Highly Efficient Enantioselective Three-Component Synthesis of 2-Amino-4*H*-Chromenes Catalysed by Chiral Tertiary Amine-Thioureas

Gaosheng Yang,* Chongrong Luo, Xiaolong Mu, Tingting Wang, Xin-Yuan Liu*

Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui

Normal University, Wuhu, Anhui 241000, China

gshyang@mail.ahnu.edu.cn; xyliu79@gmail.com

Content

General information	S2
X-ray crystallographic analysis	S2–S4
Control experiments for mechanistic study	S5
General procedure for the enantioselective three-component reaction	S5
Characterization data for products	S6–S13
¹ H, ¹³ C NMR Spectra of the products	S14–S33
HPLC Profile of the products	

General information. All the enantioselective three-component reactions of salicylaldehyde, malononitrile/cyanoacetate with nitromethane were carried out with flame-dried Schlenk-type glassware. The chiral tertiary amino-thiourea catalysts derived from (1R, 2R)-cyclohexane-1.2-diamine were synthesized according to reference.^[1] The catalyst derived from cinchona alkaloids was synthesized according to reference.^[2] All the other reagents were purchased from commercial suppliers and purified by standard techniques. Flash column chromatography was performed using silica gel (200–400 mesh). For thin-layer chromatography (TLC), silica gel plates (HSGF 254) were used and compounds were visualized by irradiation with UV light. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded at 300 MHz NMR spectrometer in CDCl₃ or DMSO-d₆. All chemical shifts (δ) are given in ppm relative to TMS ($\delta = 0$ ppm) as internal standard. Data are reported as follows: chemical shift, multiplicity, coupling constants and integration. Melting points were uncorrected. IR spectra were reported in frequency of absorption (cm⁻¹). High resolution mass spectral (HRMS) data were obtained with an ionization mode of ESI.

References

T. Okino, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2003, **125**, 12672.
 N. Zhu, B.-C. Ma, Y. Zhang and W. Wang, Adv. Synth. Catal., 2010, **352**, 1291.

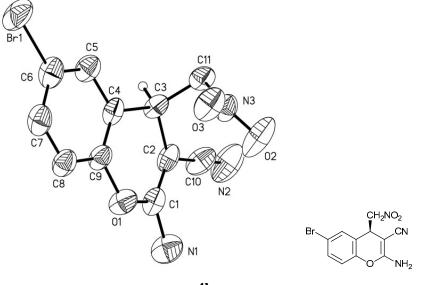
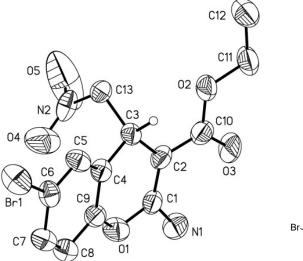
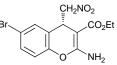
X-ray crystallographic analysis

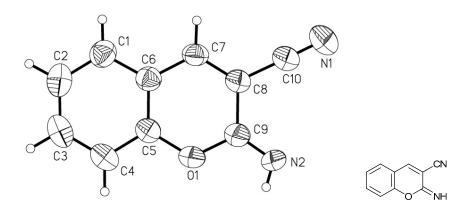
The single crystals of the products **4b**, **5b** and the intermediate **Ia** suitable for X-ray crystallographic analysis were obtained by recrystallization from dichloromethane/isopropanol, dichloromethane/n-hexane, and dichloromethane respectively. The single crystal X-ray diffraction data for the three compounds were collected on a diffractometer with graphite

monchromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) at room temperature. Saint program and SADABS program carried out the data integration. The structure was solved by a direct method and refined on F² using SHELXTL suite of program. All non-hydrogen atoms were anisotropically refined by full-matrix least squares methods. All hydrogen atoms were geometrically generated and isotropically refined using a riding model. The details of the X-ray data collection, structure solution and structure refinements are given in Table S1.

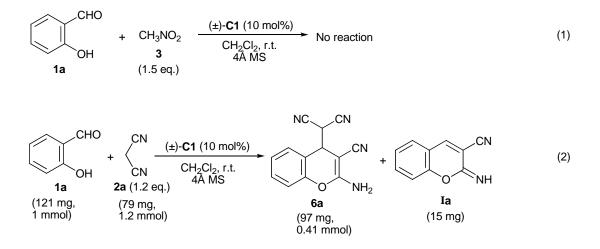
Compound	4b	5b	Ia
Formula	C ₁₁ H ₈ BrN ₃ O ₃	$C_{13}H_{13}BrN_2O_5$	$C_{10}H_6N_2O$
Formula weight	310.10	357.15	170.17
Temperature/K	293(2)	293(2)	293(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P21	P21	P21/c
a/Å	9.397(6)	5.413(2)	11.833(4)
b/Å	5.142(3)	17.675(7)	9.268(3)
$c/{ m \AA}$	12.852(8)	7.539(3)	7.280(2)
$eta/^{\circ}$	109.6(7)	96.083(5)	95.8(4)
$V/\text{\AA}^3$	584.9(6)	717.2(5)	794.2(4)
Ζ	2	2	4
μ (Mo Ka), mm ⁻¹	3.518	2.889	0.096
θ range for data collection, deg	1.7 to 27.7	2.3 to 27.5	1.7 to 27.6
Reflections collected	4955	5934	6600
Unique reflections/R _{int}	2349 / R(int) = 0.105	2951 / R(int) = 0.056	1835 / R(int) = 0.021
Goodness-of-fit on F ²	0.89	0.99	0.98
R, R _w [I > 2σ (I)]	0.0811, 0.2211	0.0547, 0.1541	0.0530, 0.1773
Residual $\rho/(e \cdot \text{\AA}^{-3})$	1.33, -0.73	1.08, -0.50	0.39, -0.42
Flack χ	0.03(3)	0.016(17)	/
CCDC No.	860045	860044	860046

Table S1Crystallographic data and structural refinement details for compound 4b, 5b and Ia.


Figure S1 X-ray structure (50 % probability ellipsoids) of 4b, 5b and Ia.

4b



5b

Ia

Scheme S1 Control experiments for mechanistic study.

General procedure for the enantioselective three-component reaction: To a solution of salicylaldehyde 1 (0.3 mmol, 1.0 equiv), malononitrile/ethyl cyanoacetate 2 (0.36 mmol, 1.2 equiv), nitromethane 3 (0.45 mmol, 1.5 equiv) and 50 mg of 4Å MS in CH_2Cl_2 (1.5 mL) at room temperature, was added catalyst C3 (0.03 mmol) in one portion. The resulting reaction mixture was stirred at room temperature and monitored by TLC. Upon completion, the solvent was removed under vacuum and the residue was purified by flash chromatography to afford the desired product.

(*R*)-2-Amino-4-(nitromethyl)-4*H*-chromene-3-carbonitrile (4a): Purified by column chromatography (petroleum ether/ethyl acetate = 3/1) to afford a yellow solid in 88% yield and 84% ee. The ee was determined by HPLC analysis using a Chiralcel OJ-H column (3/2 hexane/*i*-PrOH; flow rate 1.0 mL/min; λ = 254 nm; t_{major} = 25.8 min, t_{minor} = 19.9 min). [α]²⁰_D = -66.3 (c = 0.51, EtOAc). Mp: 139–140 °C. **IR** (KBr): ν = 3451, 3337, 2191, 1655, 1612, 1584, 1537, 1491, 1460, 1379, 1275, 1227 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.35–7.28 (m, 1H), 7.21–7.13 (m, 2H), 7.04 (d, *J* = 8.2 Hz, 1H), 4.85 (s, 2H), 4.62 (dd, *J* = 12.1, 4.7 Hz, 1H), 4.50 (dd, *J* = 12.1, 7.1 Hz, 1H), 4.37 (dd, *J* = 7.1, 4.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 161.7, 149.3, 129.6, 127.9, 125.7, 118.6, 116.9, 80.2, 54.2, 34.8 ppm. **HRMS** (ESI): calcd for C₁₁H₁₀N₃O₃ [M+H]⁺ 232.0722; found 232.0711.

(*R*)-2-Amino-6-bromo-4-(nitromethyl)-4*H*-chromene-3-carbonitrile (4b): Purified by column chromatography (petroleum ether/ethyl acetate = 3/1) to afford a white solid in 92% yield and 87% ee. The ee was determined by HPLC analysis using a Chiralcel OJ-H column (3/2 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 34.9 (major), 21.7 (minor) min). [α]_D²⁰= -15.7 (c = 0.61, EtOAc). Mp: 177–178 °C. IR (KBr): $\nu = 3456$, 3308, 2205, 1653, 1637, 1601, 1574, 1530, 1481, 1423, 1375, 1271, 1225 cm⁻¹. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 7.63$ (s, 1H), 7.49 (d, *J* = 8.7 Hz, 1H), 7.23 (s, 2H), 6.99 (d, *J* = 8.7 Hz, 1H), 4.87 (dd, *J* = 12.8, 4.8 Hz, 1H), 4.69 (dd, *J* = 12.8, 4.8 Hz, 1H), 4.33 (t, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta = 162.3$, 149.2, 132.2, 131.3, 122.4, 119.9, 118.8, 116.6, 80.8, 50.2, 34.7 ppm. HRMS (ESI): calcd for C₁₁H₉BrN₃O₃ [M+H]⁺ 309.9827; found 309.9816.

(*R*)-2-Amino-6-chloro-4-(nitromethyl)-4*H*-chromene-3-carbonitrile (4c): Purified by column chromatography (petroleum ether/ethyl acetate = 3/1) to afford a white solid in 85% yield and 82% ee. The ee was determined by HPLC analysis using a Chiralcel OJ-H column (3/2 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 33.5 (major), 18.1 (minor) min). [α]_D²⁰= -24.7 (c = 0.59, EtOAc). Mp: 165–166 °C. IR

(KBr): v = 3460, 3308, 2205, 1655, 1636, 1601, 1576, 1530, 1483, 1427, 1377, 1271, 1227 cm⁻¹. ¹H NMR(300 MHz, DMSO-*d* $₆): <math>\delta = 7.51$ (d, J = 2.5 Hz, 1H), 7.37 (dd, J = 8.7, 2.5 Hz, 1H), 7.21 (s, 2H), 7.06 (d, J = 8.7 Hz, 1H), 4.87 (dd, J = 12.6, 5.0 Hz, 1H), 4.70 (dd, J = 12.6, 4.8 Hz, 1H), 4.33 (t, J = 4.8 Hz, 1H) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta = 162.3, 148.8, 129.4, 128.7, 128.4, 122.0, 119.9, 118.5, 80.8, 50.2, 34.8$ ppm. HRMS (ESI): calcd for C₁₁H₉ClN₃O₃ [M+H]⁺ 266.0332; found 266.0320.

(*R*)-2-Amino-6-nitro-4-(nitromethyl)-4*H*-chromene-3-carbonitrile (4d): Purified by column chromatography (petroleum ether/ethyl acetate = 2/1) to afford a yellow solid in 80% yield and 81% ee. The ee was determined by HPLC analysis using a Chiralcel OJ-H column (1/3 hexane/i-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 30.0 (major), 19.3 (minor) min). [α]_D²⁰= +26.5 (c = 0.46, EtOAc). Mp: 171–172°C. **IR** (KBr): $\nu = 3449$, 3362, 2191, 1651, 1582, 1416, 1348, 1306, 1264 cm⁻¹. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 8.41$ (d, J = 2.7 Hz, 1H), 8.19 (dd, J = 9.0, 2.7 Hz, 1H), 7.38 (s, 2H), 7.27(d, J = 9.0 Hz, 1H), 4.99 (dd, J = 12.9, 4.5 Hz, 1H), 4.76 (dd, J = 12.9, 4.5 Hz, 1H), 4.48 (t, J = 4.5 Hz, 1H) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta = 161.8$, 154.4, 144.2, 125.2, 125.1, 121.6, 119.5, 118.0, 80.7, 50.3, 34.5 ppm. **HRMS** (ESI): calcd for C₁₁H₈N₄O₃Na [M+Na]⁺ 299.0392; found 299.0387.

(*R*)-2-Amino-6,8-dibromo-4-(nitromethyl)-4*H*-chromene-3-carbonitrile (4e): Purified by column chromatography (petroleum ether/ethyl acetate = 3/1) to afford a white solid in 78% yield and 96% ee. The ee was determined by HPLC analysis using a Chiralcel OJ-H column (1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 28.9 (major), 20.0 (minor) min). [α]_D²⁰= 33.8 (c = 0.55, EtOAc). Mp: 211–212°C. **IR** (KBr): $\nu = 3431$, 3316, 2207, 1659, 1614, 1541, 1458, 1418, 1377, 1246, 1196 cm⁻¹. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 7.88$ (s, 1H), 7.66 (s, 1H), 7.38 (s, 2H), 4.90 (dd, *J* = 12.8, 4.7 Hz, 1H), 4.72 (dd, *J* = 12.8, 4.7 Hz, 1H), 4.38 (t, *J* = 4.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta = 161.4$, 145.9, 134.3, 130.4, 123.5, 118.9, 116.2, 110.5, 80.1, 50.1, 34.6 ppm. **HRMS** (ESI): calcd for C₁₁H₇Br₂N₃O₃Na [M+Na]⁺ 409.8752; found

409.8751.

