2)	-5(1)	-3(1)	0(1)

X-ray structure of [PhC(OBpin)]₂

Table S6. Crystal data and structure refinement for [PhC(OBpin)]2.

Empirical formula	$C_{26}H_{36}B_2O_6$	
Formula weight	466.17	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Monoclinic, P 1 2 ₁ /n 1	
Unit cell dimensions	a = 8.2719(2) Å	$\alpha = 90^{\circ}$
	b = 9.9302(2) Å	$\beta = 102.8300(10)^{\circ}$
	c = 15.8441(3) Å	$\gamma = 90^{\circ}$
Volume	1268.97(5) Å ³	
Z	2	
Calculated density	1.220 mg.m^{-3}	
Absorption coefficient	0.083 mm^{-1}	
F(000)	500	
Crystal size	0.60 x 0.60 x 0.60 mm	
θ range for data collection	4.53 to 27.48°	
Limiting indices	-10<=h<=10, -12<=k<=	12, -20<=l<=20
Reflections collected / unique	21410 / 2878 [<i>R</i> (int) = 0	.0307]
Completeness to $\theta = 27.48$	99.2 %	
Absorption correction	Semi-empirical from equ	ivalents
Max. and min. transmission	0.9516 and 0.9516	
Refinement method	Full-matrix least-squares	s on F^2
Data / restraints / parameters	2878 / 0 / 158	
Goodness-of-fit on F^2	1.070	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0469, wR_2 = 0.11$	90
<i>R</i> indices (all data)	$R_1 = 0.0520, wR_2 = 0.12$	33
Largest diff. peak and hole	0.421 and -0.263 e.Å ³	

Fig S1. ORTEP representation of $[PhC(OBpin)]_2$. Thermal ellipsoids at 20%
probability. Hydrogen atoms omitted except that attached to C(7). Selected bond
lengths (Å) and angles (o): B-O(3) 1.3709(17), O(3)-C(7)1.4272(15),
1.4272(15),
C(7)-C(8) 1.5160(17), C(7)-C(7') 1.546(2); O(3)-C(7)-C(8)C(7)-C(8) 1.5160(17), C(7)-C(7') 1.546(2); O(3)-C(7)-C(8)109.67(10), O(3)-
C(7)-C(7') 106.86(12), C(8)-C(7)-C(7')

	х	у	Z	U _(eq)
В	733(2)	3221(2)	3743(1)	25(1)
O(1)	-385(1)	3674(1)	3034(1)	33(1)
O(2)	1330(1)	1961(1)	3673(1)	32(1)
O(3)	1290(1)	3957(1)	4482(1)	27(1)
C(1)	-810(2)	2514(1)	2452(1)	29(1)
C(2)	-2430(2)	1949(2)	2604(1)	44(1)
C(3)	-1040(3)	3001(2)	1526(1)	45(1)
C(4)	704(2)	1551(2)	2776(1)	32(1)
C(5)	233(3)	72(2)	2785(1)	54(1)
C(6)	2103(3)	1741(3)	2316(1)	60(1)
C(7)	458(2)	5161(1)	4637(1)	23(1)
C(8)	1708(2)	6288(1)	4887(1)	24(1)
C(9)	3342(2)	6009(1)	5299(1)	28(1)
C(10)	4481(2)	7049(2)	5533(1)	33(1)
C(11)	4001(2)	8372(2)	5363(1)	35(1)
C(12)	2377(2)	8666(2)	4952(1)	36(1)
C(13)	1232(2)	7623(1)	4714(1)	30(1)

Table S7. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for [PhC(OBpin)]₂. U_(eq) is defined as one third of the trace of the orthogonalised U_{ij} tensor.

