Supplementary Information:

The effect of extra framework species on the intrinsic negative thermal expansion property of zeolites with the LTA topology

Thomas Carey, Avelino Corma, Fernando Rey, Chiu C. Tang, Joseph A. Hriljac and Paul A. Anderson.

<u>ITQ-29</u>

Table 1: Refined atomic	parameters at 300K	obtained from	Rietveld analy	ysis of ITQ-29 ^a
-------------------------	--------------------	---------------	----------------	-----------------------------

Atom	Wyckoff position	Х	у	Z	Occupancy	В
Si(1)	24k	0	0.370(3)	0.184(3)	1	1.4(1)
O(1)	12h	0	0.5	0.223(7)	1	1.7(1)
O(2)	12i	0	0.291(4)	0.291(4)	1	1.7(1)
O(3)	24m	0.109(3)	0.109(3)	0.348(4)	1	1.7(1)

^a Lattice Parameter: a = 11.8531(1) Å, space group: Pm-3m, $\chi^2 = 1.59$, $R_{wp} = 7.29$ %, $R_p = 5.56$ %.

Figure 1: Powder XRD ($\lambda = 1.5406$ Å) Rietveld fit for ITQ–29 at 300 K (refinement done using the computer program TOPAS¹).

References

1. A. Coelho, Topas Academic Version 4.1. Computer Software, Topas Academic, Coelho Software, Brisbane, 2007.

Bond Longth/Anglo	Temperature										
Donu Lengui/Angie	300 K	280 K	260 K	240 K	220 K	200 K	180 K	160 K	140 K	120 K	100 K
$\begin{array}{c} Si-O1\\Si-O2\\Si-O3\end{array}$	1.62(2) 1.58(1) 1.58(9)	1.62(1) 1.58(1) 1.59(9)	1.62(1) 1.58(1) 1.59(9)	1.62(1) 1.58(1) 1.59(9)	1.61(1) 1.58(1) 1.59(9)	1.61(1) 1.58(1) 1.59(9)	1.61(1) 1.58(1) 1.59(1)	1.61(1) 1.58(1) 1.59(1)	1.61(2) 1.58(2) 1.60(1)	1.59(1) 1.59(1) 1.61(2)	1.59(2) 1.58(2) 1.61(2)
$\begin{array}{c} Si - O1 - Si \\ Si - O2 - Si \\ Si - O3 - Si \\ O1 - Si - O2 \\ O1 - Si - O3 \\ O2 - Si - O3 \\ O3 - Si - O3 \\ O3 - Si - O3 \end{array}$	$143(2) \\ 165(2) \\ 153(1) \\ 109(1) \\ 108.7(8) \\ 110.9(7) \\ 108(1)$	$144(2) \\ 164(2) \\ 153(1) \\ 109(1) \\ 109.0(8) \\ 110.8(8) \\ 108(1)$	$144(2) \\164(2) \\153(1) \\109(1) \\109.0(8) \\110.9(8) \\108(1)$	$145(2) \\ 163(2) \\ 153(1) \\ 109(1) \\ 108.8(8) \\ 111.0(8) \\ 108(1)$	$146(2) \\ 162(2) \\ 153(1) \\ 109(1) \\ 108.8(8) \\ 111.1(8) \\ 108(1)$	$146(2) \\ 161(2) \\ 152(2) \\ 109(1) \\ 108.7(8) \\ 111.2(8) \\ 108(1)$	146(2) 162(2) 152(2) 109(1) 108.7(8) 111.2(8) 108(1)	$150(2) \\ 158(2) \\ 151(1) \\ 109(1) \\ 108.1(9) \\ 111.8(8) \\ 108(1)$	$152(2) \\ 157(2) \\ 151(2) \\ 110(1) \\ 108(1) \\ 111(1) \\ 108(2)$	$153(5) \\ 156(4) \\ 149(3) \\ 109(3) \\ 105(2) \\ 111(2) \\ 114(4)$	156(3) 158(3) 147(3) 112(3) 106(2) 109(2) 114(3)
Lattice Parameter (Å) Unit Cell Volume (Å)	11.853(2) 1665.3(7)	11.855(2) 1666.1(6)	11.856(2) 1666.5(7)	11.858(2) 1667.4(7)	11.859(2) 1667.8(7)	11.862(2) 1669.1(7)	11.864(2) 1669.9(7)	11.864(2) 1669.9(7)	11.866(2) 1670.7(7)	11.872(2) 1673.3(8)	11.872(6) 1673.3(8)

Table 2: Bond Distances (Å) and Angles (deg) in ITQ-29 between 300–100 K (errors at 3σ level).