(*R*)-2-Amino-6,8-dichloro-4-(nitromethyl)-4*H*-chromene-3-carbonitrile (4f): Purified by column chromatography (petroleum ether/ethyl acetate = 3/1) to afford a yellow solid in 75% yield and 80% ee. The ee was determined by HPLC analysis using a Chiralcel OJ-H column (1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 30.6 (major), 17.0 (minor) min). Mp: 208–209°C. **IR** (KBr): v = 3428, 3318, 2210, 1661, 1616, 1572, 1541, 1464, 1423, 1381, 1248, 1200 cm⁻¹. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 7.67$ (d, *J* = 2.4 Hz, 1H), 7.52 (d, *J* = 2.4 Hz, 1H), 7.39 (s, 2H), 4.91 (dd, *J* = 12.9, 4.8 Hz, 1H), 4.72 (dd, *J* = 12.9, 4.8 Hz, 1H), 4.38 (t, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta = 161.3$, 144.5, 128.9, 128.2, 127.0, 123.2, 121.2, 119.0, 80.1, 49.9, 34.5 ppm. **HRMS** (ESI): calcd for C₁₁H₈Cl₂N₃O₃ [M+H]⁺ 299.9942; found 299.9936.

(*R*)-2-Amino-5-methoxy-4-(nitromethyl)-4*H*-chromene-3-carbonitrile (4g): Purified by column chromatography (petroleum ether/ethyl acetate = 3/1) to afford a yellow solid in 64% yield and 83% ee. The ee was determined by HPLC analysis using a Chiralcel OJ-H column (1/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 20.7 (major), 16.1 (minor) min). [α]_D²⁰= -29.2 (c = 0.52, EtOAc). Mp: 139–140°C. **IR** (KBr): $\nu = 3445$, 3331, 2191, 1651, 1635, 1618, 1599, 1487, 1472, 1423, 1253, 1090 cm⁻¹. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 7.30$ (t, *J* = 8.3 Hz, 1H), 7.16 (s, 2H), 6.85 (d, *J* = 8.3 Hz, 1H), 6.64 (d, *J* = 8.3 Hz, 1H), 4.67–4.56 (m, 2H), 4.24 (t, *J* = 4.7 Hz, 1H), 3.83 (s, 3H) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta = 162.5$, 156.7, 150.7, 130.0, 120.2, 108.9, 108.2, 107.3, 79.6, 56.6, 50.7, 31.7 ppm. **HRMS** (ESI): calcd for C₁₂H₁₂N₃O₄ [M+H]⁺ 262.0828; found 262.0820.

2-Amino-4-(1-nitroethyl)-4H-chromene-3-carbonitrile (4h): Purified by column chromatography (petroleum ether/ethyl acetate = 3/1) to afford a white solid in 88% yield, 43/57 dr and 58% ee₁, 75% ee₂. The ee was determined by HPLC analysis using a Chiralcel OJ-H column (9/1 hexane/*i*-PrOH; flow rate 1.0

mL/min; $\lambda = 254$ nm; $t_R = 65.4$ (major₁), 74.8 (minor₁), 100.0 (major₂), 84.2 (minor₂) min). $[\alpha]_D^{20} = -35.9$ (c = 1.03, EtOAc). Mp: 138–139°C. **IR** (KBr): v = 3319, 3269, 2197, 1638, 1605, 1578, 1541, 1487, 1456, 1420, 1389, 1362 cm⁻¹. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 7.39-7.13$ (m, 5H), 7.10–7.01 (m, 1H), 4.87–4.71 (m, 1H), 4.29–4.18 (m, 1H), 1.38–1.26 (m, 3H) ppm. ¹³C NMR (75.5 MHz, DMSO-*d*₆): $\delta = 163.2$, 163.0, 149.9, 149.8, 129.1, 128.5, 128.3, 124.8, 120.2, 119.81, 119.79, 119.4, 116.1, 115.9, 87.3, 86.9, 49.2, 48.4, 14.1, 13.5 ppm. **HRMS** (ESI): calcd for C₁₂H₁₂N₃O₃ [M + H]⁺ 246.0878; found 246.0870.

(*S*)-Ethyl 2-amino-4-(nitromethyl)-4*H*-chromene-3-carboxylate (5a): Purified by column chromatography (petroleum ether/ethyl acetate = 10/1) to afford a white solid in 76% yield and 87% ee. The ee was determined by HPLC analysis using a Chiralcel OJ-H column (3/2 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 20.7 (major), 13.8 (minor) min). $[\alpha]_D^{20} = 87.7$ (c = 0.9, EtOAc). Mp: 109–110°C. **IR** (KBr): $\nu = 3451$, 3316, 1672, 1630, 1537, 1512, 1485, 1456, 1410, 1381, 1300 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.31-7.24$ (m, 1H), 7.21–7.09 (m, 2H), 7.05–6.99 (m, 1H), 6.82–5.88 (br s, 2H), 4.65 (dd, J = 8.0, 4.4 Hz, 1H), 4.54 (dd, J = 11.2, 4.4 Hz, 1H), 4.39 (dd, J = 11.2, 8.0 Hz, 1H), 4.30–4.19 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 168.3$, 162.0, 149.8, 128.9, 128.2, 125.0, 121.8, 116.3, 81.2, 73.0, 59.9, 34.3, 14.5 ppm. **HRMS** (ESI): calcd for C₁₃H₁₅N₂O₅ [M+H]⁺ 279.0981; found 279.0969.

(*S*)-Ethyl 2-amino-6-bromo-4-(nitromethyl)-4*H*-chromene-3-carboxylate (5b): Purified by column chromatography (petroleum ether/ethyl acetate = 10/1) to afford a white solid in 83% yield and 91% ee. The ee was determined by HPLC analysis using a Chiralcel OJ-H column/OJ-H column (8/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 111.2 (major), 127.1 (minor) min). $[\alpha]_D^{20} = 35.9$ (c = 1.38, EtOAc). Mp: 128–129°C. **IR** (KBr): $\nu = 3462$, 3306, 1676, 1616, 1541, 1477, 1410, 1379, 1315, 1290, 1221 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.38$ (dd, J = 8.7, 2.4 Hz, 1H), 7.34 (d, J = 2.4 Hz, 1H), 6.91 (d, J = 8.7 Hz, 1H), 6.80–5.88 (br s, 2H), 4.59 (dd, J = 7.5, 4.2 Hz, 1H), 4.50 (dd, J = 11.7, 4.2 Hz, 1H), 4.43 (dd, J = 11.7, 7.5 Hz,

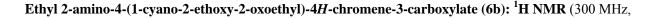
1H), 4.30–4.18 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 167.9$, 161.5, 148.9, 131.7, 130.8, 123.8, 117.8, 117.2, 80.6, 72.4, 59.9, 33.8, 14.3 ppm. HRMS (ESI): calcd for C₁₃H₁₄BrN₂O₅ [M+H]⁺ 357.0086; found 357.0074.

(*S*)-Ethyl 2-amino-6-chloro-4-(nitromethyl)-4*H*-chromene-3-carboxylate (5c): Purified by column chromatography (petroleum ether/ethyl acetate = 10/1) to afford a white solid in 76% yield and 84% ee. The ee was determined by HPLC analysis using a Chiralcel AS-H column (11/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 23.7 (major), 27.1 (minor) min). [α]_D²⁰= 29.1 (c = 1.05, EtOAc). Mp: 141–142°C. **IR** (KBr): *v* = 3474, 3312, 2982, 1678, 1620, 1541, 1518, 1483, 1418, 1377, 1317, 1292, 1221 cm⁻¹. ¹**H NMR** (300 MHz, CDCl₃): δ = 7.24 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.19 (d, *J* = 2.4 Hz, 1H), 6.96 (d, *J* = 8.7 Hz, 1H), 6.82–5.95 (br s, 2H), 4.59 (dd, *J* = 7.5, 4.2 Hz, 1H), 4.52 (dd, *J* = 11.6, 4.2 Hz, 1H), 4.43 (dd, *J* = 11.6, 7.5 Hz, 1H), 4.30–4.18 (m, 2H), 1.34 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 167.9, 161.5, 148.3, 129.8, 127.8, 123.3, 117.5, 80.6, 72.3, 59.9, 33.9, 14.3 ppm. HRMS (ESI): calcd for C₁₃H₁₄ClN₂O₅ [M+H]⁺ 313.0591; found 313.0578.

(*S*)-Ethyl 2-amino-6,8-dibromo-4-(nitromethyl)-4*H*-chromene-3-carboxylate (5d): Purified by column chromatography (petroleum ether/ethyl acetate = 10/1) to afford a white solid in 78% yield and 89% ee. The ee was determined by HPLC analysis using a Chiralpak AS-H column/AS-H column (16/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 69.6 (major), 80.2 (minor) min). [α]_D²⁰= 14.3 (c = 0.88, EtOAc). Mp: 187–188°C. **IR** (KBr): $\nu = 3458$, 3318, 1678, 1614, 1572, 1541, 1520, 1454, 1400, 1385, 1344, 1315, 1279, 1248 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.65$ (d, J = 2.1 Hz, 1H), 7.29 (d, J = 2.1 Hz, 1H), 6.97–5.79 (br s, 2H), 4.62 (dd, J = 7.8, 4.2 Hz, 1H), 4.51 (dd, J = 11.8, 4.3 Hz, 1H), 4.41 (dd, J = 11.8, 7.9 Hz, 1H), 4.25 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 167.7$, 161.3, 146.2, 135.0, 130.1, 125.2, 117.4, 111.2, 80.5, 72.7, 60.2, 34.4, 14.4 ppm. **HRMS** (ESI): calcd for C₁₃H₁₃Br₂N₂O₅ [M+H]⁺

434.9191; found 434.9182.

(*S*)-Ethyl 2-amino-6,8-dichloro-4-(nitromethyl)-4*H*-chromene-3-carboxylate (5e): Purified by column chromatography (petroleum ether/ethyl acetate = 10/1) to afford a white solid in 81% yield and 77% ee. The ee was determined by HPLC analysis using a Chiralpak AS-H column/AS-H column (30/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 115.5 (major), 132.3 (minor) min). [α]_D²⁰= 30.7 (c = 1.08, EtOAc). Mp: 148–149°C. **IR** (KBr): v = 3468, 3316, 1678, 1616, 1582, 1541, 1460, 1404, 1387, 1317, 1279, 1252 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.35$ (d, J = 2.4 Hz, 1H), 7.10 (d, J = 2.4 Hz, 1H), 6.96–5.72 (br s, 2H), 4.62 (dd, J = 7.8, 4.2 Hz, 1H), 4.52 (dd, J = 11.8, 4.2 Hz, 1H), 4.41 (dd, J = 11.8, 7.9 Hz, 1H), 4.31–4.20 (m, 2H), 1.34 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 167.7$, 161.3, 144.7, 129.8, 129.4, 126.5, 124.9, 122.5, 80.5, 72.5, 60.2, 34.4, 14.4 ppm. HRMS (ESI): calcd for C₁₃H₁₃Cl₂N₂O₅ [M+H]⁺ 347.0201; found 347.0190.

