A highly enantioselective catalytic Strecker reaction of cyclic (Z)-aldimines

You-Dong Shao ${ }^{a}$ and Shi-Kai Tian* ${ }^{* a, b}$

${ }^{a}$ Joint Laboratory of Green Synthetic Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
${ }^{b}$ Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China

Supporting information

Table of contents

Abstract

General informationS-2

Preparation of cyclic (Z)-aldimines S-2
General procedure for the catalytic asymmetric Strecker reaction of cyclic (Z)-aldimines S-4
Analytical data for the products S-5
Transformation of compound 3a S-13
References S-14
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. S-15
Copies of HPLC spectra S-30
Crystal data. S-52

General information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC-400 FT (400 MHz and 100 MHz , respectively) using tetramethylsilane as an internal reference. Chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz , respectively. High resolution mass spectra were recorded on a LC-TOF spectrometer (Micromass). ESI-MS data were acquired using a Thermo LTQ Orbitrap XL instrument equipped with an ESI source and controlled by Xcalibur software. High pressure liquid chromatography (HPLC) analyses were performed on a Hewlett-Packard 1200 Series instrument equipped with an isostatic pump, using a chiral stationary phase column (Daicel Co. CHIRALPAK), and the UV detection was monitored at 254 nm . The chiral HPLC methods were calibrated with the corresponding racemic mixtures. Optical rotations were measured on a Perkin-Elmer 343 Polarimeter with a sodium lamp at $\lambda=589 \mathrm{~nm}$ and reported as $[\alpha]_{\mathrm{D}}{ }^{\mathrm{T}^{\circ} \mathrm{C}}(c=\mathrm{g} / 100$ mL , solvent). Melting points were uncorrected.

Toluene and ethyl ether were distilled over sodium/benzophenone. Dichloromethane, chloroform, and 1,2-dichloroethane were distilled over calcium hydride. Ethyl acetate and acetonitrile were dried over aluminum oxide prior to use. Methanol was distilled over sodium. Chemicals were purchased from the Sinopharm Chemical Reagent Co., Meryer, Acros, Alfa Aesar, and AstaTech Pharmaceutical Co., and used as received. Cinchona alkaloid-derived thiourea catalysts were prepared according to known procedures. ${ }^{1}$

Preparation of cyclic (Z)-aldimines

$3 H$-Indoles 1a-b, $\mathbf{1 e}$, and $\mathbf{1} \mathbf{h}^{2}$ and $2 H$-benzo $[b][1,4]$ thiazines $\mathbf{1 m}-\mathbf{n}^{3}$ are known compounds, and they were prepared according to literature procedures. New $3 H$-indoles were prepared as shown below. ${ }^{\text { }}$

To a solution of the aldehyde (2.0 mmol) in acetic acid (20 mL) was added the arylhydrazine (2.0 mmol). The mixture was heated at $60{ }^{\circ} \mathrm{C}$ for $0.5-2 \mathrm{~h}$, cooled to room temperature, and concentrated under reduced pressure. The residue was dissolved in ethyl acetate (30 mL), and washed with ice-cold saturated aqueous sodium bicarbonate. The organic layer was dried over anhydrous sodium sulfate, and concentrated. The residue was subjected to column chromatography on silica gel, using ethyl acetate/petroleum ether (1:20 to $1: 5$) as eluent, to give a $3 H$-indole.

1c
1c was obtained in 54% yield. Brown oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44$ (s, 1 H), 7.52-7.48 (m, 1H), 7.32-7.28 (m, 1H), 7.15-7.10 (m, 1H), 1.94-1.55 (m, 10H); ${ }^{13}$ C NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 179.4,152.6,146.5,131.2,127.5,121.2,115.1,59.8,31.7,25.5,23.9$; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrN}(\mathrm{M}) 263.0310$, found 263.0311 .

1d
1d was obtained in 55% yield. Yollowish oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~s}, 1 \mathrm{H})$, 7.53-7.49 (m, 1H), $7.18(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.54(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.5,152.6,145.0,135.8,128.4,123.1,120.8,57.7,32.0,25.7,24.1,21.7$; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}(\mathrm{M})$ 199.1361, found 199.1358 .

1f
1f was obtained in 63% yield. Yollowish solid, m.p. $110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.53(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.88(\mathrm{~m}$, $3 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.7,154.8,138.7$, 137.7, 132.7, 129.5, 119.7, 58.7, 29.8, 25.9, 25.0, 21.3, 18.1; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}$ (M) 213.1517, found 213.1520.

1 g
$\mathbf{1 g}$ was obtained in 70% yield. Brown solid, m.p. $98-9{ }^{\circ}{ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76$ $(\mathrm{s}, 1 \mathrm{H}), 8.13-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.98-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}$, $1 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.2,151.1,138.1,133.0,129.7,129.1,128.6,126.2,124.8,123.0$, 120.6, 60.0, 31.7, 25.9, 25.1; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}$ (M) 235.1361, found 235.1342.

1i was obtained in 47% yield. Yellowish oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H})$, 7.65-7.61 (m, 1H), 7.37-7.30 (m, 2H), 7.22-7.17 (m, 1H), 1.76-1.41 (m, 22H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 179.2,154.6,144.3,127.6,125.5,123.0,121.2,60.1,28.0,26.7,26.1,22.7,22.1,21.0$; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}$ (M) 269.2143, found 269.2149.