B-O(2)	1.3584(18)
B-O(1)	1.3634(18)
B-O(3)	1.3709(17)
O(1)-C(1)	1.4684(15)
O(2)-C(4)	1.4595(16)
O(3)-C(7)	1.4272(15)
C(1)-C(3)	1.5172(19)
C(1)-C(2)	1.520(2)
C(1)-C(4)	1.568(2)
C(2)-H(2A)	0.9800
C(2)-H(2B)	0.9800
C(2)-H(2C)	0.9800
C(3)-H(3A)	0.9800
C(3)-H(3B)	0.9800
C(3)-H(3C)	0.9800
C(4)-C(6)	1.510(2)
C(4)-C(5)	1.521(2)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-H(6A)	0.9800
C(6)-H(6B)	0.9800
C(6)-H(6C)	0.9800
C(7)-C(8)	1.5160(17)
C(7)-C(7)#1	1.546(2)
C(7)-H(7)	1.0000
C(8)-C(9)	1.3922(19)
C(8)-C(13)	1.3926(19)
C(9)-C(10)	1.3917(19)
C(9)-H(9)	0.9500
C(10)-C(11)	1.382(2)
C(10)-H(10)	0.9500
C(11)-C(12)	1.388(2)
C(11)-H(11)	0.9500
C(12)-C(13)	1.397(2)
C(12)-H(12)	0.9500
C(13)-H(13)	0.9500

Table S8. Bond lengths [Å] for [PhC(OBpin)]2.

Symmetry transformations used to generate equivalent atoms: #1 - x, -y+1, -z+1

Table S9. Bond angles [^o] for [PhC(OBpin)]₂.

O(2)-B-O(1)	115.45(12)
O(2)-B-O(3)	120.08(12)
O(1)-B-O(3)	124.45(12)
B-O(1)-C(1)	106.37(10)
B-O(2)-C(4)	106.19(11)
B-O(3)-C(7)	120.67(10)
O(1)-C(1)-C(3)	108.51(11)
O(1)-C(1)-C(2)	106.69(11)
C(3)-C(1)-C(2)	110.22(13)
O(1)-C(1)-C(4)	102.16(10)

C(3)-C(1)-C(4)	115.45(12)
C(2)-C(1)-C(4)	113.05(12)
C(1)-C(2)-H(2A)	109.5
C(1)-C(2)-H(2B)	109.5
H(2A)-C(2)-H(2B)	109.5
C(1)-C(2)-H(2C)	109.5
H(2A)-C(2)-H(2C)	109.5
H(2B)-C(2)-H(2C)	109.5
C(1)-C(3)-H(3A)	109.5
C(1)-C(3)-H(3B)	109.5
H(3A)-C(3)-H(3B)	109.5
C(1)-C(3)-H(3C)	109.5
H(3A)-C(3)-H(3C)	109.5
H(3B)-C(3)-H(3C)	109.5
O(2)-C(4)-C(6)	106.95(13)
O(2)-C(4)-C(5)	107.20(12)
C(6)-C(4)-C(5)	11053(15)
O(2)-C(4)-C(1)	10348(10)
C(6)-C(4)-C(1)	114 11(14)
C(5)- $C(4)$ - $C(1)$	113.85(13)
C(4) - C(5) - H(5A)	109.5
C(4) - C(5) - H(5R)	109.5
H(5A) - C(5) - H(5B)	109.5
$\Gamma(3A) - C(5) - H(5C)$	109.5
H(5A) C(5) H(5C)	109.5
H(5R) C(5) H(5C)	109.5
$\Gamma(3D) - C(3) - \Pi(3C)$	109.5
$C(4)$ - $C(0)$ - $\Pi(0A)$	109.5
$U(4) - U(0) - \Pi(0D)$	109.5
$\Pi(0A) - C(0) - \Pi(0D)$	109.5
$U(4) - U(0) - \Pi(0U)$	109.5
H(0A)-C(0)-H(0C)	109.5
H(0B)-C(0)-H(0C)	109.5
O(3) - C(7) - C(8)	109.07(10)
O(3)-C(7)-C(7)#1	106.86(12)
C(8)-C(7)-C(7)#1	112.12(12)
O(3)-C(7)-H(7)	109.4
C(8)-C(7)-H(7)	109.4
C(/)#I-C(/)-H(/)	109.4
C(9)-C(8)-C(13)	118.98(12)
C(9)-C(8)-C(7)	120.68(12)
C(13)-C(8)-C(7)	120.35(12)
C(10)-C(9)-C(8)	120.42(13)
C(10)-C(9)-H(9)	119.8
C(8)-C(9)-H(9)	119.8
C(11)-C(10)-C(9)	120.36(14)
C(11)-C(10)-H(10)	119.8
C(9)-C(10)-H(10)	110.89(12)
C(10)-C(11)-C(12)	119.88(15)
C(10)-C(11)-H(11)	120.1
$C(12)$ - $C(11)$ - $\Pi(11)$	120.1
C(11) - C(12) - C(13)	117.03(14)
$C(11) - C(12) - \Pi(12)$ $C(13) - C(12) - \Pi(12)$	120.1
$C(13) - C(12) - \Pi(12)$ C(8) C(13) C(12)	120.1
C(0) - C(13) - C(12) C(8) C(12) U(12)	120.31(13) 1107
$C(0) - C(13) - \Pi(13)$ $C(12) - C(13) - \Pi(13)$	119.7
$C(12) - C(13) - \Pi(13)$	117.1