Dehydrated AgA

Atom	Wyckoff position	Х	У	Z	Occupancy	В
Si(1)	96i	0	0.0939(3)	0.1841(3)	1	0.70(4)
Al(1)	96i	0	0.1853(3)	0.0914(3)	1	0.70(4)
O(1)	96i	0	0.1109(2)	0.2479(7)	1	1.38(9)
O(2)	96i	0	0.1476(6)	0.1515(6)	1	1.38(9)
O(3)	192j	0.0526(3)	0.0568(3)	0.1714(2)	1	1.38(9)
Ag(1)	64g	0.0964(3)	0.0964(3)	0.0964(3)	0.97(3)	2.90(4)
Ag(2)	96i	0	0.2227(2)	0.2089(3)	0.19(1)	2.90(4)
Ag(3)	48e	0	0	0.0806(3)	0.17(2)	2.90(4)

Table 3: Refined atomic parameters obtained from Rietveld analysis of dehydrated silver zeolite A^b

^b Lattice Parameter: a = 24.66358(7) Å, space group: Fm-3c, $\chi^2 = 1.30$, $R_{wp} = 8.89$ %, $R_p = 6.99$ %.

	Temperature										
Бопа Lengtn/Angle	300 K	280 K	260 K	240 K	220 K	200 K	180 K	160 K	140 K	120 K	100 K
<u> </u>	1.62(6)	1 (2)(5)	1 (2)(5)	1.60(5)	1.60(5)	1.60(5)	1.60(5)	1.60(5)	1.60(5)	1 (1(7)	1 (1/7)
$S_1 - O_1$	1.63(6)	1.63(5)	1.62(5)	1.62(5)	1.62(5)	1.62(5)	1.62(5)	1.62(5)	1.62(5)	1.64(5)	1.61(5)
$S_1 - O_2$	1.55(5)	1.53(5)	1.53(5)	1.53(4)	1.53(4)	1.52(4)	1.52(4)	1.52(4)	1.52(4)	1.52(4)	1.50(5)
$S_1 - O_3$	1.62(3)	1.61(2)	1.62(2)	1.63(3)	1.62(2)	1.63(2)	1.63(2)	1.63(2)	1.63(2)	1.63(2)	1.64(2)
Al - O1	1.72(6)	1.72(5)	1.70(5)	1.71(5)	1.70(3)	1.70(5)	1.70(5)	1.70(6)	1.69(5)	1.66(5)	1.70(5)
Al - O2	1.75(5)	1.77(4)	1.75(4)	1.76(2)	1.75(4)	1.77(5)	1.77(5)	1.77(5)	1.77(4)	1.77(5)	1.73(2)
Al – O3	1.73(3)	1.74(2)	1.75(2)	1.74(2)	1.75(2)	1.74(2)	1.74(2)	1.74(2)	1.74(2)	1.73(2)	1.78(4)
Si - O1 - Al	149(2)	149(2)	150(2)	151(2)	152(2)	152(2)	152(2)	153(2)	153(2)	153(2)	154(2)
Si - O2 - Al	153(3)	153(3)	153(3)	153(3)	153(3)	153(3)	153(3)	153(3)	154(3)	154(3)	154(3)
Si - O3 - Al	150(2)	149(2)	150(2)	149(1)	149(1)	149(1)	149(2)	149(2)	149(2)	149(2)	149(2)
O1 - Si - O2	106(2)	106(2)	107(2)	107(2)	107(2)	108(2)	108(2)	108(2)	108(2)	109(2)	109(1)
O1 - Si - O3	110(1)	110(1)	109(1)	109.3(9)	109(1)	109(1)	109(1)	109(1)	108(1)	108(1)	108(1)
O2 - Si - O3	112(1)	112(1)	112(1)	112(1)	112(1)	112(1)	112(1)	112(1)	112(1)	112(1)	113(1)
O3 - Si - O3	107(2)	107(2)	107(2)	106(2)	107(2)	107(2)	107(2)	106(2)	107(2)	107(2)	106(2)
O1 - A1 - O2	106(2)	106(2)	108(2)	107(2)	108(2)	108(2)	108(2)	108(2)	109(2)	109(2)	109(2)
01 - A1 - 03	110(1)	110(1)	110(1)	110.0(9)	109 5(9)	110(1)	110(1)	110(1)	110(1)	110(1)	109(1)
$0^2 - A^1 - 0^3$	111(1)	111(1)	111(1)	111(1)	111(1)	111(1)	111(1)	111(1)	111(1)	110(1)	110(1)
$O_3 - A_1 - O_3$	108(2)	107(2)	107(2)	107(2)	107(2)	107(2)	107(2)	107(2)	108(2)	108(2)	107(2)
05 /11 - 05	100(2)	107(2)	107(2)	107(2)	107(2)	107(2)	107(2)	107(2)	100(2)	100(2)	107(2)
Lattice Darameter (Å)	24 6636(2)	24 6704(2)	24 6730(2)	24 6752(2)	24 6762(9)	24 6760(2)	24 6778(2)	24 6780(2)	24 6706(2)	24 6700(2)	24 6801(2)
Lattice Faralleter (A)	24.0030(2) 150027(2)	24.0704(2) 15015 2(2)	24.0739(2) 15021 5(2)	24.0732(2) 15022 0(2)	24.0702(0) 15025 7(2)	24.0709(2) 15026 0(2)	150296(2)	150206(2)	24.0790(2) 15021 0(2)	24.0799(2) 15022 5(2)	150228(2)
Unit Cell Volume (A)	15002.7(3)	15015.2(3)	15021.5(3)	15023.9(3)	15025.7(3)	15026.9(3)	15028.6(3)	15030.6(3)	15031.9(3)	15032.5(3)	15032.8(3)