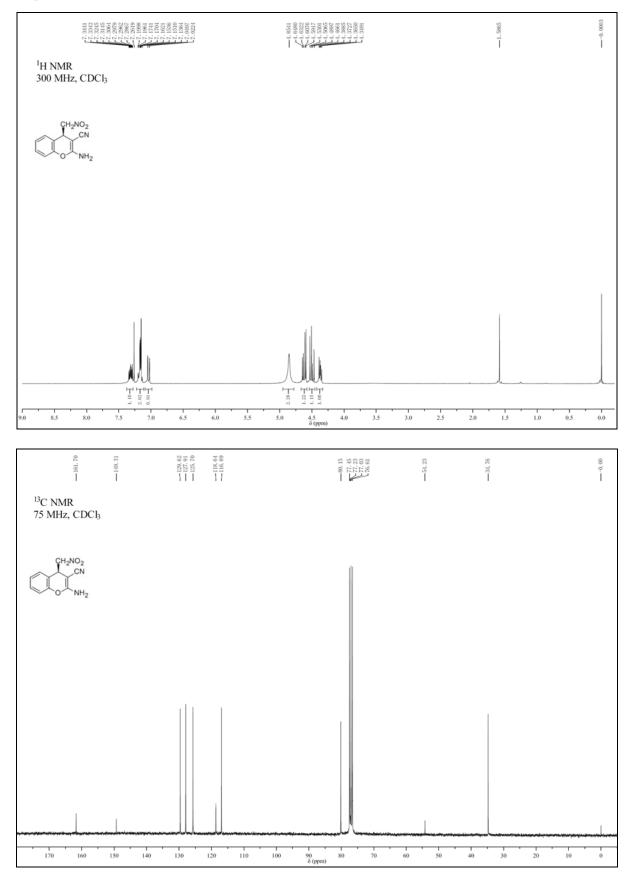

(*S*)-Ethyl 2-amino-6-methoxy-4-(nitromethyl)-4*H*-chromene-3-carboxylate (5f): Purified by column chromatography (petroleum ether/ethyl acetate = 10/1) to afford a white solid in 86% yield and 77% ee. The ee was determined by HPLC analysis using a Chiralcel OJ-H column/OJ-H column (2/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 45.4 (major), 55.7 (minor) min). [α]_D²⁰= 63.9 (c = 0.97, EtOAc). Mp: 109–110°C. **IR** (KBr): $\nu = 3422$, 3292, 2982, 1674, 1620, 1597, 1547, 1491, 1414, 1379, 1344, 1292, 1271, 1221 cm⁻¹. ¹**H** NMR (300 MHz, CDCl₃): $\delta = 6.94$ (d, J = 9.0 Hz, 1H), 6.80 (dd, J = 9.0, 3.0 Hz, 1H), 6.68 (d, J = 3.0 Hz, 1H), 6.62–5.99 (br s, 2H), 4.62 (dd, J = 8.0, 4.4 Hz, 1H), 4.53 (dd, J = 11.4, 4.4 Hz, 1H), 4.39 (dd, J = 11.3, 8.0 Hz, 1H), 4.29–4.18 (m, 2H), 3.76 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 168.2$, 162.1, 156.3, 143.6, 122.3, 116.9, 114.7, 112.0, 80.9, 72.3, 59.7, 55.5, 34.5, 14.3 ppm. HRMS (ESI): calcd for C₁₄H₁₇N₂O₆ [M+H]⁺ 309.1086; found 309.1080.

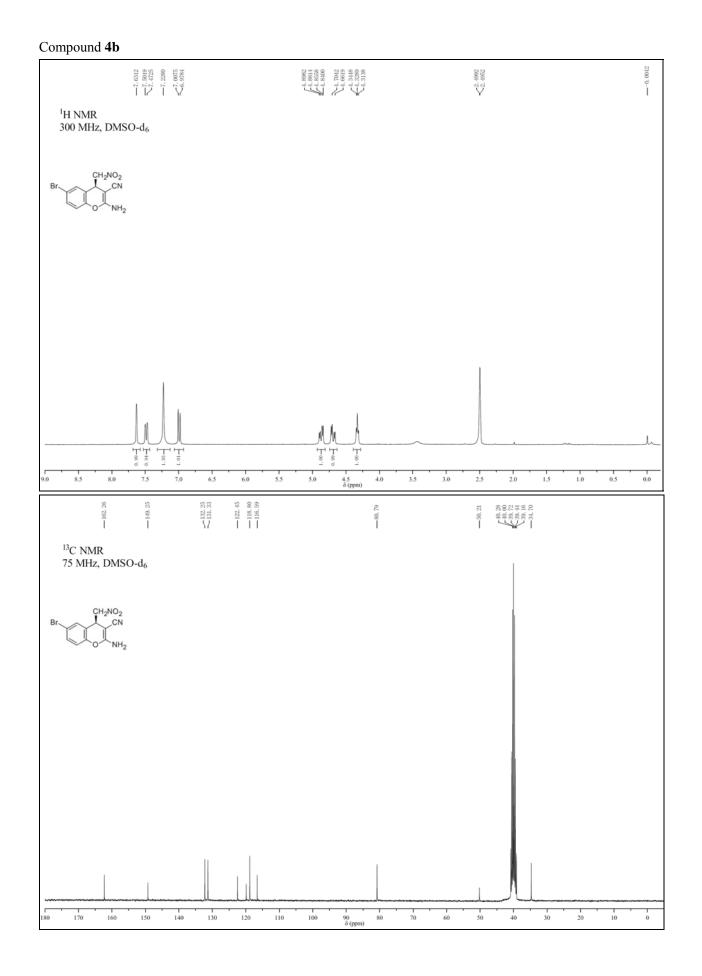
(S)-Ethyl 2-amino-5,7-dichloro-4-(nitromethyl)-4H-chromene-3-carboxylate (5g): Purified by column

chromatography (petroleum ether/ethyl acetate = 4/1) to afford a white solid in 76% yield and 87% ee. The ee was determined by HPLC analysis using a Chiralcel AS-H column (40/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 24.9 (major), 21.1 (minor) min). [α]_D²⁰= 73.5 (c = 0.49, EtOAc). Mp: 105–106°C. **IR** (KBr): v = 3443, 3312, 2982, 1682, 1633, 1603, 1550, 1520, 1462, 1408, 1379, 1301, 1261, 1219 cm⁻¹. ¹**H NMR** (300 MHz, CDCl₃): $\delta = 7.25$ (d, J = 2.0 Hz, 1H), 6.99 (d, J = 2.0 Hz, 1H), 6.80–5.90 (br s, 2H), 4.73–4.63 (m, 2H), 4.42–4.18 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H) ppm. ¹³C **NMR** (75 MHz, CDCl₃): $\delta = 167.8$, 161.2, 151.6, 134.4, 133.4, 125.6, 118.9, 115.8, 78.3, 72.6, 60.2, 32.8, 14.5 ppm. **HRMS** (ESI): calcd for C₁₃H₁₃N₂O₃Cl₂ [M+H]⁺ 347.0201; found 347.0196.

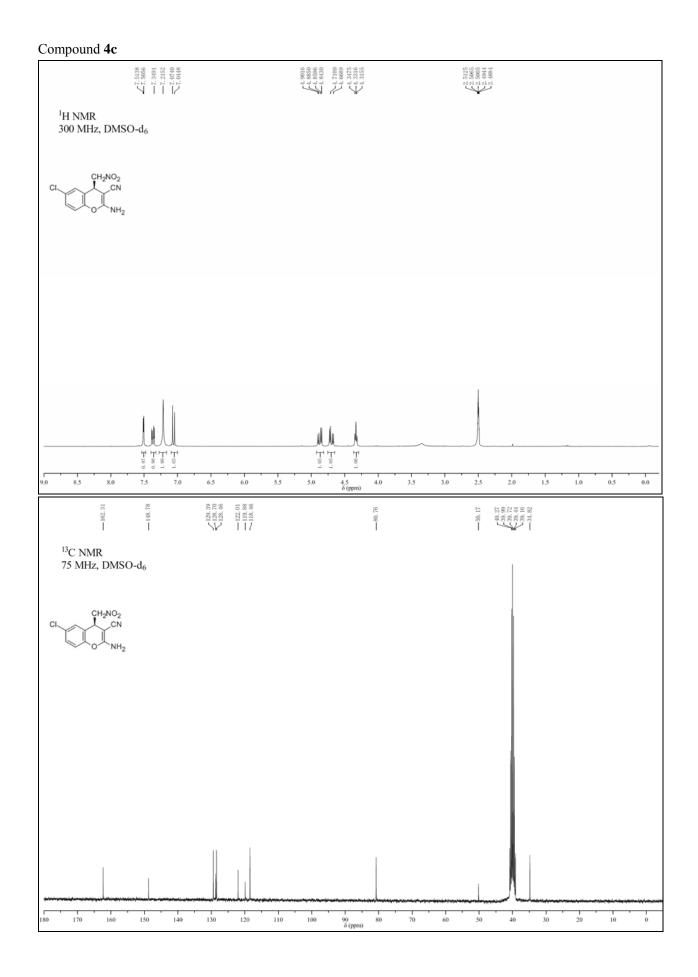
(*S*)-Ethyl 2-amino-5-methoxy-4-(nitromethyl)-4*H*-chromene-3-carboxylate (5h): Purified by column chromatography (petroleum ether/ethyl acetate = 6/1) to afford a yellow solid in 41% yield and 61% ee. The ee was determined by HPLC analysis using a Chiralcel AS-H column (16/1 hexane/*i*-PrOH; flow rate 1.0 mL/min; $\lambda = 254$ nm; t_R = 54.8 (major), 43.2 (minor) min). [α]_D²⁰= 35.9 (c = 0.58, EtOAc). Mp: 104–105°C. **IR** (KBr): $\nu = 3441$, 3308, 2982, 1682, 1643, 1545, 1524, 1470, 1439, 1283, 1223, 1202, 1097, 1070 cm⁻¹. ¹**H NMR** (300 MHz, CDCl₃): $\delta = 7.22$ (t, J = 8.3 Hz, 1H), 6.67 (d, J = 8.3 Hz, 1H), 6.63 (d, J = 8.3 Hz, 1H), 4.68–4.58 (m, 3H), 4.32–4.15 (m, 2H), 3.88 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H) ppm. ¹³C **NMR** (75 MHz, CDCl₃): $\delta = 168.6$, 161.8, 156.6, 151.0, 128.9, 110.3, 108.7, 106.0, 79.2, 73.1, 59.8, 55.7, 30.3, 14.5 ppm. **HRMS** (ESI): calcd for C₁₄H₁₇N₂O₆ [M+H]⁺ 309.1086; found 309.1084.

2-(2-Amino-3-cyano-4H-chromen-4-yl)malononitrile (6a): ¹H NMR (300 MHz, DMSO-d₆): δ = 7.50 (s, 2H), 7.47–7.40 (m, 2H), 7.33–7.23 (m, 1H), 7.17–7.10 (m, 1H), 5.06 (d, J = 3.9 Hz, 1H), 4.59 (d, J = 3.9 Hz, 1H) ppm. ¹³C NMR (75 MHz, DMSO-d₆): δ = 163.9, 150.2, 130.7, 129.4, 125.5, 119.8, 118.5, 116.9, 113.6, 113.4, 49.4, 37.6, 32.9 ppm.

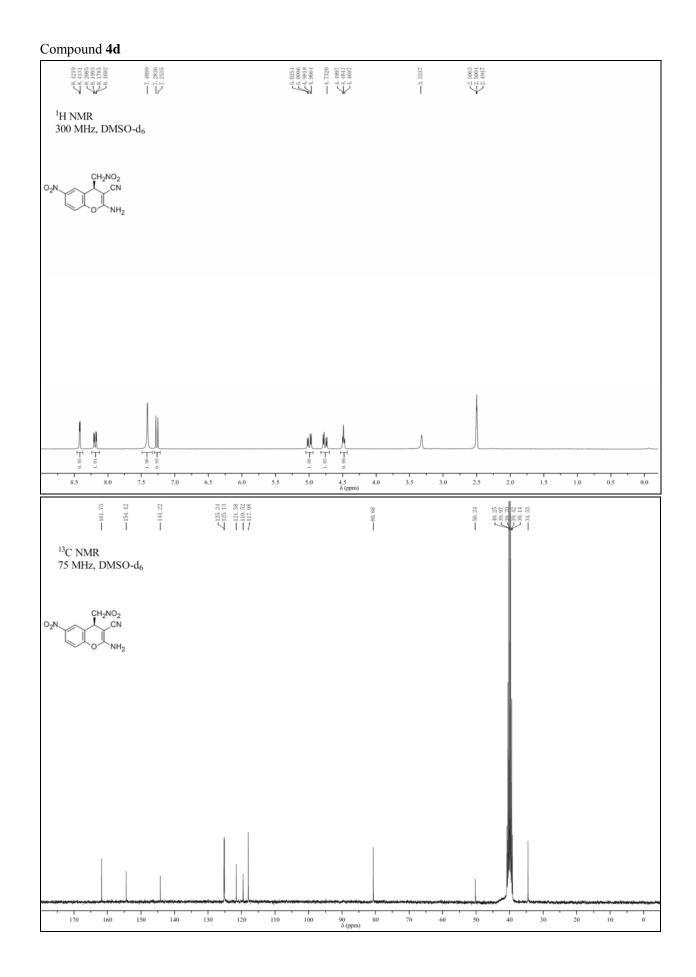

CDCl₃): δ = 7.31–7.27 (m, 1H), 7.12–7.05 (m, 3H), 6.81–5.90 (br s, 2H), 4.72 (d, J = 3.0 Hz, 1H), 4.30–4.22 (m, 4H), 3.98 (d, J = 3.0 Hz, 1H), 1.35 (t, J = 7.2 Hz, 3H), 1.28 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 168.1, 165.2, 162.6, 150.6, 129.4, 128.3, 124.8, 120.3, 116.7, 115.6, 73.6, 62.8, 60.0, 46.8, 37.0, 14.6, 14.1 ppm.