1j
$\mathbf{1 j}$ was obtained in 51% yield. Yollowish solid, m.p. $112-123{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H})$, 4.17-4.10 (m, 2H), 3.96-3.88 (m, 2H), 2.02-1.94 (m, 2H), 1.68-1.61 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.0,154.3,143.1,128.3,126.5,122.2,121.5,65.5,55.0,31.1$; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}(\mathrm{M})$ 187.0997, found 187.0983.

1k
1k was obtained in 67% yield. Brown solid, m.p. $56-57{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40$ $(\mathrm{s}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.13-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.51(\mathrm{~m}, 2 \mathrm{H})$, 1.86-1.79 (m, 2H), 1.71-1.65 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2,155.5,153.1,144.8$, 136.6, 131.7, 128.7, 128.4, 128.2, 125.9, 123.0, 120.7, 67.6, 56.4, 42.0, 30.6; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}(\mathrm{M}) 398.0630$, found 398.0638 .

11 was obtained in 32% yield. Red oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.60$ $(\mathrm{m}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.11(\mathrm{~m}, 4 \mathrm{H}), 1.05-0.94(\mathrm{~m}$, $2 \mathrm{H}), 0.88-0.78(\mathrm{~m}, 2 \mathrm{H}), 0.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.6,155.8,142.6$, 127.6, 126.0, 121.9, 121.1, 62.2, 35.2, 26.6, 23.2, 13.9; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}$ (M) 229.1830, found 229.1801 .

General procedure for the catalytic asymmetric Strecker reaction of cyclic (Z)-aldimines

QD-a

Q-a

To a flame dried reaction vial equipped with a magnetic stirring bar were added powdered $3 \AA$ molecular sieves (20.0 mg). The molecular sieves were thermally activated under vacuum for 30 min , and cooled to $10{ }^{\circ} \mathrm{C}$ under nitrogen. To the reaction vial were added cyclic (Z)-aldimine $\mathbf{1}$ (0.10 mmol), catalyst QD-a or $\mathbf{Q}-\mathbf{a}(5.9 \mathrm{mg}, 0.010 \mathrm{mmol})$, 1,2-dichloroethane (1.0 mL), ethyl cyanoformate ($2 \mathbf{2 a}, 12.0 \mathrm{mg}, 0.12 \mathrm{mmol}$), and methanol ($3.8 \mathrm{mg}, 0.12 \mathrm{mmol}$). The resulting mixture was stirred at $10{ }^{\circ} \mathrm{C}$ for a period as specified in Table 2, and directly charged onto silica gel. Product 3 or $\mathbf{3}^{\prime}$ was isolated using petroleum ether/ethyl acetate ($20 / 1 \sim 3 / 1$) as eluent.

The absolute configuration of 2-cyanoindoline $\mathbf{3 b}$ and 3-cyano-3,4-dihydro-2 H-benzo[b][1,4]thiazine $\mathbf{3 m}$ was determined to be S and R, respectively, by single-crystal X-ray analysis, and that of the rest products was determined by analogy.

Analytical data for the products

3a was obtained as a white solid in 99% yield and 96% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane ($10: 90$), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}$ (major) $=25.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=32.8 \mathrm{~min}\right]$. m.p. $82-84{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+169.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12-7.07(\mathrm{~m}, 2 \mathrm{H})$, 6.87-6.82 (m, 1H), 6.72-6.68 (m, 1H), $4.47(\mathrm{~s}, 1 \mathrm{H}), 4.13$ (br., s, 1H), 2.20-2.14 (m, 1H), 2.02-1.72 $(\mathrm{m}, 5 \mathrm{H}), 1.51-1.36(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.2,135.1,128.4,123.0,120.6,119.6$, 110.6, 57.2, 49.9, 35.6, 33.0, 25.5, 23.3, 23.2; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}$ (M) 212.1313, found 212.1316.

3a' was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by $\mathbf{Q}-\mathbf{a}$.

The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (10:90), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=23.8 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=30.1 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=-171.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

3b was obtained as a white solid in 73% yield and 97% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=13.6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=18.3 \mathrm{~min}\right]$. m.p. 101-102 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+152.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07-7.02(\mathrm{~m}, 2 \mathrm{H})$, 6.63-6.60 (m, 1H), 4.49 ($\mathrm{s}, 1 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.73(\mathrm{~m}, 5 \mathrm{H}), 1.49-1.35(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.8,137.0,128.2,125.3,123.4,119.1,111.4,57.5,50.0,35.4,32.8,25.3$, 23.1, 23.0; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{Cl}$ (M) 246.0924, found 246.0941 .

3b'
3b' was obtained as a white solid in 80% yield and 97% ee from a reaction catalyzed by \mathbf{Q}-a. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=13.6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=17.4 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=-153.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

3c
3c was obtained as a white solid in 83% yield and 98% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=13.8 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=18.9 \mathrm{~min}\right]$. m.p. $97-98{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+149.5\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.17(\mathrm{~m}, 2 \mathrm{H})$, 6.58-6.54 (m, 1H), 4.48 ($\mathrm{s}, 1 \mathrm{H}), 2.18-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.49-1.34(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.3,137.5,131.1,126.2,119.1,112.4,112.0,57.4,50.0,35.5,32.8,25.3$, 23.1, 23.0; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{Br}$ (M) 290.0419, found 290.0426 .