Table 4: Selected Bond Distances (Å) and Angles (deg) in Dehydrated AgA between 300–100 K (errors at 3σ level).

Hydrated AgA

Atom	Wyckoff position	Х	У	Z	Occupancy	В
Si(1)	96i	0	0.090(2)	0.184(2)	1	1.03(4)
Al(1)	96i	0	0.184(2)	0.089(2)	1	1.03(4)
O(1)	96i	0	0.109(2)	0.245(5)	1	2.26(8)
O(2)	96i	0	0.150(4)	0.151(5)	1	2.26(8)
O(3)	192j	0.051(3)	0.056(3)	0.171(2)	1	2.26(8)
Ag(1)	64g	0.069(2)	0.069(2)	0.069(2)	0.20(4)	2.06(5)
Ag(2)	64g	0.086(4)	0.086(4)	0.086(4)	0.14(4)	2.06(5)
Ag(3)	64g	0.107(3)	0.107(3)	0.107(3)	0.26(7)	2.06(5)
Ag(4)	64g	0.120(2)	0.120(2)	0.120(2)	0.33(8)	2.06(5)
Ag(5)	96i	0	0.234(3)	0.205(2)	0.13(1)	2.06(5)
O4	8a	0.25	0.25	0.25	0.23(2)	10(1)
O5	192j	0.941(5)	0.027(3)	0.025(3)	0.291(5)	10(1)
06	64g	0.156(8)	0.156(8)	0.156(8)	0.39(2)	10(1)

Table 5: Refined atomic parameters obtained from Rietveld analysis of hydrated silver zeolite A^c

^cLattice Parameter: a = 24.5970(4) Å, space group: Fm-3c, $\chi^2 = 1.11$, $R_{wp} = 8.59$ %, $R_p = 6.66$ %.

