Highly relaxing Gadolinium based MRI contrast Agent responsive to Mg²⁺ sensing

Sabah Abada,^{*a*} Alexandre Lecointre,^{*a*} Mourad Elhabiri,^{*b*} David Esteban-Gómez,^{*c*} Carlos Platas-Iglesias,^{*c*} Gaylord Tallec,^{*d*} Marinella Mazzanti^{*d*} and Loïc J. Charbonnière^{*a*}*

Supplementary information (7 pages)

Table S1. Full resultss of the potentiometric data with experimental details.

Table S2. Longitudinal relaxivity values (r_1) at pH=7.4, 25°C, in different conditions and experimental details of the relaxivity measurements.

Figure S1. Relaxivity of [GdL] at different concentrations of added MgCl₂, pH=7.4, 25°C **Table S3.** Atomic coordinates obtained for $[GdH_2L]^{3-}$ B3LYP/6-31G(d), aqueous solution (IEFPCM), 0 imaginary frequencies and full experimental details for the DFT modeling.

Table S1. Successive protonation constants (log K_{L1Hn}) of the free ligand L,¹ formal stability constants (log K_{ML}), successive protonation constants (log K_{MLHn}) and pM^e values of the lanthanides(III) complexes (Ln(III) = La(III), Nd(III), Eu(III), Tb(III), Er(III) and Lu(III)) with L.^a

Constant	\mathbf{U}^+	M = Ln(III)						
Constant	П	La	Nd	Eu	Gd	Tb	Er	Lu
$\log K_{\rm LH}$	11.21(2)							
$\log K_{\rm LH2}$	10.29(2)							
$\log K_{\rm LH3}$	8.04(4)							
$\log K_{\rm LH4}$	6.49(6)							
$\log K_{\rm LH5}$	5.53(8)							
$\log K_{\rm LH6}$	4.19(9)							
$\log K_{\rm ML}$		25.5(3)	27.1(2)	25.7(2)	d	29.7(4)	29.7(7)	29.3(3)
$\log K_{\rm MLH}$		9.4(3)	8.8(2)	9.4(2)	d	7.6(5)	7.8(7)	7.4(4)
$\log K_{\rm MLH2}$		7.3(4)	6.6(3)	7.5(3)	d	С	С	С
$\log K_{\rm M(OH)}^{b}$		-8.83	-8.20	-7.78	-	-7.66	-7.54	-7.29
- ()					7.85			
pM (L)		21.2	22.1	21.5	d	23.6	23.7	23.1
$pM(L')^2$		d	d	d	17.5	d	d	d
$pM(DOTA)^3$		17.8	17.8	18.4	19.6	19.6	19.6	20.3
$pM(DOTP)^4$		21.5	21.2	21.5	22.5	22.6	24.3	24.3

^{*a*} Solvent: water; I = 0.1 M (NaClO₄); T = 25.0(2) °C. Errors = 3σ with σ = standard deviation. $K_{\text{LH}n} = [\text{LH}_n]/[\text{LH}_{n-1}][\text{H}]$, $K_{\text{ML}} = [\text{ML}]/[[\text{L}][\text{M}]$ and $K_{\text{MLH}m} = [\text{MLH}_m]/[\text{MLH}_m]$ 1][H]. Charges have been omitted for the sake of clarity. ^{*b*} The hydrolysis constants used for the processing of the potentiometric data on Ln(III) complexes with L have been taken from ref. 5. ^{*c*} non determined because of precipitation of the Ln(III) complexes below pH 6-6.5. ^{*d*} not determined. ^{*e*} pM = -log [Ln³⁺]_{free} with [L]_{tot} = 10⁻⁵ M and [Ln(III)]_{tot} = 10⁻⁶ M at pH 7.4.⁶

The thermodynamics of the Ln(III) complexes (Ln = La, Nd, Eu, Tb, Er and Lu) with ligand L was elucidated using potentiometric titrations as well as metal exchange competition experiments (with Cu(II) at pH 2.0) monitored by UV-visible absorption spectrophotometry. The formal stability K_{ML} constants were determined with, however, poor accuracy due to the formation of a precipitate below pH 6-6.5 regardless of the nature of the lanthanide(III) cation considered. This phenomenon is a common feature of several linear amino-

 ⁽a) S. Abada, A. Lecointre, M. Elhabiri, L. J. Charbonnière, *Dalton Trans.* 2010, 39, 9055-9062. (b) S. Abada, A. lecointre, I. Déchamps-Olivier, C. Platas-Iglesias, C. Christine, M. Elhabiri, L. Charbonnière, *Radiochim. Acta*, 2011, 99, 663-678.

² L. Pellegatti, J. Zhang, B. Drahos, S. Villette, F. Suzenet, G. Guillaumet, S. petoud, É. Tóth, *Chem. Commun.* **2008**, 6591-6593.

³ W. P. Cacheris, S. K. Nickle, A. D. Sherry, *Inorg. Chem.* **1987**, *26*, 958-960.