$3 c^{\prime}$
3c' was obtained as a white solid in 90% yield and 96% ee from a reaction catalyzed by \mathbf{Q}-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=12.0 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (major) $\left.=15.8 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}^{25}=-142.8\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$.

3d
3d was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane ($10: 90$), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}$ (major) $=12.5 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=14.2 \mathrm{~min}\right]$. m.p. $92-94{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+168.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.91-6.88(\mathrm{~m}, 2 \mathrm{H})$, 6.61-6.58 (m, 1H), $4.45(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.50-1.34(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9,135.4,130.0,128.8,123.6,119.7,110.5,57.4,49.9,35.5$, 33.0, 25.5, 23.3, 23.2, 21.1; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2}$ (M) 226.1470, found 226.1477.

3d'
3d' was obtained as a white solid in 99% yield and 98% ee from a reaction catalyzed by $\mathbf{Q}-\mathbf{a}$. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane $(10: 90), 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=12.4 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=14.1 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=-170.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

3e was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak AD,
isopropanol/hexane (10:90), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=14.6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (major) $\left.=18.5 \mathrm{~min}\right]$. m.p. $92-93{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+196.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.71-6.60(\mathrm{~m}, 3 \mathrm{H})$, $4.46(\mathrm{~s}, 1 \mathrm{H}), 3.97$ (br., s, 1H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.49-1.35(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7,140.8,136.9,119.7,113.0,111.2,110.0,57.7,56.0,50.1,35.3$, 32.9, 25.4, 23.3, 23.1; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ (M) 242.1419, found 242.1422.

$3 e^{\prime}$
3e’ was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by $\mathbf{Q}-\mathbf{a}$. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak AD, isopropanol/hexane (10:90), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}$ (major) $=14.9 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=18.1 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=-194.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

3f was obtained as a white solid in 99% yield and 98% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=15.3 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=18.0 \mathrm{~min}\right]$. m.p. $77-79{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+173.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~s}$, $1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 5 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.28$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.9,138.2,134.0,128.5,124.8,120.2,109.5,56.4,51.5$, $32.9,31.8,25.5,23.6,23.3,21.2$, 19.5; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2}$ (M) 240.1626, found 240.1655 .

3f' was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by $\mathbf{Q}-\mathbf{a}$. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=15.2 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (major) $\left.=17.9 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=-167.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

$3 g$
3g was obtained as a white solid in 99% yield and 95% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=19.7 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=28.4 \mathrm{~min}\right]$. m.p. $160-161{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+283.0\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.4$, $\mathrm{Hz}, 1 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.23$ (m, 1H), $7.00(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{br} ., \mathrm{s}, 1 \mathrm{H}), 2.86-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.80(\mathrm{~m}$, $5 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.2,130.6,130.5,130.3,129.9,126.6$, $124.0,122.5,121.5,120.1,113.1,57.0,52.9,33.5,32.6,25.6,23.8,23.4$; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2}(\mathrm{M}) 262.1470$, found 262.1485.

3g' was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by \mathbf{Q}-a. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=19.9 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=28.6 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=-304.4\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$.

3h was obtained as a yellowish oil in 93% yield and 92% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (10:90), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=9.9 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=17.8 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=+159.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.83(\mathrm{~m}$, $1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.74(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.5,134.9,128.2,122.5,120.9,119.3,110.5,60.2,56.7,39.7,36.1,25.0,24.9$; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}$ (M) 198.1157, found 198.1176.

3h' was obtained as a yellowish oil in 83% yield and 98% ee from a reaction catalyzed by \mathbf{Q}-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (10:90), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=9.3 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=15.9 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=-171.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

$3 \mathbf{i}$ was obtained as a white solid in 99% yield and 93% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=10.0 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=13.0 \mathrm{~min}\right]$. m.p. 119-120 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+100.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11-7.06(\mathrm{~m}, 1 \mathrm{H})$, $7.05-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 3 \mathrm{H})$, 1.61-1.31 (m, 19H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.1,133.9,128.2,124.2,120.1,119.3,110.6$, 59.8, 51.7, 31.3, 28.6, 26.5, 26.4, 26.2, 22.7, 22.6, 22.2, 22.1, 19.4, 19.3; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2}(\mathrm{M}) 296.2252$, found 296.2259.

3i' was obtained as a white solid in 99% yield and 94% ee from a reaction catalyzed by $\mathbf{Q}-\mathbf{a}$. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=10.0 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (major) $\left.=13.0 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=-104.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

3j was obtained as a white solid in 99% yield and 91% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane ($10: 90$), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=21.8 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=27.6 \mathrm{~min}\right]$. m.p. $217-218{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+146.5\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.17(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.63(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 3.97-3.91(\mathrm{~m}$, $1 \mathrm{H}), 3.76-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H})$, 1.55-1.47 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 148.4,133.8,128.2,122.7,119.8,118.9$, 109.7, 63.8, 63.6, 56.1, 46.7, 34.9, 32.2; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ (M) 214.1106, found 214.1112.

$\mathbf{3 j} \mathbf{j}$ was obtained as a white solid in 99% yield and 98% ee from a reaction catalyzed by $\mathbf{Q} \mathbf{- a}$. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (10:90), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=22.7 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=28.5 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=-166.7\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$.