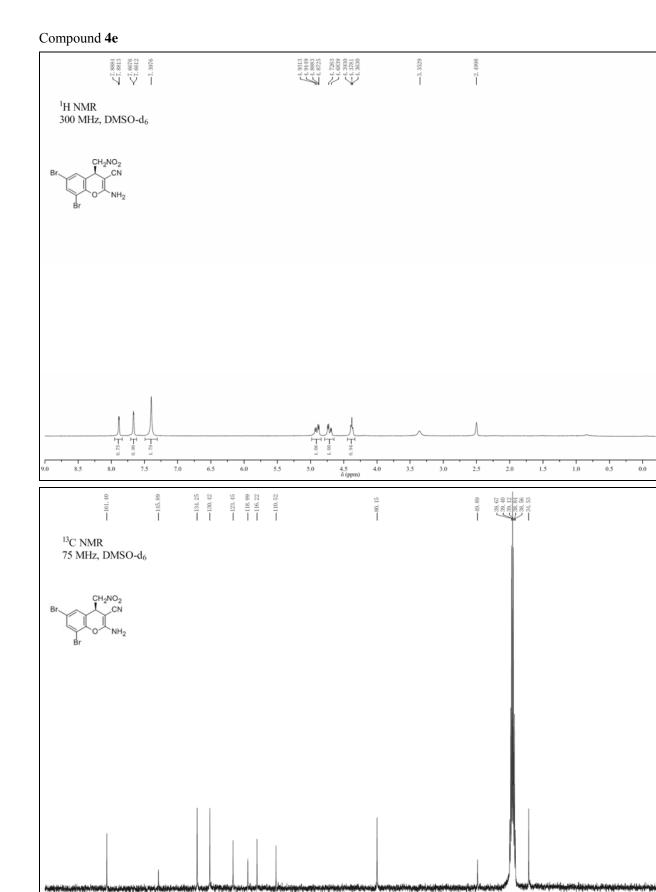

2-Imino-2*H***-chromene-3-carbonitrile (Ia): ¹H NMR** (300 MHz, CDCl₃): δ = 8.29 (s, 1H), 7.77–7.71 (m, 1H), 7.65–7.60 (m, 1H), 7.46–7.39 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 156.4, 154.6, 151.8, 135.6, 129.3, 125.7, 117.5, 117.1, 113.5, 103.4 ppm.

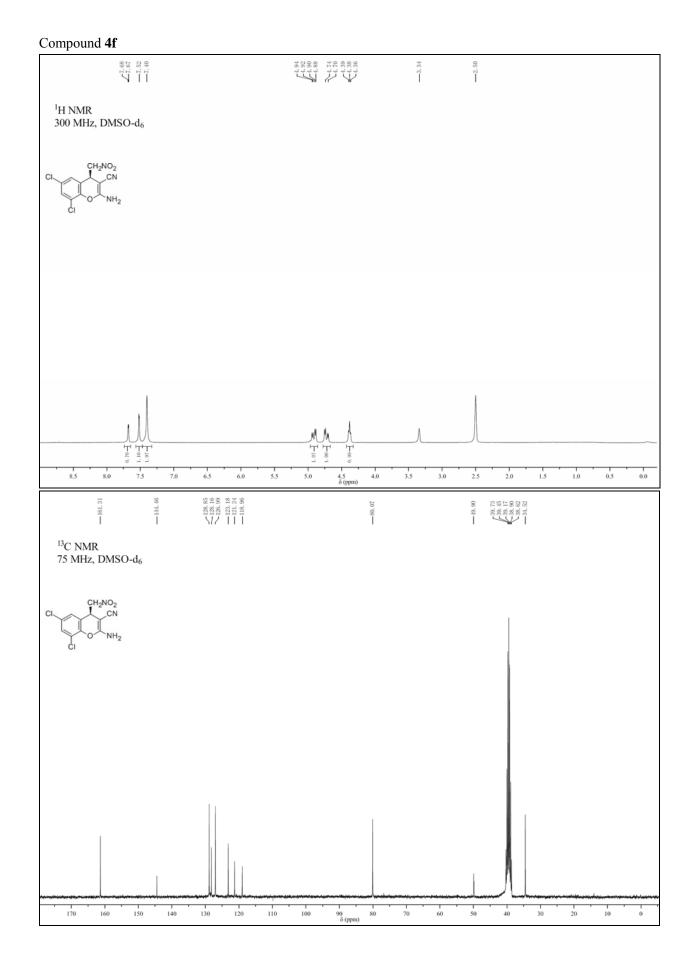
Ethyl 2-imino-2H-chromene-3-carboxylate (Ib): ¹**H NMR** (300 MHz, CDCl₃): δ = 8.53 (s, 1H), 7.70–7.60 (m, 2H), 7.40–7.28 (m, 2H), 4.42 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H) ppm. ¹³**C NMR** (75 MHz, CDCl₃): δ = 163.1, 156.7, 155.2, 148.5, 134.3, 129.5, 124.8, 118.4, 117.9, 116.8, 62.0, 14.2 ppm.