					T						
Bond Length/Angle					le	mperature		-	•		-
Donu Length/Angle	300 K	280 K	260 K	240 K	220 K	200 K	180 K	160 K	140 K	120 K	100 K
S: 01	1 57(2)	156(2)	156(2)	1 56(2)	1 56(2)	1 56(2)	1.56(4)	156(4)	1 56(4)	156(4)	1 56(4)
SI = OI	1.37(3) 1.68(4)	1.30(3) 1.68(4)	1.30(3) 1.68(4)	1.30(3) 1.68(4)	1.30(3)	1.30(3) 1.68(4)	1.30(4)	1.30(4) 1.67(5)	1.30(4) 1.67(5)	1.30(4) 1.67(5)	1.30(4) 1.67(5)
SI = O2 Si $O2$	1.08(4) 1.52(2)	1.08(4) 1.52(2)	1.08(4) 1.52(2)	1.00(4) 1.52(2)	1.00(4) 1.52(2)	1.00(4) 1.52(2)	1.00(4) 1.52(2)	1.07(3) 1.52(2)	1.07(3) 1.52(2)	1.07(3) 1.52(2)	1.07(3) 1.52(2)
31 - 03	1.33(2) 1.92(4)	1.33(2) 1.92(3)	1.33(2) 1.92(2)	1.33(2) 1.82(3)	1.33(2) 1.82(2)	1.33(2) 1.82(4)	1.33(2) 1.82(4)	1.33(2) 1.82(4)	1.33(2) 1.82(4)	1.33(2) 1.82(4)	1.33(2) 1.82(4)
AI = OI	1.03(4) 1.72(4)	1.82(3) 1.74(4)	1.62(3) 1.74(4)	1.62(3) 1.74(4)	1.62(3) 1.74(4)	1.02(4) 1.74(4)	1.02(4) 1.74(4)	1.02(4) 1.74(4)	1.02(4) 1.74(4)	1.02(4) 1.74(4)	1.02(4) 1.74(5)
AI = O2	1.73(4) 1.70(2)	1.74(4) 1.70(2)	1.74(3) 1.70(2)								
AI - 03	1.70(2)	1.70(2)	1.70(2)	1.70(2)	1.70(2)	1.70(2)	1.70(2)	1.70(2)	1.70(2)	1.70(2)	1.70(2)
Si – O1 – Al	148(1)	148(1)	148(1)	148(1)	148(1)	148(2)	149(1)	148(2)	148(1)	148(1)	148(2)
Si - O2 - Al	147(2)	146(2)	146(2)	146(2)	146(2)	146(2)	146(2)	146(2)	146(2)	146(2)	146(2)
Si - O3 - Al	150(1)	150(1)	150(1)	150(1)	150(1)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)
O1 - Si - O2	101(2)	101(2)	101(2)	101(2)	101(2)	101(2)	101(2)	101(2)	101(2)	101(2)	101(2)
O1 - Si - O3	110(1)	110(1)	110(1)	110(1)	110(1)	110(1)	110(1)	110(1)	110(1)	110(1)	110(1)
O2 - Si - O3	113(1)	113(1)	113(1)	113(1)	113(1)	113(1)	113(1)	113(1)	113(1)	113(1)	113(1)
O3 - Si - O3	109(2)	109(2)	109(2)	109(2)	109(2)	109(2)	109(2)	109(2)	109(2)	109(2)	109(2)
O1 - Al - O2	104(2)	104(2)	104(2)	104(2)	104(2)	104(2)	104(2)	104(2)	104(2)	104(2)	104(2)
O1 - Al - O3	109(1)	109(1)	109(1)	109(1)	109(1)	109(1)	109(1)	109(1)	109(1)	109(1)	109(1)
O2 - Al - O3	114(1)	114(1)	114(1)	114(1)	114(1)	114(1)	114(1)	114(1)	114(1)	114(1)	114(1)
O3 - Al - O3	108(2)	108(2)	108(2)	108(2)	108(2)	108(2)	108(2)	108(2)	108(2)	108(2)	108(2)
Lattice Parameter (Å)	24.5970(2)	24.5916(2)	24.5902(2)	24.5934(2)	24.5995(2)	24.5962(2)	24.5855(2)	24.5770(2)	24.5704(2)	24.5646(2)	24.5592(2)
Unit Cell Volume (Å)	14881.5(3)	14871.7(3)	14869.1(3)	14875.0(3)	14886.0(3)	14880.0(3)	14860.6(3)	14845.2(3)	14833.3(3)	14822.8(3)	14813.0(3)

Table 6: Selected Bond Distances (Å) and Angles (deg) in Hydrated AgA between 300–100 K (errors at 3σ level).