3k was obtained as a white solid in 85% yield and 97% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (20:80), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}$ (major) $=17.9 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=22.6 \mathrm{~min}\right]$. m.p. $67-69{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+145.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.30(\mathrm{~m}, 5 \mathrm{H})$, $7.22(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~s}$, $1 \mathrm{H}), ~ 4.20-4.15(\mathrm{~m}, 1 \mathrm{H}), ~ 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.80(\mathrm{~m}, 1 \mathrm{H})$, $1.65-1.56(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3,146.3,136.6,135.3,131.8,128.7,128.3$, 128.1, 126.3, 118.3, 112.6, 112.2, 67.5, 56.8, 48.3, 41.1, 40.9, 34.5, 32.0; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Br}(\mathrm{M}) 425.0739$, found 425.0772.

$\mathbf{3 k}$ ' was obtained as a white solid in 79% yield and 97% ee from a reaction catalyzed by \mathbf{Q}-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (20:80), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=18.0 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=22.4 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=-146.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

31 was obtained as a yellowish oil in 98% yield and 96% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak AD, isopropanol/hexane (2:98), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=12.2 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=17.2 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=+169.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (br., s, 1H), 2.01-1.92 (m, 1H), 1.84-1.61 (m, 3H), 1.45-1.11 (m, 8H), 1.00-0.85 (m, 6H); ${ }^{13}$ C NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.8,133.1,128.3,123.9,120.2,119.0,110.4,58.8,52.4,36.8,35.5,26.3,26.2,23.3$, 23.2, 14.1; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2}$ (M) 256.1939, found 256.1959.

3l' was obtained as a yellowish oil in 95% yield and 98% ee from a reaction catalyzed by \mathbf{Q}-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak AD, isopropanol/hexane (2:98), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=12.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=17.1 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=-177.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

3m was obtained as a white solid in 90% yield and 94% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=20.0 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=23.0 \mathrm{~min}\right]$. m.p. $120-121^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+179.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.02-6.94(\mathrm{~m}, 2 \mathrm{H})$, $6.80-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.5,127.9,126.1,120.4,117.7,116.0,115.9,54.3,40.8,27.8,26.3$; HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}$ (M) 204.0721, found 204.0726.

$3 m^{\prime}$
3m' was obtained as a white solid in 98% yield and 97% ee from a reaction catalyzed by \mathbf{Q}-a. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=20.3 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=23.5 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=-186.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

3n was obtained as a white solid in 99% yield and 94% ee from a reaction catalyzed by QD-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=18.2 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=20.1 \mathrm{~min}\right]$. m.p. $121-122{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+224.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\mathrm{I}} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.03(\mathrm{dd}, J=8.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.55(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{br} ., \mathrm{s}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H})$, 2.09-2.01 (m, 1H), 1.92-1.46 (m, 8H), 1.37-1.27 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.9$, 127.9, 125.8, 120.2, 117.7, 115.8, 115.5, 53.7, 45.5, 35.1, 34.8, 25.6, 21.6, 21.5; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}(\mathrm{M}) 244.1034$, found 244.1035 .

3n' was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by \mathbf{Q}-a. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=18.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=19.9 \mathrm{~min}\right]$. $[\alpha]_{\mathrm{D}}{ }^{25}=-233.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Transformation of compound $3 a^{4}$

To a solution of compound $3 \mathrm{a}(96 \% \mathrm{ee}, 21.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ in methanol $(1.0 \mathrm{~mL})$ at room temperature were added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}\left(8.4 \mathrm{mg}, 0.20 \mathrm{mmol}\right.$), aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ ($30 \mathrm{wt} \%, 48 \mu \mathrm{~L}, 0.50$
$\mathrm{mmol})$, and water $(0.30 \mathrm{~mL})$. The mixture was stirred for 1 h , added water (5 mL), and extracted with ethyl acetate $(4 \times 10 \mathrm{~mL})$. The organic phases were combined, washed with brine, dried over anhydrous sodium sulfate, and concentrated. The residue was subjected to column chromatography on silica gel, using petroleum ether/ethyl acetate ($5 / 1 \sim 1 / 1$) as eluent, to give compound $4(16.2 \mathrm{mg}$, 70%) as a white solid. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak AD, isopropanol/hexane (15:85), $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}$ (minor) $=7.4 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (major) $=15.8 \mathrm{~min}] . \mathrm{m} . \mathrm{p} .165-16{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-112.0(\mathrm{c}=0.15, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.79$ (br., s, 1 H$), 6.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.61 (br., s, 1H), $4.04(\mathrm{~s}, 1 \mathrm{H}), 2.05-1.40(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 174.6, 148.0, 136.9, 127.7, 125.2, 120.1, 110.5, 73.1, 48.8, 36.8, 32.4, 25.4, 22.7, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}(\mathrm{M}+\mathrm{H})^{+}$231.14919, found 231.14835.

References

1 (a) J. Ye, D. J. Dixon and P. S. Hynes, Chem. Commun., 2005, 4481; (b) B. Vakulya, S. Varga, A. Csámpai and T. Soós, Org. Lett., 2005, 7, 1967; (c) S. H. McCooey and S. J. Connon, Angew. Chem., Int. Ed., 2005, 44, 6367; (d) J. Luo, L.-W. Xu, R. A. S. Hay and Y. Lu, Org. Lett., 2009, 11, 437.
2 K. G. Liu and A. J. Robichaud, Tetrahedron Lett., 2007, 48, 461.
3 M. Watzke, K. Schulz, K. Johannes, P. Ullrich and J. Martens, Eur. J. Org. Chem., 2008, 3859.
4 K. Funabashi, H. Ratni, M. Kanai and M. Shibasaki, J. Am. Chem. Soc., 2001, 123, 10784.