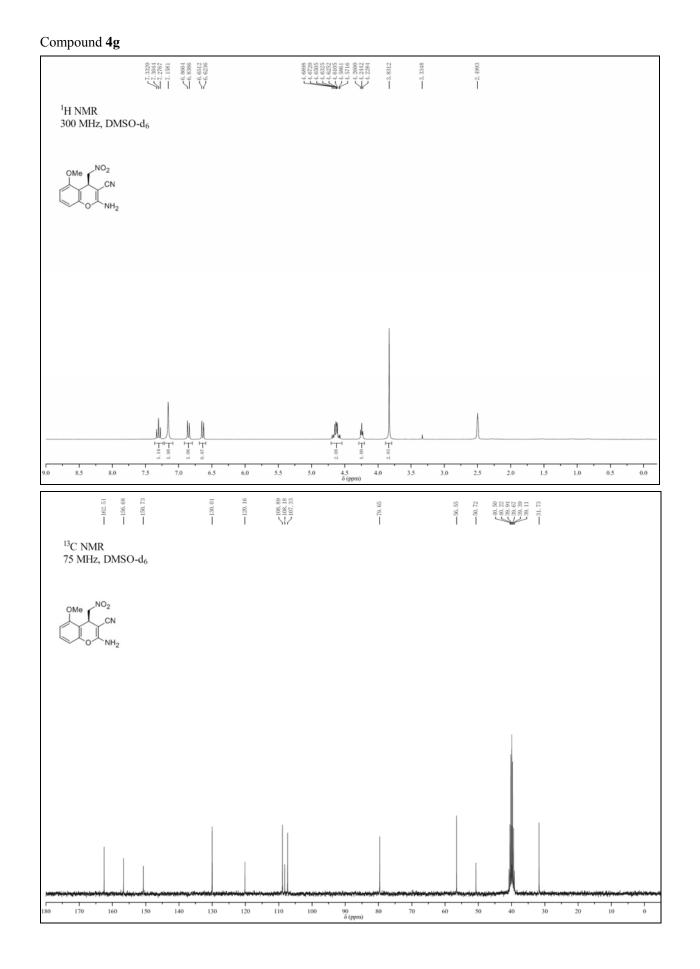

¹H, ¹³C NMR Spectra

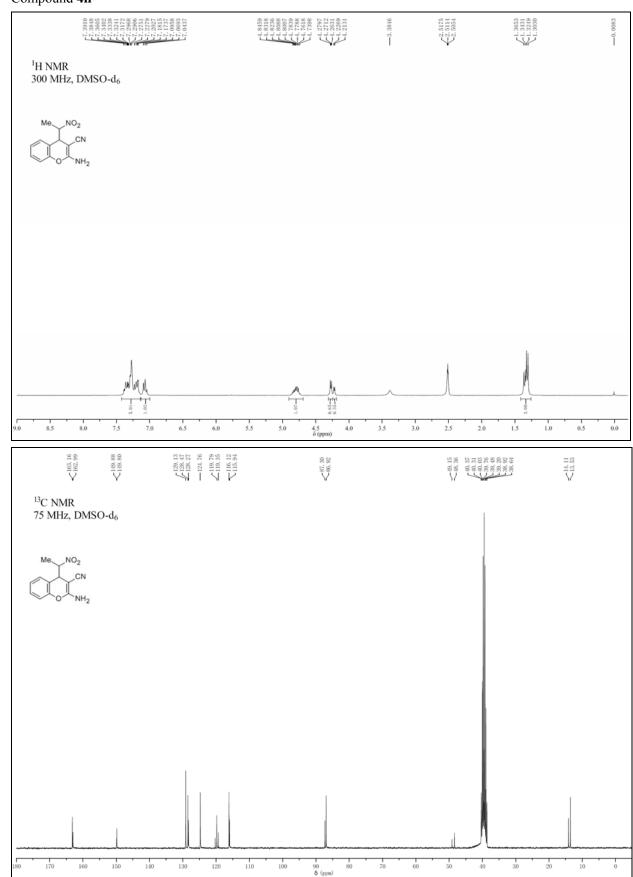
Compound 4a

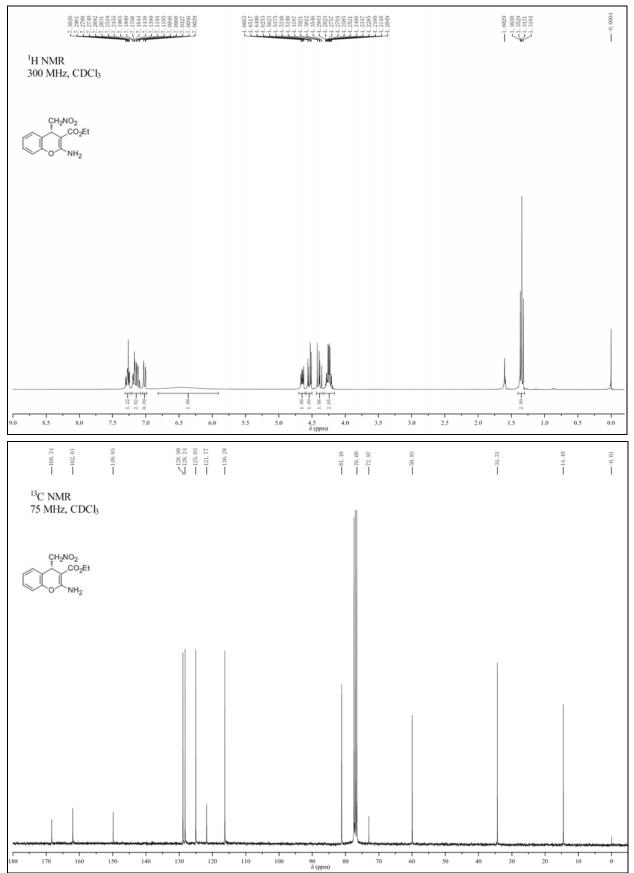


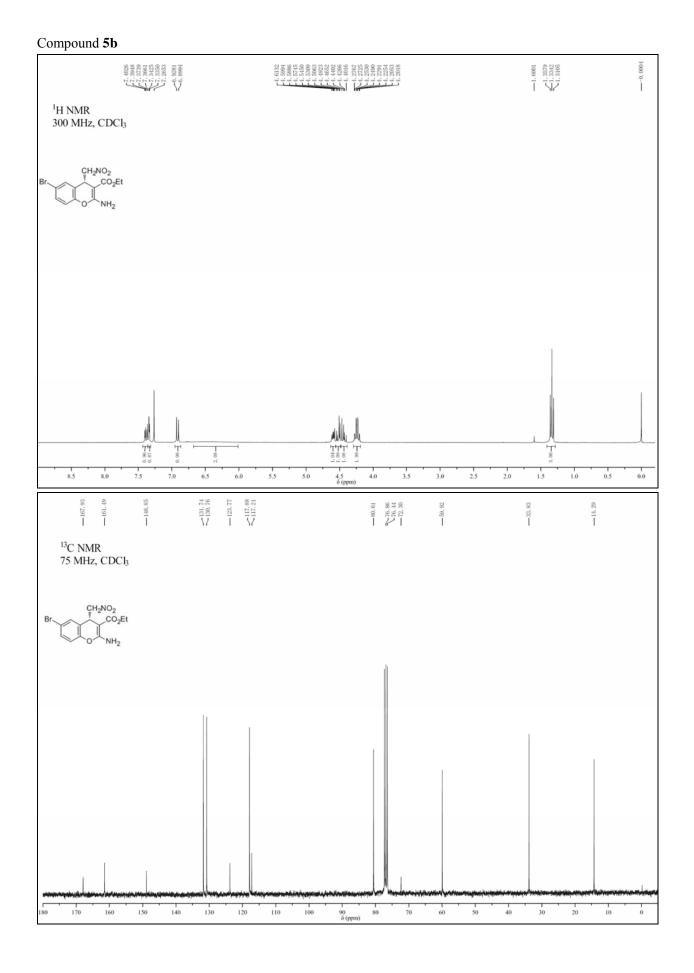


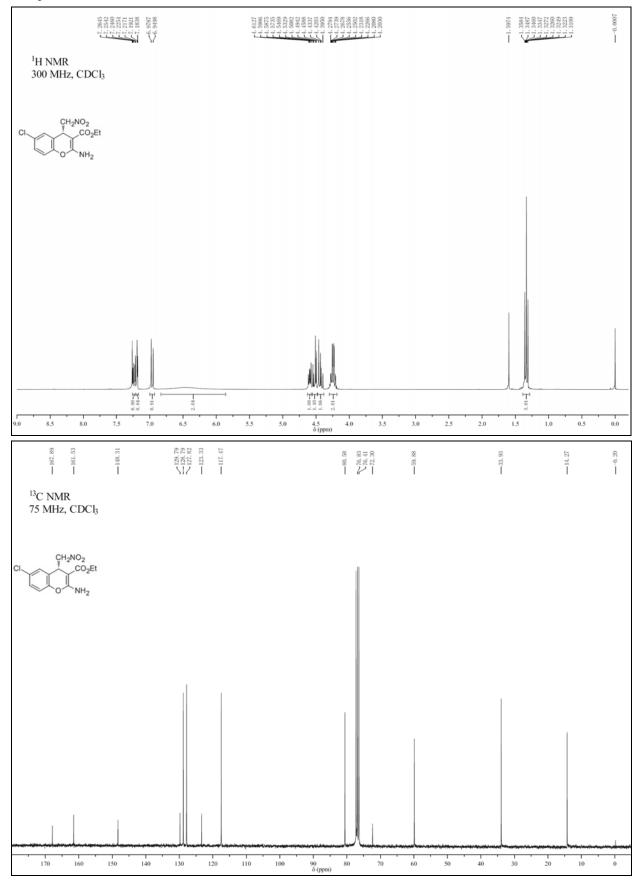

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

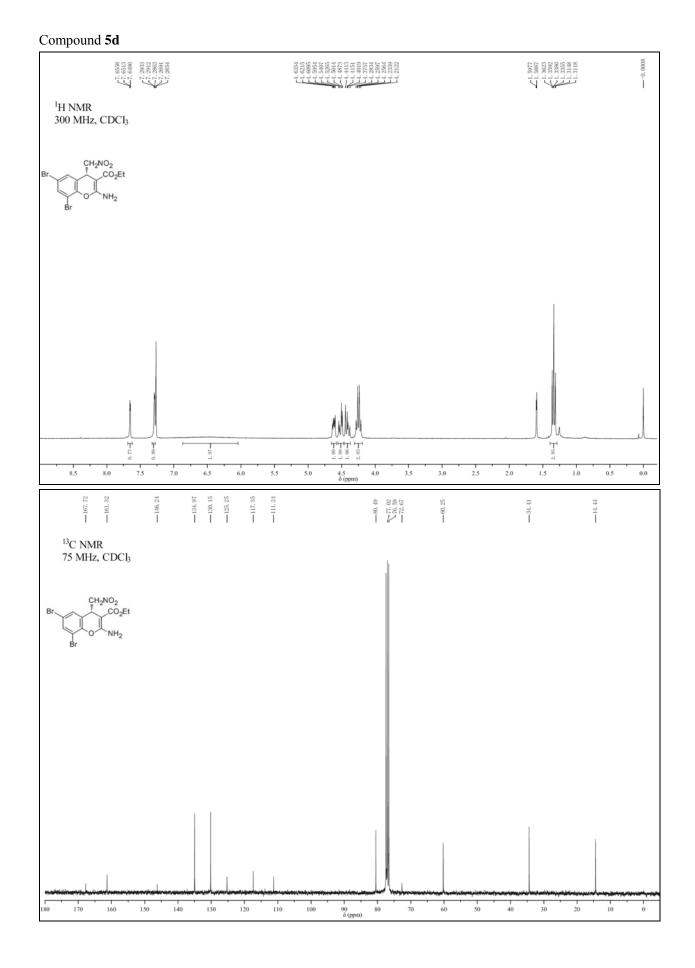


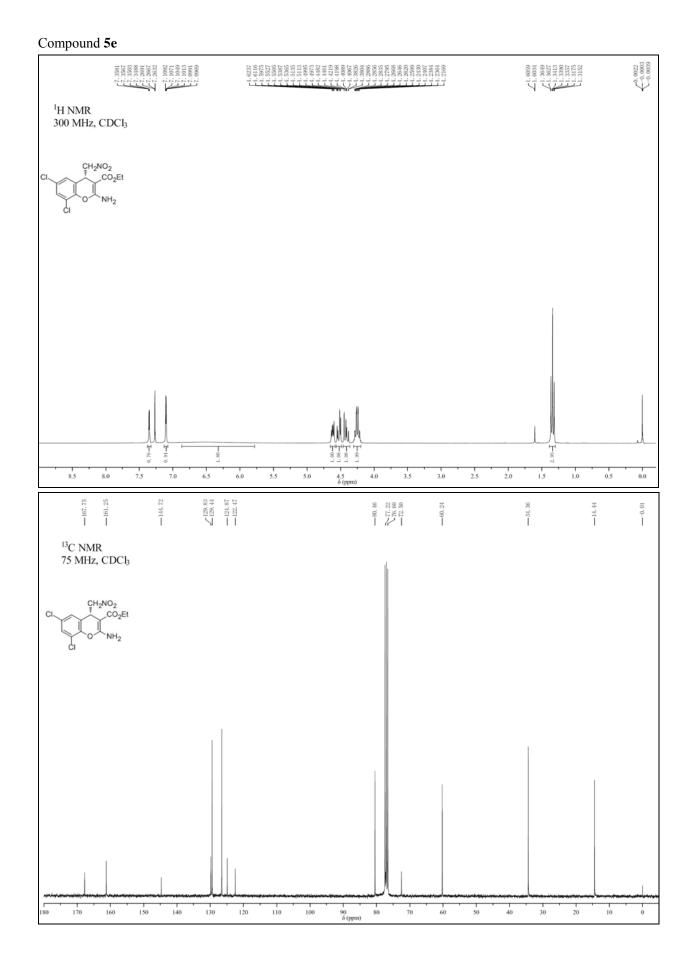

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

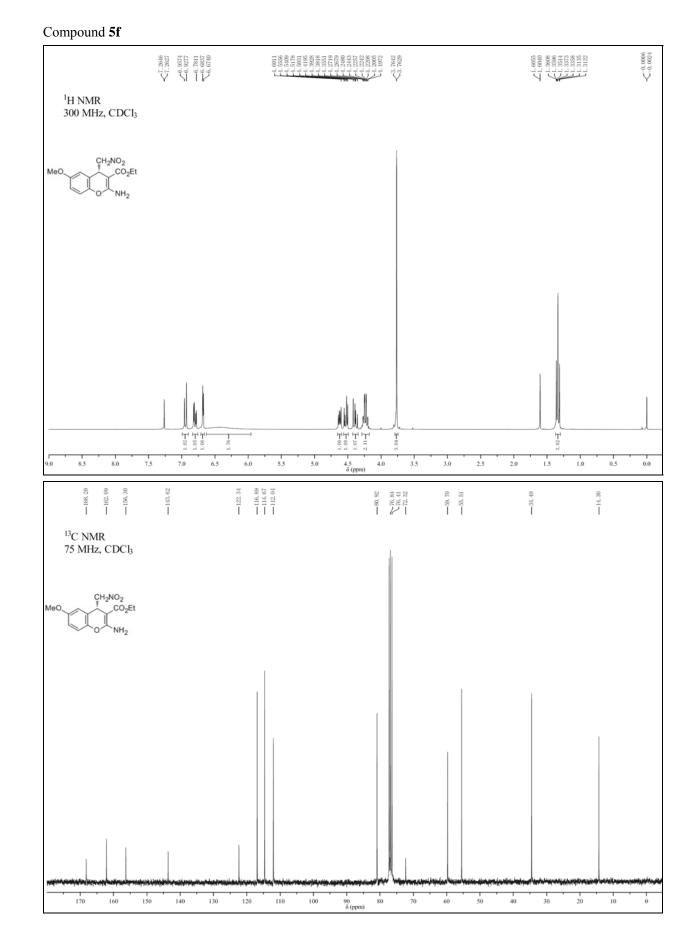

90 80 δ (ppm)