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
В	25(1)	26(1)	26(1)	-1(1)	9(1)	-2(1)
O(1)	45(1)	23(1)	27(1)	-6(1)	4(1)	3(1)
O(2)	35(1)	29(1)	30(1)	-8(1)	3(1)	4(1)
O(3)	25(1)	26(1)	29(1)	-7(1)	4(1)	2(1)
C(1)	41(1)	24(1)	23(1)	-6(1)	8(1)	-2(1)
C(2)	40(1)	51(1)	40(1)	-7(1)	7(1)	-9(1)
C(3)	71(1)	38(1)	26(1)	1(1)	9(1)	2(1)
C(4)	41(1)	31(1)	26(1)	-7(1)	9(1)	0(1)
C(5)	81(1)	28(1)	45(1)	-5(1)	-4(1)	4(1)
C(6)	52(1)	84(2)	51(1)	-12(1)	28(1)	7(1)
C(7)	24(1)	22(1)	22(1)	-5(1)	5(1)	0(1)
C(8)	29(1)	24(1)	20(1)	-3(1)	8(1)	-4(1)
C(9)	28(1)	28(1)	29(1)	-2(1)	9(1)	-2(1)
C(10)	28(1)	39(1)	34(1)	-5(1)	9(1)	-8(1)
C(11)	42(1)	34(1)	33(1)	-5(1)	15(1)	-17(1)
C(12)	51(1)	24(1)	34(1)	0(1)	12(1)	-6(1)
C(13)	36(1)	27(1)	28(1)	0(1)	5(1)	-1(1)

Table S10. Anisotropic displacement parameters (A² x 10³) for [PhC(OBpin)]₂. The anisotropic displacement factor exponent takes the form: $-2 \pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a* b* U₁₂]

References

- 1. Dove, A. P.; Gibson, V. C.; Hormnirun, P.; Marshall, E. L.; Segal, J. A.; White, A. J. P.; Williams, D. J. *Dalton. Trans.* **2003**, 3088.
- 2. Hill, M. S.; MacDougall, D. J.; Mahon, M. F. Dalton Trans., 2010, 39, 11129
- 3. DENZO-SCALEPACK Otwinowski, Z.; Minor, W. "Processing of X-ray Diffraction Data Collected in Oscillation Mode", Methods in Enzymology, Volume 276: Macromolecular Crystallography, part A, p.307-326, **1997**, C.W. Carter, Jr. & R. M. Sweet, Eds., Academic Press.
- 4. Farrugia, L.J. J. Appl. Cryst. 1999, 32, 837.
- 5. Green, S. P.; Jones, C.; Stasch, A. Angew. Chem. Int. Ed. 2008, 47, 9079.