3a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-147.209
-135.100
-128.408
-122.9
$\bigcirc^{120.594}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-145.78
-137.010
-128.238
-125.305
$\sim^{123.372}$
1.43
77.464 <77.349
¢ $\mathbf{7 7 . 1 4 7}$ 76.829
-57.483
-50.026
-35.412
-32.815
$\begin{array}{r} 25.301 \\ \mathbf{2 3 . 1 0 9} \end{array}$
$<_{23.071}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-57.381
-50.047

3c
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3d
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 \mathbf{3}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 i$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR (100 MHz , DMSO- d_{6})

31
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N
-
i

3m
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	24.412	4472.1	148	0.4676	0.809	50.327
2	32.148	4413.9	115	0.5965	0.947	49.673

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	13.036	3591.1	153	0.3685	0.905	49.654
2	17.419	3641.1	127.4	0.4457	0.917	50.346

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	13.61	492.4	25	0.3287	0.846	1.715
2	17.413	28225.4	1096.1	0.3922	0.734	98.285

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	13.776	10497.5	429.6	0.3797	0.83	98.775
2	18.882	130.2	4.1	0.4864	0.892	1.225

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	12.004	544.4	26.1	0.3234	0.878	2.234
2	15.828	23828.7	933.8	0.3953	0.822	97.766

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	14.629	185.4	5.6	0.5175	0.858	1.638
2	18.455	11136.2	259.7	0.6518	0.555	98.362

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	15.734	1719.8	70.1	0.3808	0.845	49.702
2	18.483	1740.4	62.7	0.4302	0.908	50.298

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	15.24	124.4	5.5	0.3455	0.982	1.284
2	17.872	9562.8	368.1	0.405	0.877	98.716

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	19.687	4391.7	161.5	0.425	0.917	49.695
2	28.239	4445.6	114.3	0.6053	0.894	50.305

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	19.922	490.5	17.9	0.4237	0.919	1.422
2	28.58	34008.6	787.4	0.6859	0.79	98.578

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	9.855	1060.4	67.1	0.2455	0.813	49.925
2	17.681	1063.6	41.7	0.395	0.945	50.075

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	9.31	25.4	1.9	0.2007	0.748	1.207
2	15.878	2077.1	99.5	0.3251	0.99	98.793

| mAU | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

mAU $\begin{array}{r}-1 \\ 20- \\ 2\end{array}$						
17.5						$\begin{aligned} & 0.0 \\ & 0 \\ & \sim \\ & \sim \end{aligned}$
$\begin{array}{r} 15 \\ 12.5 \\ 10 \\ 10 \\ 7.5 \\ 7 \end{array}$						
0	5	10			25	min
Number	Time (min)	$\begin{gathered} \text { Area } \\ (\mathrm{mAU} \cdot \mathrm{~s}) \end{gathered}$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	22.668	598.4	22	0.4221	0.997	50.107
2	28.306	595.8	17	0.5437	1.153	49.893

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	21.787	1357.1	54.2	0.3913	1.063	95.622
2	27.561	62.1	1.9	0.4975	0.962	4.378

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	22.748	18.6	$7.2 \mathrm{E}-1$	0.4335	0.929	0.980
2	28.47	1884.9	51.2	0.5617	1.882	99.020

0	2.5	7.5	10	15	20	22.5 min
Number	Time (min)	$\begin{gathered} \text { Area } \\ (\mathrm{mAU} \cdot \mathrm{~s}) \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { (mAU) } \end{aligned}$	Width (min)	Symmetry factor	Area (\%)
1	18.027	1978.7	52	0.5895	0.837	50.132
2	22.745	1968.3	40.2	0.7554	0.826	49.868

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	12.851	1277.2	35.5	0.5742	0.909	50.276
2	18.465	1263.1	29	0.6877	0.887	49.724

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	12.099	43.3	1.5	0.4958	0.812	1.091
2	17.088	3929.7	106.1	0.5806	0.831	98.756

Number	Time (min)	Area $(\mathrm{mAU} \cdot \mathrm{s})$	Height (mAU)	Width (min)	Symmetry factor	Area (\%)
1	7.447	115.2	6.1	0.3124	0.766	1.991
2	15.762	5671.9	155.3	0.6088	0.783	98.009

The crystal data of compound $\mathbf{3 b}$ have been deposited in CCDC with number 837035 .

3b

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012

Table 1 Crystal data and structure refinement for 110726

Identification code	110726
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClN}_{2}$
Formula weight	246.73
Temperature	291(2)
Crystal system	Monoclinic
Space group	P 21
$\mathrm{a} / \AA, \mathrm{b} / \AA, \mathrm{c} / \AA$	7.2479(3), 7.0711(4), 13.0826(6)
$\alpha /{ }^{\circ}, \beta /{ }^{\circ}, \gamma /{ }^{\circ}$,	90.00, 98.024(5), 90.00
Volume/ \AA^{3}	663.93(6)
Z	2
$\rho_{\text {calc } \mathrm{mg} / \mathrm{mm}^{3}}$	1.234
$\mathrm{m} / \mathrm{mm}^{-1}$	0.267
F(000)	260
Crystal size	$0.42 \times 0.36 \times 0.31$
Theta range for data collection	3.15 to 26.37°
Index ranges	$-9 \leqslant \mathrm{~h} \leqslant 9,-8 \leqslant \mathrm{k} \leqslant 8,-16 \leqslant 1 \leqslant 13$
Reflections collected	6023
Independent reflections	$2686[\mathrm{R}($ int $)=0.0243]$
Data/restraints/parameters	2686/2/158
Goodness-of-fit on F^{2}	1.024
Final R indexes [$\mathrm{I}>2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0460, \mathrm{wR}_{2}=0.0895$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0640, \mathrm{wR}_{2}=0.0981$
Largest diff. peak/hole	0.231/-0.272