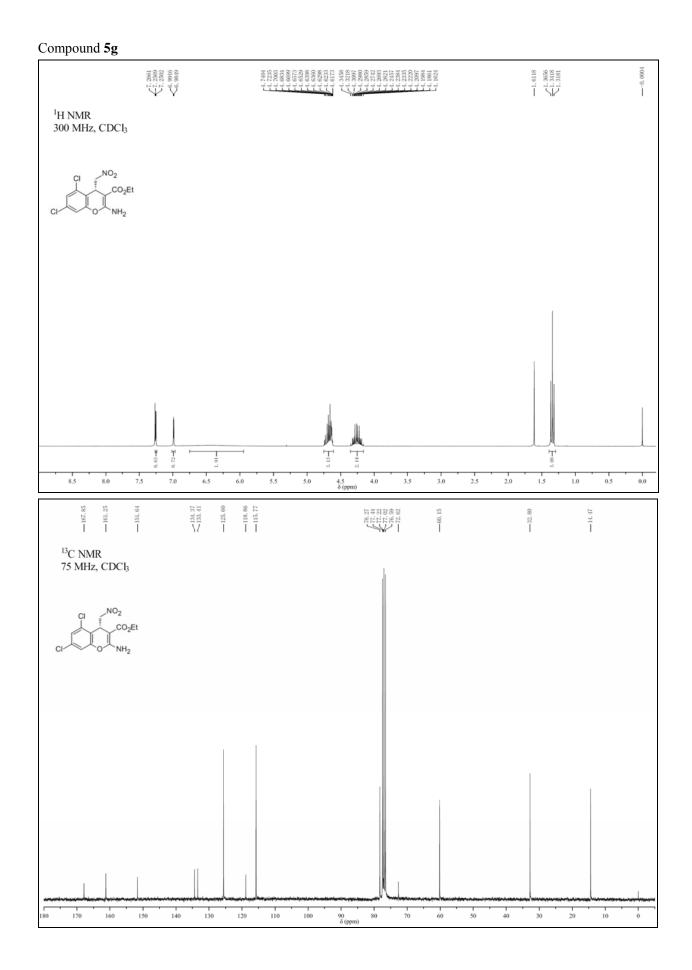


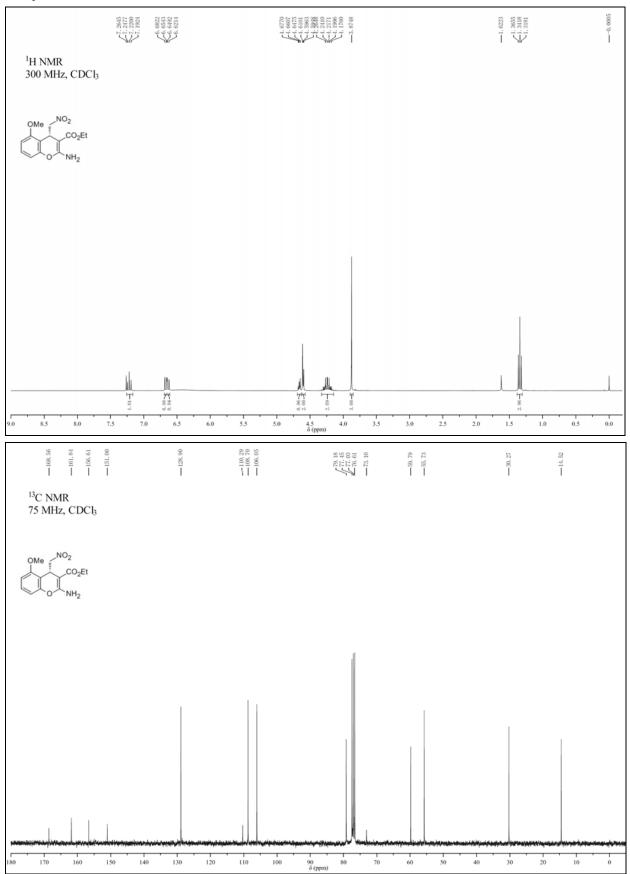

Compound 4h

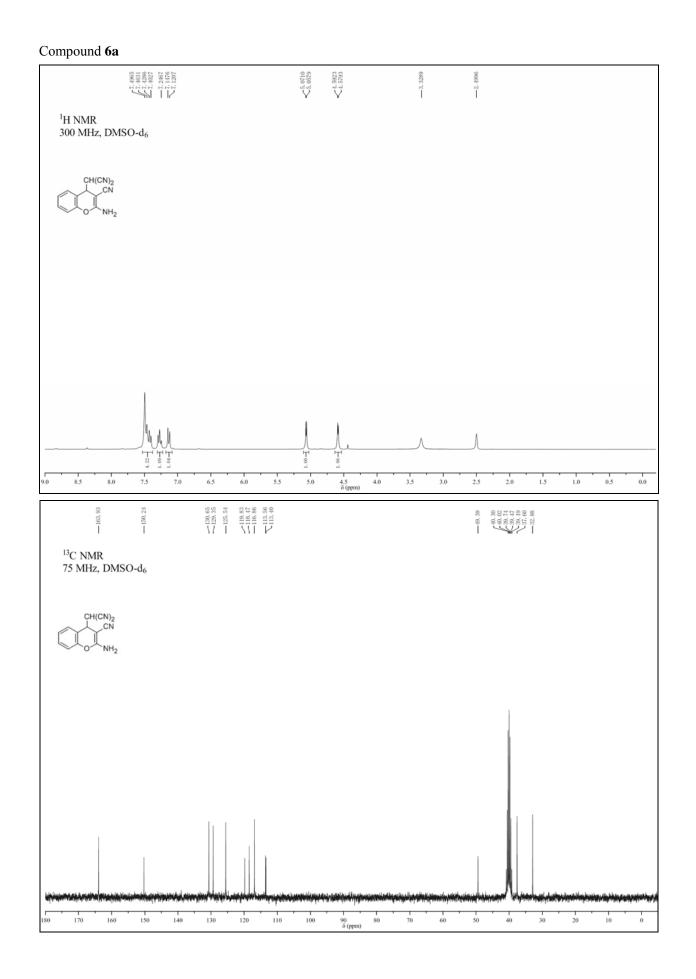




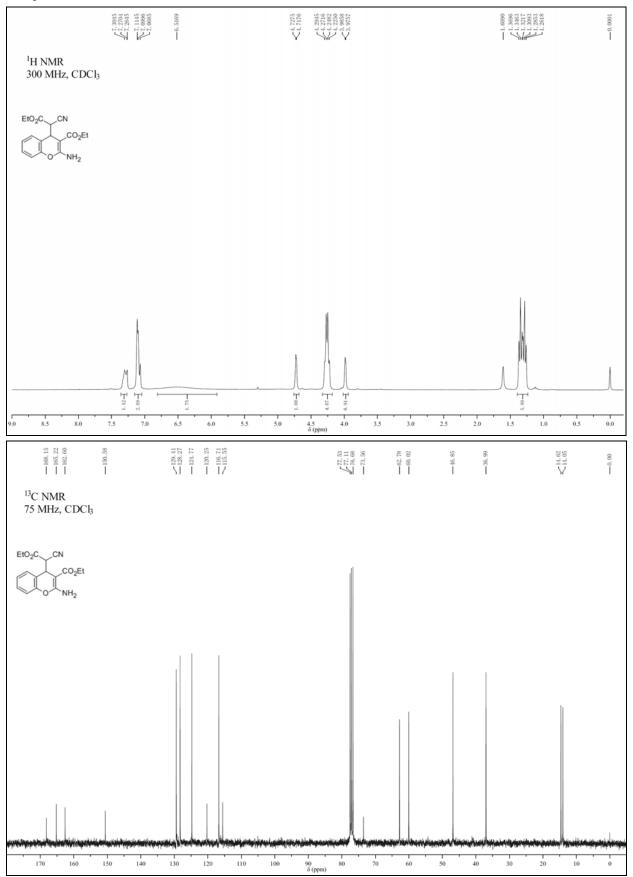


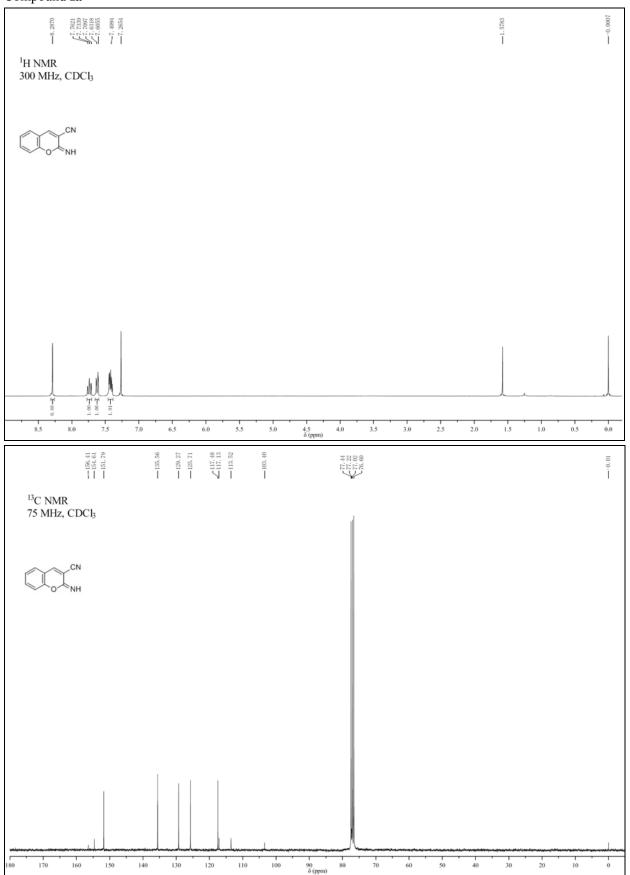


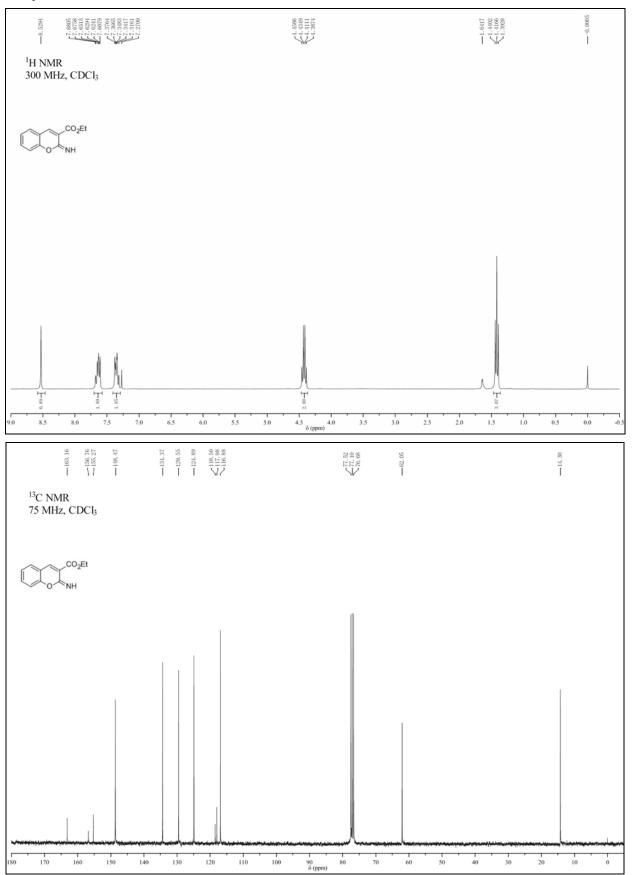

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

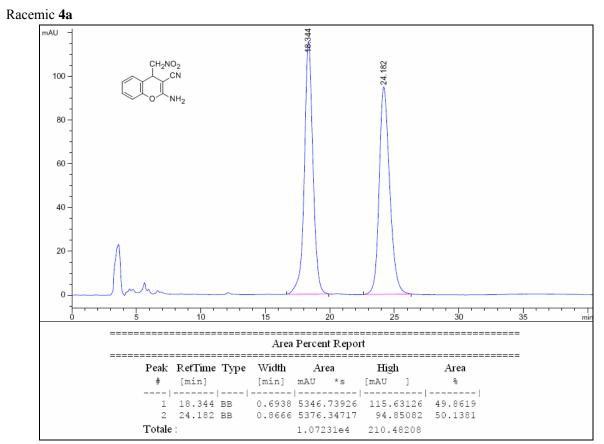


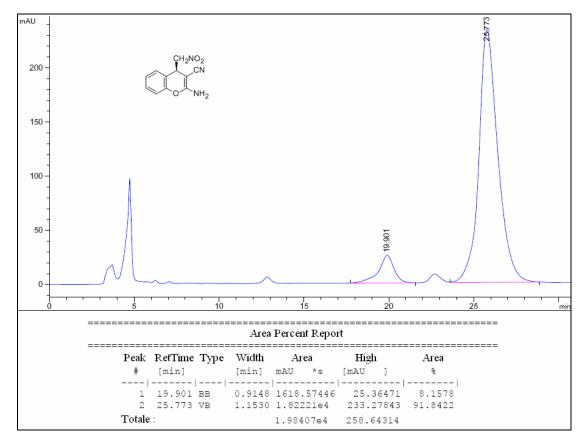
Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