 ⁴ A. D. Sherry, J. Ren, J. Huskens, E. Brücher, É. Tóth, C. F. C. G. Geraldes, M. M. C. A. Castro, W. P. Cacheris, *Inorg. Chem.* 1996, 35, 4604-4612.

⁵ G. D. Klungness, R. H. Byrne, *Polyhedron* **2000**, *19*, 99-107.

⁶ W. R. Harris, C. J. Carrano, K. N. Raymond, J. Am. Chem. Soc. **1979**, 101, 2213.

polymethanephosphonates⁷ and indicates that some protonated Ln(III) complexes are poorly soluble in water at concentrations about 2×10^{-3} M. As a consequence, the processing of the potentiometric data in this constrained pH range ($6.5 \le pH \le 11$) led to the determination of only the higher protonation constants (K_{MLH} and K_{MLH2} , Table S1). The progressive and monotonous increase in the formal $K_{\rm ML}$ stability constants as well as in the conditional $K^*_{\rm ML}$ stability constants measured at pH 2 (log $K_{ML}^* = 3.8(1)$ (La); 4.0(1) (Nd); 4.1(5) (Eu); 4.4(1) (Tb) and 4.42(7) (Er)) along the Ln(III) cation series is characteristic of chelates that are rather flexible and show increasing stability with charge density on the cation. Interestingly, the protonation constants decrease as the stabilities of the Ln(III) complexes increase indicating that the protons first attack the secondary amine units sites which are most likely involved in N-Ln(III) coordination bonds. Even though very scarce thermodynamic data were reported for the acetate analog of L (Table S1), the substitution of the acetate binding units by phosphonates seemingly leads to more stable lanthanide(III) species as a result of the higher overall basicity of the phosphonate-based chelator (for instance, $\log \beta_{LH4} = 36.03$ for L and log $\beta_{L'H4}$ = 22.66 for L'). This feature was already reported for many binding systems as illustrated in Table S1 for DOTA and DOTP. On the other hand, ligand L forms very stable Ln(III) complexes (as illustrated by the high pLn values, see Table S1) with respect to those formed with DOTA or DOTP.

Relaxivity measurements

The samples were prepared in situ by mixing the appropriate amounts of ligand and $GdCl_3.6H_2O$ (99.99%; Aldrich) in mQ water followed by adjustment of the pH with NaOH solution in water (1M and 0.1M). Gd(III) stock solutions were prepared by dissolving the appropriate amounts of $GdCl_3.6H_2O$ in water. The exact Gd(III) ion concentration was determined by colorimetric titration in acetate buffer (pH=4.5) using standardized H_2Na_2edta solutions (Aldrich) and xylenol orange as the indicator. The absence of free gadolinium was checked by the xylenol orange test.

Similar conditions of concentration and pH have been used for the relaxivity studies of all the complexes (C°= 2 to 5mM). A stock solutions (~2 M) of MgCl₂ was prepared by dissolving a precisely weighed mass of the salt in H₂O and neutralizing it to pH~7.4 with KOH or HCl solutions. The relaxivities of the complexes in the presence of Mg(II) were measured in

⁷ K. Sawada, M. Kuribayashi, T. Suzuki, H. Miyamoto, J. Sol. Chem. 1991, 20, 829-839.

solutions prepared by mixing appropriate volumes of the corresponding Gd(III) complex and the anion stock solutions. The relaxivity at 200 MHz in presence of anion was compared to that in pure H_2O at the same pH.

For the measurement in the serum, solutions have been prepared by mixing appropriate volumes of a stock solution of the corresponding complex, at pH~7.4 in water in fetal bovine serum (ligand~0.2 mM)

The 1/T₁ NMRD profiles were obtained at 298 K from 0.01 to 35 MHz using a Spinmaster FFC (Fast Field Cycling) NMR Relaxometer (Stelar, Italy).

			r₁ (mM⁻¹.s	5 ⁻¹)
	35MHz	200MHz	500MHz	nbr d'eq
AL090	9,25	8,78	7,17	
AL090_carbonates		7,39	6,36	200
AL090_serum	15,75	7,16	3,92	
AL090_Ca ²⁺		8,87		3
		8,48		30
		8,48		200
AL090_Mg ²⁺		8,59		0
		9,01		1
		9,09		3
		9,53		5
		10,05		10
		10,23		20
		10,89		25
	10,91	11,56		30
		11,91		50
		11,94		100
		12,03		200

Table S2 . Longitudinal relaxivity values (r₁) at pH=7.4, 25°C, in different conditions.