Table 2 Atomic Coordinates $\left(\AA^{\times 104}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $110726 . \mathrm{U}_{\mathrm{eq}}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	z	$\boldsymbol{U}(\mathrm{eq})$
C11	$12948.5(11)$	$2115.1(19)$	$5499.4(6)$	$107.8(4)$
N1	$8674(3)$	$-1218(3)$	$1808.7(17)$	$56.1(6)$
C3	$9339(3)$	$1177(3)$	$2972.5(17)$	$41.8(5)$
C8	$7666(3)$	$1857(3)$	$2226.3(16)$	$41.4(5)$
C7	$7822(4)$	$472(4)$	$1310.1(18)$	$48.8(6)$
C9	$5868(3)$	$1420(4)$	$2686.2(18)$	$54.1(7)$
C4	$9850(3)$	$-620(4)$	$2690.3(19)$	$48.8(6)$
N2	$9890(4)$	$1769(4)$	$-16.1(19)$	$79(7)$
C2	$10257(3)$	$2027(4)$	$3845.3(17)$	$52.2(6)$
C5	$11274(4)$	$-1601(4)$	$3273(3)$	$67.7(8)$
C10	$4113(3)$	$2106(5)$	$2008(2)$	$73(9)$
C14	$8982(4)$	$1244(4)$	$564.5(19)$	$56.6(7)$
C13	$7728(4)$	$3949(4)$	$1936(2)$	$53(6)$
C1	$11712(4)$	$1045(5)$	$4412(2)$	$65.6(8)$
C12	$5967(4)$	$4573(5)$	$1236(3)$	$73.8(9)$
C6	$12215(4)$	$-724(5)$	$4143(2)$	$74(9)$
C11	$4245(4)$	$4182(6)$	$1741(3)$	$88.9(11)$

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 110726. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a \times b \times U_{12}\right]$

	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$	
C11	$63.1(4)$	$193.1(11)$	$61.2(4)$	$-14(6)$	$-12.1(4)$	$-10.7(6)$
N1	$78.8(16)$	$43.5(13)$	$50(13)$	$-6.6(11)$	$22.6(12)$	$-6.9(11)$
C3	$38.2(11)$	$51.1(14)$	$38.4(11)$	$0.8(11)$	$13.5(10)$	$-1.9(10)$
C8	$37.1(11)$	$48.8(14)$	$38.9(11)$	$-3(11)$	$7.1(9)$	$-4.5(11)$
C7	$52.4(15)$	$53.8(15)$	$41.1(13)$	$-2.1(11)$	$10.4(11)$	$-15.9(12)$
C9	$42.5(12)$	$72.1(18)$	$49.2(13)$	$6.3(13)$	$11.9(11)$	$-0.2(12)$
C4	$50.5(14)$	$52.6(16)$	$47.4(15)$	$5.7(12)$	$21.8(12)$	$0.6(12)$
N2	$110.6(19)$	$73.6(19)$	$60.5(14)$	$3.4(13)$	$38.9(14)$	$-8.6(15)$
C2	$42.2(12)$	$70.5(17)$	$45.2(12)$	$-7.7(13)$	$10.6(10)$	$-2.3(13)$
C5	$68(19)$	$62.5(19)$	$79(2)$	$20.8(16)$	$32.1(17)$	$22.3(15)$
C10	$38.3(13)$	$108(3)$	$72(17)$	$14.3(19)$	$6.9(12)$	$-0.9(16)$
C14	$73.2(18)$	$58.6(16)$	$40(12)$	$-2.8(13)$	$15.2(13)$	$-10.5(14)$
C13	$53(15)$	$47.3(15)$	$57.3(16)$	$0(13)$	$3(12)$	$-3.3(12)$
C1	$40.2(14)$	$112(3)$	$45.3(14)$	$2.5(17)$	$8.6(12)$	$-2.3(16)$
C12	$70.8(19)$	$61.4(18)$	$84(2)$	$17.1(16)$	$-6.2(17)$	$4.3(15)$
C6	$48.9(16)$	$110(3)$	$65(2)$	$26(2)$	$15.7(15)$	$19.7(18)$
C11	$54.3(19)$	$110(3)$	$99(3)$	$21(2)$	$-1(17)$	$27(2)$

Table 4 Bond Lengths for 110726.

Atom	Atom	Length/ \AA	Atom	Atom	Length/A
Cl1	C1	1.745 (3)	C 9	C10	1.525 (3)
N1	C4	1.400 (3)	C 4	C5	1.382 (4)
N1	C7	1.457 (3)	N 2	C14	1.135 (3)
C3	C2	1.377 (3)	C 2	C1	1.388 (4)
C3	C4	1.388 (3)	C 5	C6	1.389 (4)
C3	C8	1.524 (3)	C 10	C11	1.515 (5)
C8	C13	1.529 (4)	C13	C12	1.529 (4)
C8	C9	1.541 (3)	C 1	C6	1.363 (4)
C8	C7	1.564 (3)	C 12	C11	1.516 (4)
C7	C14	1.478 (4)			

Table 5 Bond Angles for 110726.