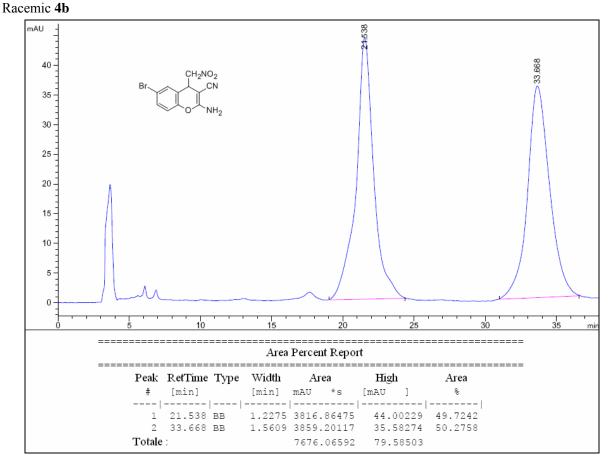




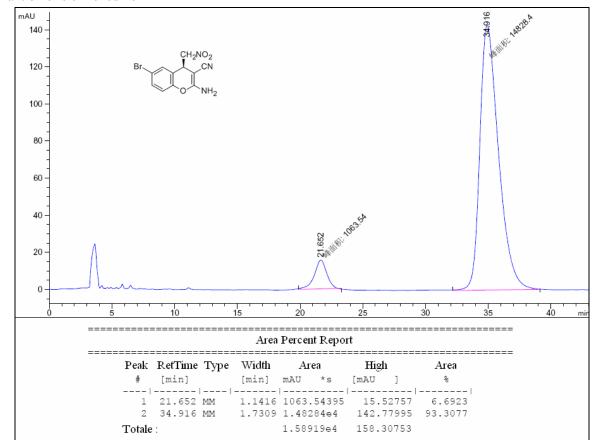


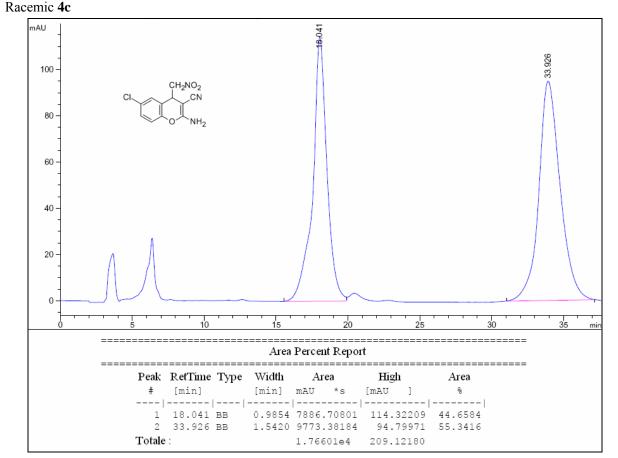

Compound Ia

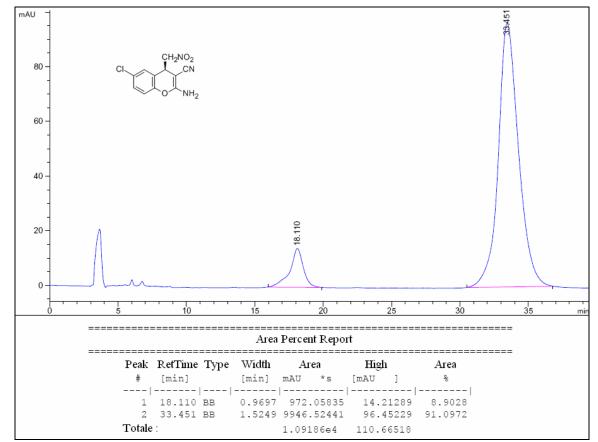


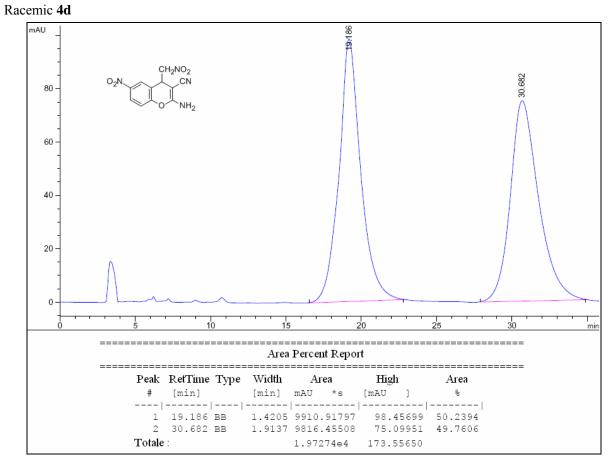


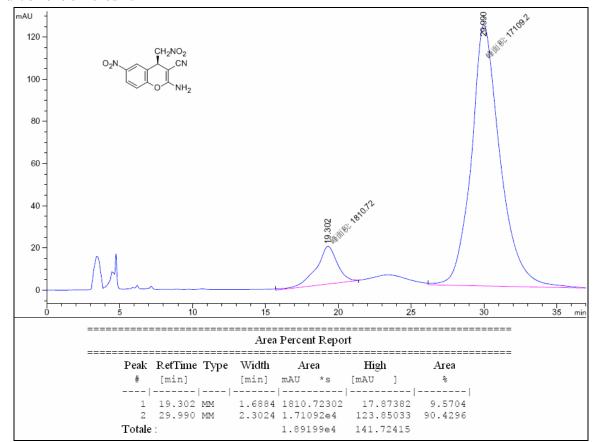
HPLC Profile

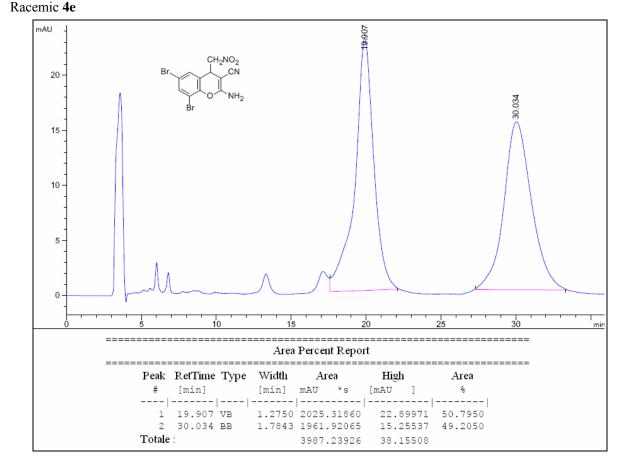


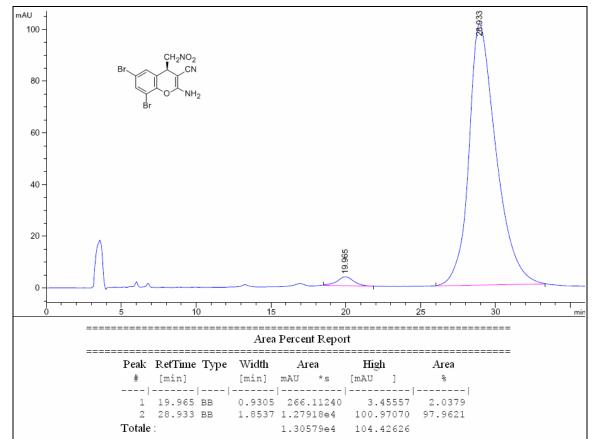

Enantiomeric enriched 4a

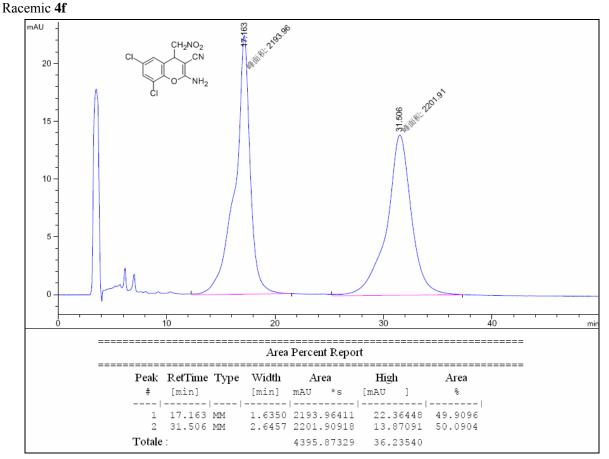


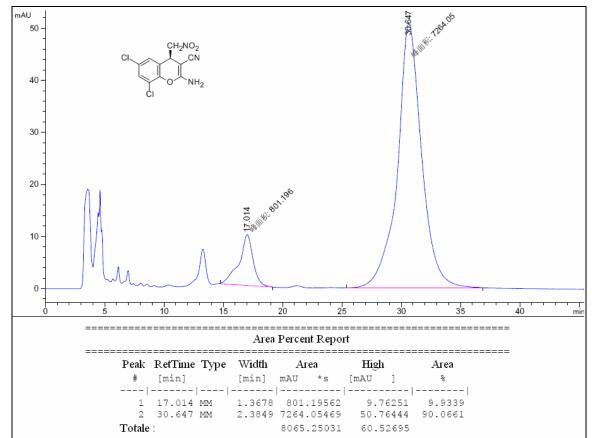

Enantiomeric enriched 4b

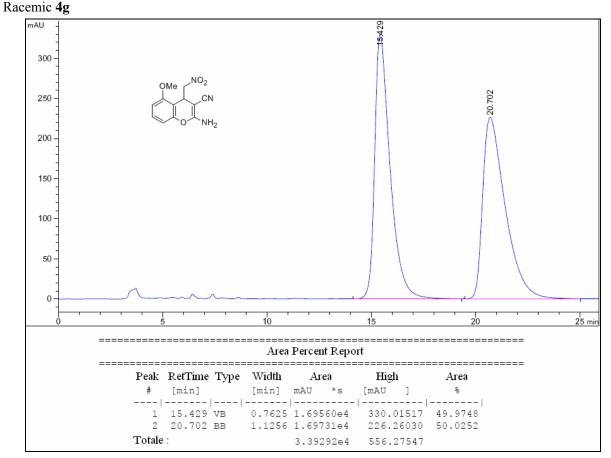


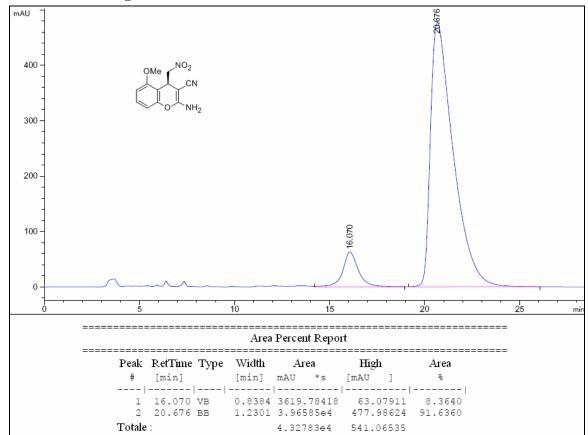

Enantiomeric enriched 4c



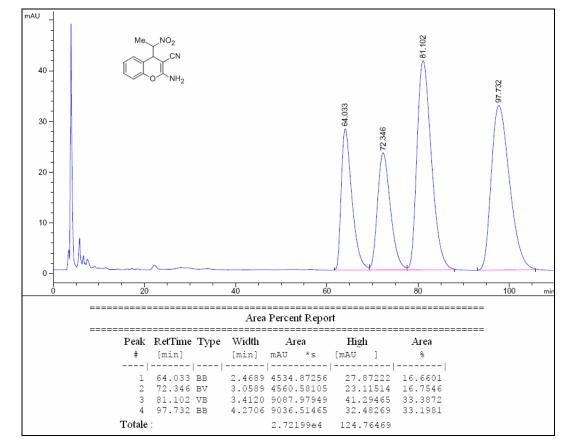

Enantiomeric enriched 4d

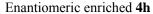


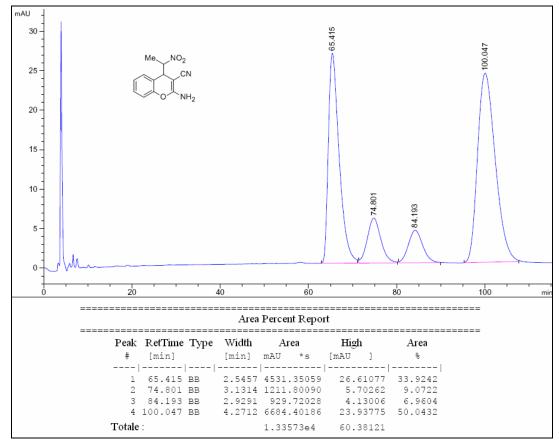

Enantiomeric enriched 4e

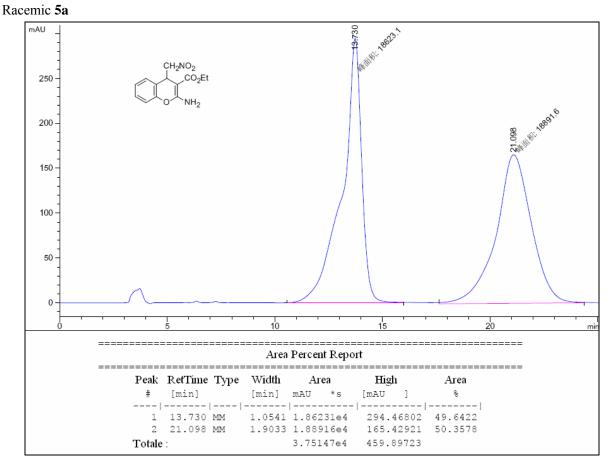


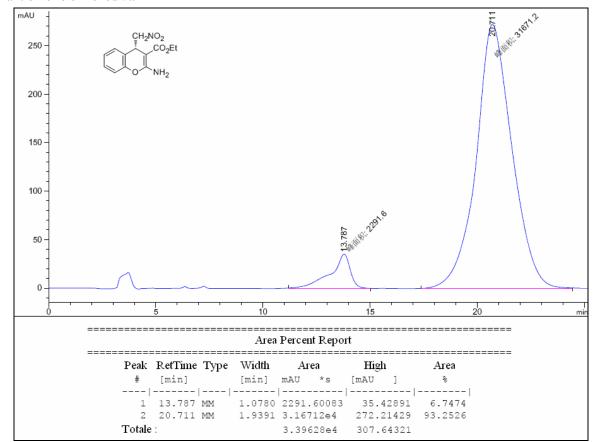
Enantiomeric enriched 4f

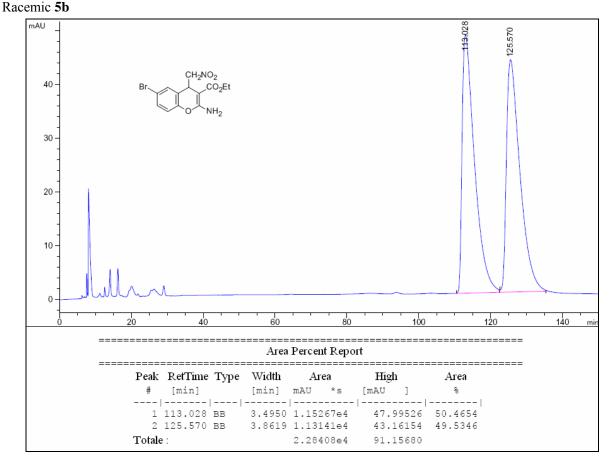


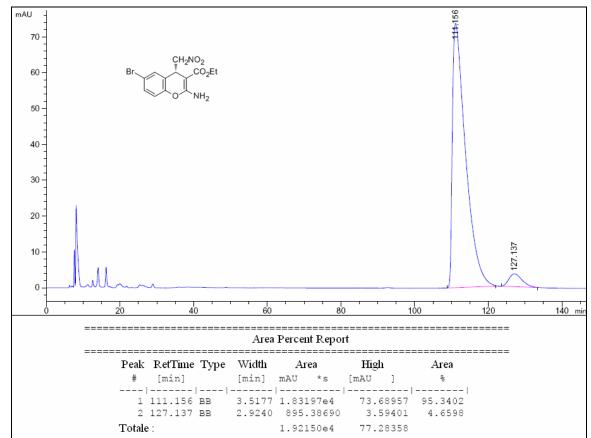