Figure S1 Relaxivity of [GdL] at different concentrations of added MgCl₂, pH=7.4, 25°C

Computational details. All calculations were performed employing hybrid DFT with the B3LYP exchange-correlation functional,^{8,9} and the Gaussian 09 package (Revision C.01).¹⁰ Full geometry optimizations of the $[GdH_2L]^{3-}$ system were performed in aqueous solution by using the effective core potential (ECP) of Dolg et al. and the related [5s4p3d]-GTO valence basis set for the lanthanides,¹¹ and the 6-31G(d) basis set for C, H, N, O and P atoms. No symmetry constraints have been imposed during the optimizations. The default values for the integration grid ("fine") and the SCF energy convergence criteria (10⁻⁸) were used. The

⁸ A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.

⁹ C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, **37**, 785-789.

¹⁰ Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakaiima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

¹¹ M. Dolg, H. Stoll, A. Savin, H. Preuss, *Theor. Chim. Acta* 1989, **75**, 173-194.

stationary points found on the potential energy surfaces as a result of the geometry optimizations have been tested to represent energy minima rather than saddle points via frequency analysis. Solvent effects were evaluated by using the polarizable continuum model (PCM), in which the solute cavity is built as an envelope of spheres centered on atoms or atomic groups with appropriate radii. In particular, we used the integral equation formalism (IEFPCM) variant as implemented in gaussian 09.¹²

Center	Atomic	Atomic	Сооз	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z		
1	64	0	0.009096	-0.712803	-0.015637		
2	6	0	-1.132568	2.640901	0.634689		
3	6	0	-1.211990	4.037110	0.661077		
4	1	0	-2.055670	4.523791	1.139728		
5	6	0	-2.181043	1.810824	1.347299		
6	7	0	-2.427687	0.468264	0.786428		
7	6	0	-3.057201	-0.409160	1.820538		
8	1	0	-4.147605	-0.258718	1.849457		
9	1	0	-2.669100	-0.114018	2.799726		
10	6	0	-3.288626	0.485052	-0.422211		
11	1	0	-3.700986	-0.523770	-0.509902		
12	1	0	-4.131879	1.185002	-0.303046		
13	1	0	-1.824802	1.671904	2.374586		
14	1	0	-3.115587	2.390853	1.416846		
15	15	0	-2.593110	-2.198815	1.621100		
16	8	0	-1.014206	-2.071202	1.554376		
17	8	0	-3.108891	-2.935428	2.844889		
18	8	0	-3.123247	-2.688657	0.246467		
19	15	0	-2.485263	0.756152	-2.065366		
20	8	0	-3.430153	0.265478	-3.126597		
21	8	0	-1.053255	0.189328	-1.993202		
22	8	0	-2.347858	2.397161	-2.237689		
23	1	0	3.836509	0.156263	-2.202143		
24	6	0	2.865983	-0.230945	-1.848748		
25	7	0	2.286676	0.657122	-0.800129		
26	1	0	2.179592	-0.210886	-2.702434		
27	15	0	3.021415	-2.017366	-1.308736		
28	6	0	1.881768	1.949329	-1.377106		
29	6	0	3.249468	0.823070	0.319680		
30	8	0	1.606662	-2.239136	-0.603342		
31	8	0	3.151569	-2.822873	-2.597400		
32	8	0	4.169986	-2.123521	-0.301128		
33	6	0	0.852262	2.712918	-0.568715		
34	1	0	1.426281	1.740871	-2.352245		
35	1	0	2.754136	2.595296	-1.565649		

Table S3. Atomic coordinates obtained for $[GdH_2L]^{3-}B3LYP/6-31G(d)$, aqueous solution (IEFPCM), 0 imaginary frequencies

¹² J. Tomasi, B. Mennucci, R. Cammi, *Chem. Rev.* 2005, **105**, 2999-3093.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

36	1	0	3.914699	-0.046605	0.296943	
37	1	0	3.864991	1.725166	0.185557	
38	15	0	2.534883	0.776388	2.016267	
39	6	0	0.848445	4.109656	-0.567456	
40	7	0	-0.113456	1.997941	0.040572	
41	8	0	3.615956	0.427351	3.005639	
42	8	0	1.271220	-0.099044	1.928992	
43	8	0	1.985121	2.305602	2.341115	
44	6	0	-0.199016	4.780505	0.062299	
45	1	0	1.646536	4.655416	-1.060316	
46	1	0	-0.230531	5.865960	0.074099	
47	8	0	-1.037928	-2.716835	-1.317220	
48	1	0	-1.849871	-2.850008	-0.719426	
49	1	0	-0.332250	-3.309238	-1.006273	
50	1	0	2.662010	2.773811	2.858142	
51	1	0	-1.440954	2.678283	-2.037212	
E (RB3LY	(P) = -2975.113	L0932 Hartree	2			
Zero-pc	int correction	= 0.352282				
Thermal correction to Energy = 0.385869						
Thermal correction to Enthalpy = 0.386814						
Thermal	. correction to	Gibbs Free H	Energy = 0.289	9575		
Sum of	electronic and	zero-point H	Energies = -29	974.760827		
Sum of electronic and thermal Energies = -2974.727240						
Sum of electronic and thermal Enthalpies = -2974.726296						
Sum of electronic and thermal Free Energies = -2974.823534						