Atom	Atom	Atom	Angle/•	Atom	Atom	Atom	Angle/•
C4	N1	C7	107.0(2)	C5	C4	C3	121.3 (2)
C2	C3	C4	120.3 (2)	C5	C4	N1	128.7(3)
C2	C3	C8	130.0 (2)	C3	C4	N1	110.0 (2)
C4	C3	C8	109.65 (19)	C3	C2	C1	117.9 (3)
C3	C8	C13	114.55 (18)	C4	C5	C6	118.2 (3)
C3	C8	C9	109.08 (18)	C11	C10	C9	111.6 (2)
C13	C8	C9	110.3 (2)	N2	C14	C7	177.4(3)
C3	C8	C7	99.04(18)	C 12	C13	C8	112.1 (2)
C13	C8	C7	114.07(19)	C6	C1	C2	122.2 (3)
C9	C8	C7	109.21(19)	C6	C1	$\mathrm{Cl1}$	118.9 (2)
N1	C7	C14	$110.7(2)$	C2	C1	Cl 1	118.9 (3)
N1	C7	C8	104.01(18)	C 11	C12	C13	110.8 (2)
C14	C7	C8	$112.52(19)$	C 1	C6	C5	120.2 (3)
C10	C9	C8	113.0 (2)	C 10	C11	C12	111.1 (3)

Table 6 Hydrogen Bonds for 110726.

\mathbf{D}	\mathbf{H}	\mathbf{A}	$\mathbf{d}(\mathbf{D}-\mathbf{H}) / \AA$	$\mathbf{d}(\mathbf{H}-\mathbf{A}) / \AA$	$\mathbf{d}(\mathbf{D}-\mathbf{A}) / \AA$	$\mathbf{D}-\mathbf{H}-\mathbf{A} /{ }^{\circ}$
N 1	H 1	N 2	$0.871(17)$	$2.200(19)$	$3.048(3)$	$164(3)$

Table 7 Torsion Angles for 110726.

A	B	C	D	Angle/*
C 2	C3	C8	C13	42.8 (3)
C4	C3	C8	C13	-140.6 (2)
C2	C3	C8	C9	-81.4 (3)
C4	C3	C8	C9	95.3(2)
C2	C3	C8	C7	164.6 (2)
C4	C3	C8	C7	-18.8(2)
C4	N1	C7	C14	89.5 (2)
C4	N1	C7	C8	-31.6(3)
C3	C8	C7	N1	29.6 (2)
C13	C8	C7	N1	$151.8(2)$
C9	C8	C7	N1	-84.3(2)
C3	C8	C7	C14	-90.3(2)
C13	C8	C7	C14	31.9 (3)
C9	C8	C7	C14	155.8(2)
C3	C8	C9	C10	178.2(2)
C13	C8	C9	C10	51.6 (3)
C7	C8	C9	C10	-74.6(3)
C2	C3	C4	C5	0.3 (3)
C8	C3	C4	C5	-176.7(2)
C2	C3	C4	N1	177.4 (2)
C8	C3	C4	N1	0.4 (3)
C7	N1	C4	C5	$-162.9(3)$
C7	N1	C4	C3	20.2(3)
C4	C3	C 2	C1	1.1 (3)
C8	C3	C 2	C1	177.4(2)
C3	C4	C5	C6	-1.3(4)
N1	C4	C5	C6	-177.9(3)
C8	C9	C10	C11	-53.2(3)
N1	C7	C14	N2	35 (6)

Table 8 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement
Parameters ($\AA^{2} \times 10^{3}$) for 110726 .

Atom	x	y	z	$\mathbf{U}(\mathrm{eq})$
H7	6576	171	955	59
H9A	5778	65	2784	65
H9B	5941	2014	3359	65
H2	9913	3222	4049	63
H5	11594	-2814	3088	81
H10A	3925	1368	1377	88
H10B	3045	1910	2367	88
H13A	7873	4706	2561	64
H13B	8803	4174	1587	64
H12B	6041	5915	1093	89
H12A	5876	3900	585	89
H6	13191	-1346	4544	89
H11B	4291	4934	2364	107
H11A	3144	4550	1275	107
H1	9110 (4)	-1990 (3)	1378 (18)	66 (9)

The crystal data of compound $\mathbf{3 m}$ have been deposited in CCDC with number 832628.