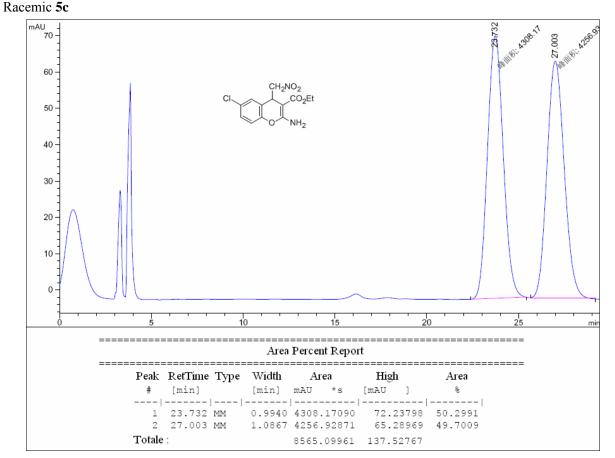

Enantiomeric enriched 4g

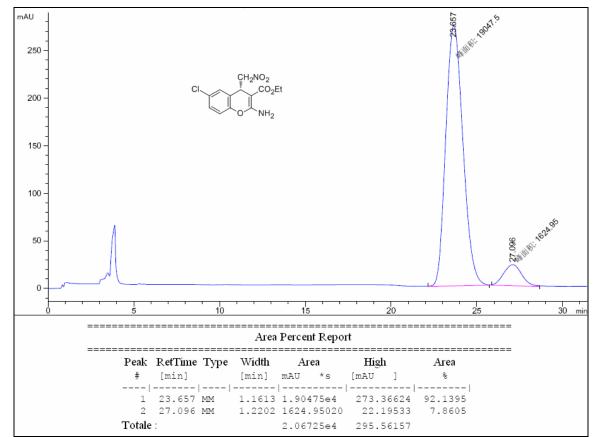


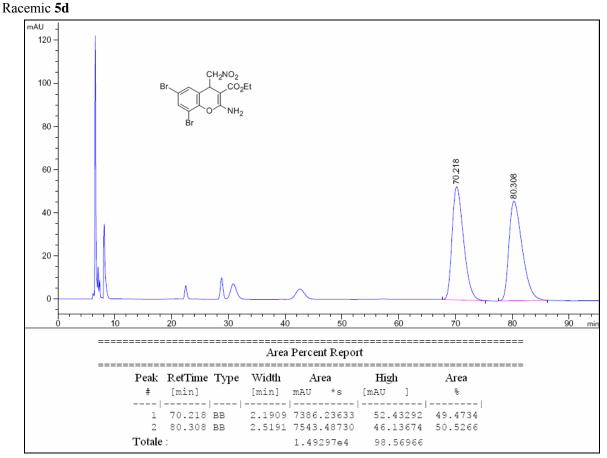


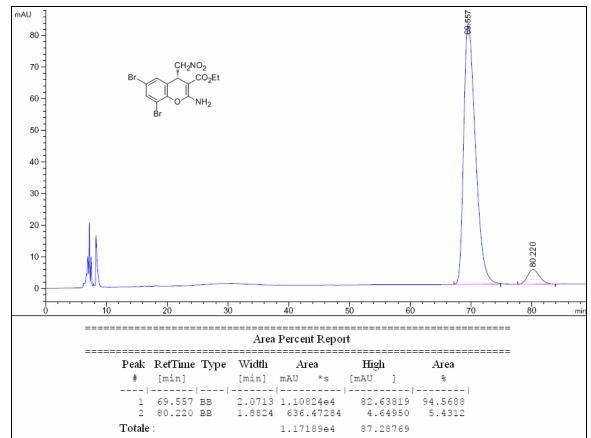


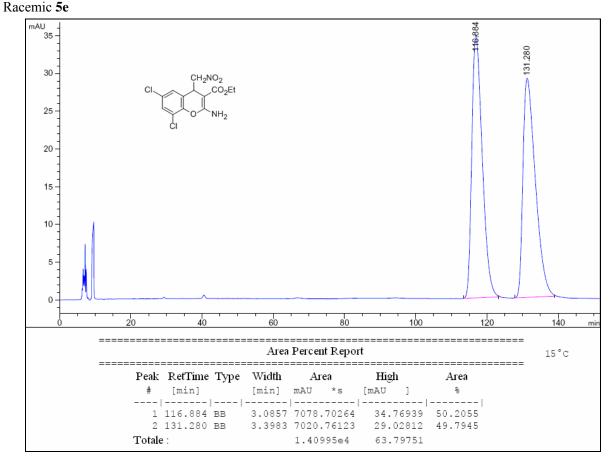


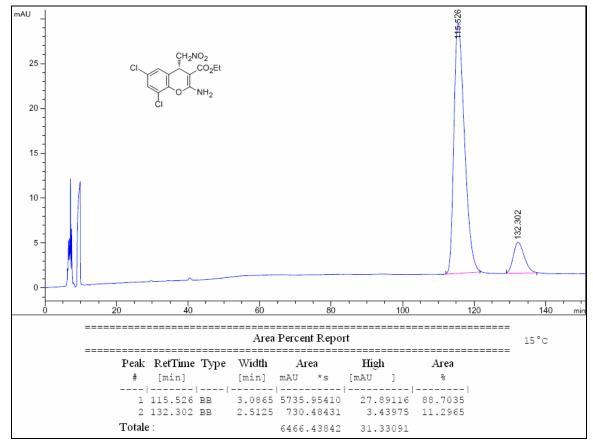

Enantiomeric enriched 5a

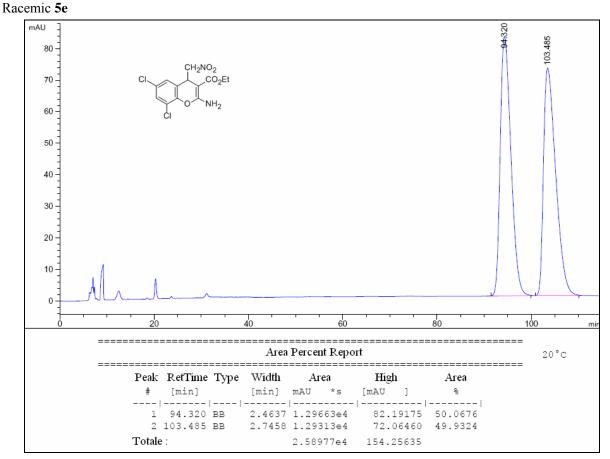


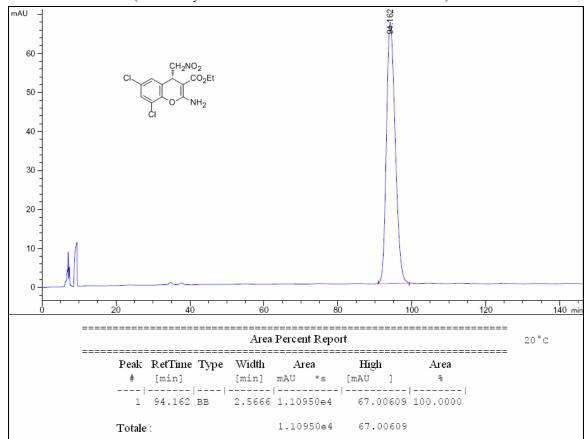

Enantiomeric enriched 5b

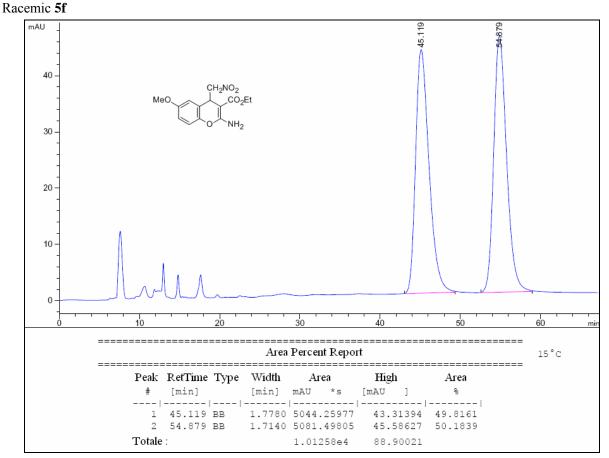


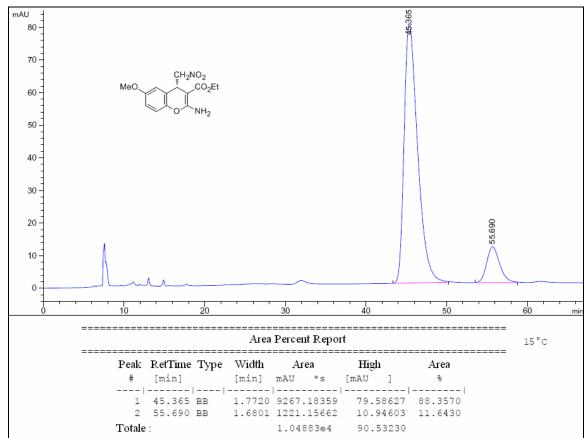

Enantiomeric enriched **5**c

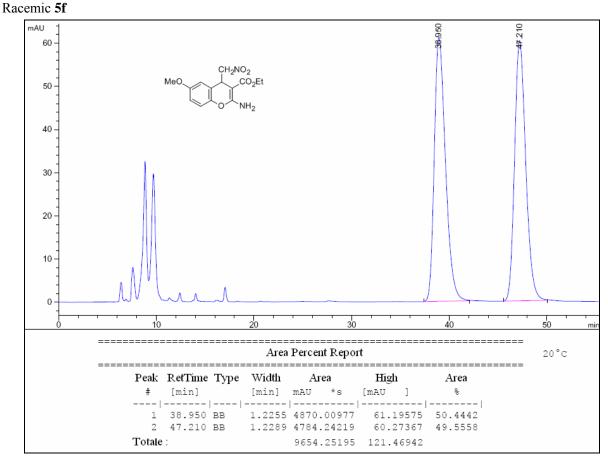


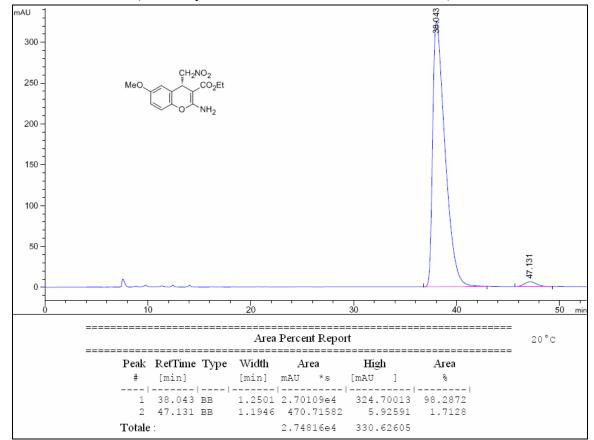

Enantiomeric enriched 5d

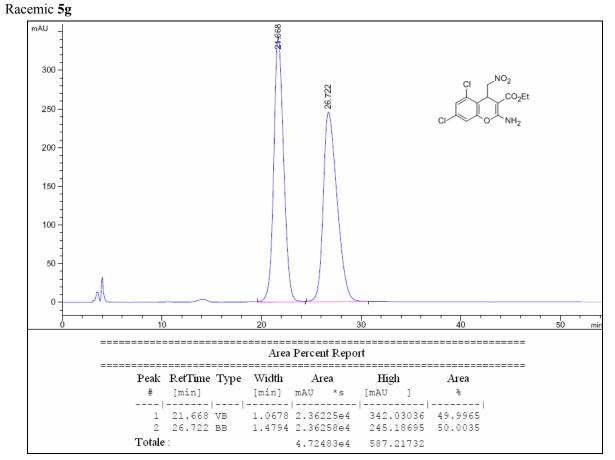


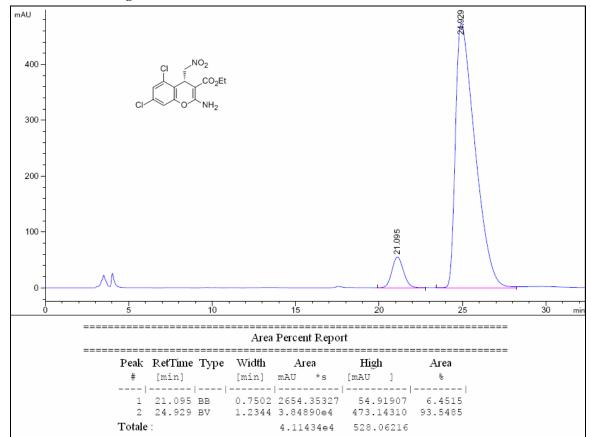

Enantiomeric enriched 5e

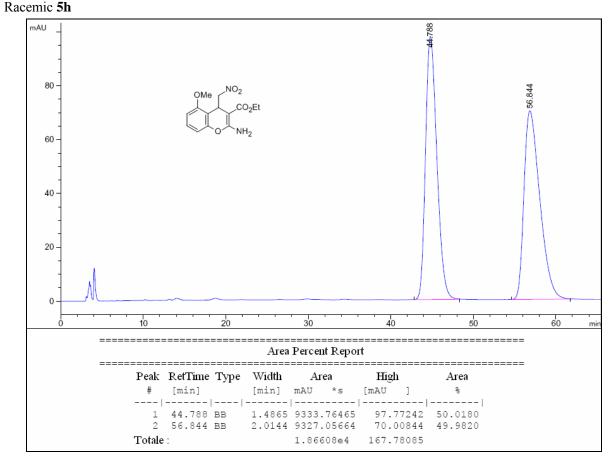


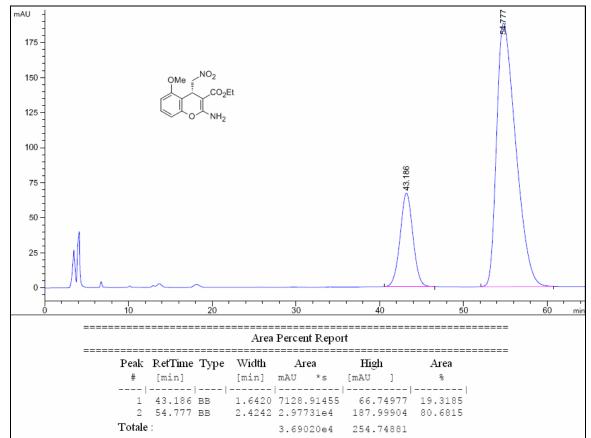

Enantiomeric enriched **5e** (After recrystallization from dichloromethane/n-hexane)




Enantiomeric enriched 5f







Enantiomeric enriched 5g

Enantiomeric enriched 5h

