Coumarin-Derived Transformable Fluorescent Probe for Zn²⁺

Zhaochao Xu,*^a Xin Liu,^b Jie Pan^b and David R. Spring*^b

^a Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. E-mail: zcxu@dicp.ac.cn ^b Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK. E-mail: spring@ch.cam.ac.uk

Synthesis

A solution of 250 mg (2.2 mmol, 5 eq) of 2-chloroacetyl chloride in 5 ml of dry CH₂Cl₂ was added dropwise to a solution of 100 mg (0.44 mmol) **1** in 20 ml of dry CH₂Cl₂ stirred at room temperature. After stirred 2 h at 40 °C, the solvent was removed under reduced pressure to give product **13** as a pale-yellow solid without further purification in 97% yield (129 mg). ¹H-NMR (CDCl₃, 400 MHz) δ 4.23 (s, 2H, CH₂), 6.73 (s, 1H), 7.46 (d, *J* = 10.4 Hz, 1H), 7.70 (d, *J* = 10.4 Hz, 1H), 7.87 (s, 1H), 8.46 (s, 1H, CONH). HRMS (ESI) calcd for C₁₂H₈ClF₃NO₃ [MH⁺] 306.0145, found 306.0150.

7-(2-chloroacetayl)amino-4-(trifluoromethyl)coumarin (2) (100 mg, 0.33 mmol), di-(2-picolyl)amine (DPA) (70 mg, 0.35 mmol), *N*,*N*-diisopropylethylamine (DIPEA) (0.5 mL) and potassium iodide (30 mg) were added to acetonitrile (50 mL). After stirred and refluxed for 4 h under nitrogen atmosphere, the mixture was cooled to room temperature and the mixture was removed under reduced pressure to obtain a yellow oil, which was purified by alumina column chromatography (CH₂Cl₂:MeOH = 100:2) to afford 7-(2-(di-(2-picolyl)amino)acetayl)amino-4--(trifluoromethyl)coumarin (**CTS**) as semi-solid. Yield: 102 mg (67%). ¹H-NMR (CDCl₃, 400 MHz) δ 3.56 (s, 2H), 3.97 (s, 4H), 6.68 (s, 1H), 7.21-7.28 (m, 4H), 7.65 (t, *J* = 7.6 Hz, 2H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.98 (s, 1H), 8.67 (d, *J* = 4.0 Hz, 2H), 11.59 (s, 1H). ¹³C-NMR (CDCl₃, 100 MHz) δ 58.85, 60.17, 107.31, 109.05, 113.33, 113.38, 116.42, 122.70, 123.26, 125.76, 136.73, 143.30, 144.67, 149.40, 155.30, 157.84, 159.37, 170.86. HRMS (ESI) calcd for C₂₄H₂₀F₃N₄O₃ [MH⁺] 469.1488, found 469.1483.

Imaging of jurkat cells

Jurkat cells cultured in RPMI 1640 media supplemented with 10% (v/v) fetal bovine Serum,

1% (v/v) 100mM Sodium Pyruvate (Gibco) and 1%(v/v) 1M HEPES buffer (Sigma H0887). The

cells were seeded at 0.3×10^6 cells/ml in the culture media, incubated at 37° C, 5% CO2, and pessaged very other day.

 $10 \ \mu M \ CTS$ in the culture media containing 0.1% (v/v) DMSO was added to the cells and the cells were incubated for 1 h at 37 °C. After washing twice to remove the remaining sensor, the cells were treated with 20 $\mu M \ Cd(ClO_4)_2$ for 30 min. Without washing the cells were further treated with 20 $\mu M \ Zn(ClO_4)_2$ for 30 min. The treated cells were imaged by fluorescence microscopy.

Figure S1. Partial 500 MHz ¹H-¹H NOESY spectra of CTS/Zn²⁺ (1:1) in CD₃CN.

Figure S2. Partial 500 MHz ¹H-¹H NOESY spectra of CTS/Zn²⁺ (1:1) in DMSO-*d*₆.

Figure S3. Fluorescence spectra of 10 μ M CTS in the presence of different concentrations of Zn^{2+} .

Figure S4. Fluorescence spectra of 10 μ M CTS in the presence of different concentrations of Cd²⁺.

Figure S5. Fluorescence spectra of 10 μ M CTS in the presence of different concentrations of Hg²⁺.

Figure S6. Fluorescence spectra of 10 μ M CTS in the presence of different concentrations of Cd²⁺.

Figure S7. Fluorescence spectra of 10 μ M **CTS**/Hg²⁺ in the presence of different concentrations of Zn²⁺ in aqueous solution (DMSO: 0.5 M HEPES (pH 7.4) = 5:95).

Figure S8. Fluorescence spectra of 10 μ M CTS/Pb²⁺ in the presence of different concentrations of Zn²⁺ in aqueous solution (DMSO: 0.5 M HEPES (pH 7.4) = 5:95)

Figure S9. ¹H-NMR spectra of compound **2** in CDCl₃.

Figure S10. ¹H-NMR spectra of compound CTS in CDCl₃.

Figure S11. ¹³C-NMR spectra of compound CTS in CDCl₃.

Figure S12. IR spectra of DMSO (black line), **CTS** in DMSO (red line), Zn^{2+} solution in DMSO (green line), and **CTS**/Zn²⁺ (1 : 1) complex in DMSO.