Table 1 Crystal data and structure refinement for syd110701

Identification code
Empirical formula
Formula weight
Temperature
Crystal system
Space group
$\mathrm{a} / \AA, \mathrm{b} / \AA, \mathrm{c} / \AA$
$\alpha{ }^{\circ}, \beta /{ }^{\circ}, \gamma^{10}$,
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$
$\mathrm{m} / \mathrm{mm}^{-1}$
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$\mathrm{I}>2 \sigma$ (I]
Final R indexes [all data]
Largest diff. peak/hole
syd110701
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{SN}_{2}$
204.29

291(2)
Orthorhombic
$\mathrm{P} 2_{1} 2_{1} 2_{1}$
5.9323(3), 10.0252(8), 18.0127(16)
$90.00,90.00,90.00$
1071.26(14)

4
1.267
0.263

432
$0.42 \times 0.36 \times 0.32$
3.62 to 26.37°
$-7 \leqslant \mathrm{~h} \leqslant 7,-12 \leqslant \mathrm{k} \leqslant 12,-22 \leqslant 1 \leqslant 22$
9400
$2199[\mathrm{R}($ int $)=0.0294]$
2199/1/133
1.045
$\mathrm{R}_{1}=0.0317, \mathrm{wR}_{2}=0.0754$
$\mathrm{R}_{1}=0.0366, \mathrm{wR}_{2}=0.0783$
0.156/-0.154

Table 2 Atomic Coordinates $\left(\AA \times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2 \times 10^{3}}\right)$ for syd110701. $\mathrm{U}_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U}(\mathbf{e q})$
S1	$5799.9(7)$	$10069.2(5)$	$8442.3(3)$	$53.65(15)$
N2	$7588(4)$	$11426.4(18)$	$10337.5(11)$	$72.3(5)$
C6	$5458(3)$	$7397(19)$	$8621.1(11)$	$50.6(5)$
N1	$10454(3)$	$9376.2(15)$	$9149.4(9)$	$43.8(4)$
C4	$8943(3)$	$8331.5(16)$	$9066.8(9)$	$37.4(4)$
C7	$8385(3)$	$11058.9(17)$	$8418.2(11)$	$44.4(4)$
C1	$6101(4)$	$6142(2)$	$8848.3(11)$	$59.1(5)$
C3	$9565(3)$	$7052.1(17)$	$9299.2(10)$	$45.6(4)$
C5	$6840(3)$	$8498.7(16)$	$8723.1(9)$	$39.4(4)$
C2	$8169(4)$	$5969.8(19)$	$9184(11)$	$55.8(5)$
C10	$9794(4)$	$10736(2)$	$7734.5(12)$	$63.9(6)$
C8	$9750(3)$	$10754.9(16)$	$9123.6(10)$	$42.7(4)$
C9	$8497(3)$	$11144.4(18)$	$9802.6(11)$	$50.4(4)$
C11	$7622(4)$	$12520.1(19)$	$8413.7(13)$	$62.6(6)$

[^0]| | $\mathbf{U}_{\mathbf{1 1}}$ | $\mathbf{U}_{\mathbf{2 2}}$ | $\mathbf{U}_{\mathbf{2 3}}$ | $\mathbf{U}_{\mathbf{1 3}}$ | $\mathbf{U}_{\mathbf{1 2}}$ | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Atom | $38.4(2)$ | $51.6(2)$ | $71(3)$ | $5.4(2)$ | $-11.1(2)$ | $2.3(2)$ |
| S1 | $90.8(14)$ | $70.4(12)$ | $55.7(11)$ | $-4.7(10)$ | $10.8(10)$ | $18.6(11)$ |
| N2 | $47.1(10)$ | $57(11)$ | $47.7(11)$ | $-4.3(8)$ | $1(8)$ | $-13.1(9)$ |
| C6 | $34.9(7)$ | $44(8)$ | $52.5(10)$ | $-2.9(7)$ | $-7.6(7)$ | $0.7(6)$ |
| N1 | $37.8(8)$ | $40(8)$ | $34.5(9)$ | $-4.2(7)$ | $4.8(7)$ | $2(7)$ |
| C4 | $44.7(9)$ | $42.1(8)$ | $46.4(10)$ | $2.7(8)$ | $2.3(8)$ | $-0.8(7)$ |
| C7 | $71.6(14)$ | $48.3(10)$ | $57.4(12)$ | $-5.2(9)$ | $12.4(11)$ | $-19.2(10)$ |
| C1 | $49.8(10)$ | $48.2(10)$ | $38.7(10)$ | $-1.3(7)$ | $5.1(8)$ | $8.9(8)$ |
| C3 | $39.5(9)$ | $42.5(9)$ | $36.1(9)$ | $-4.7(7)$ | $1.5(7)$ | $-2.2(7)$ |
| C5 | $78.1(13)$ | $38.2(9)$ | $51.2(12)$ | $1.8(9)$ | $15.4(11)$ | $4.1(9)$ |
| C2 | $66.1(13)$ | $78.7(14)$ | $47(12)$ | $2.7(10)$ | $10(10)$ | $7.4(11)$ |
| C10 | $41.4(9)$ | $38.8(9)$ | $47.9(11)$ | $-3.7(7)$ | $0.5(8)$ | $-4.8(7)$ |
| C8 | $58(11)$ | $43.2(9)$ | $50.1(11)$ | $-1.5(8)$ | $-1.3(9)$ | $2.9(8)$ |
| C9 | $78.4(15)$ | $45.3(10)$ | $64.1(14)$ | $9.7(10)$ | $2.7(12)$ | $5.6(10)$ |

Table 4 Bond Lengths for syd110701.

Atom	Atom	Length $/ \AA \quad$ Atom	Atom	Length $/ \AA$
S1	C5	$1.7650(17) \mathrm{C} 4$	C5	$1.403(2)$
S1	C7	$1.8272(18) \mathrm{C} 7$	C10	$1.523(3)$
N2	C9	$1.140(3) \mathrm{C} 7$	C11	$1.533(2)$
C6	C1	$1.377(3) \mathrm{C} 7$	C8	$1.537(2)$
C6	C5	$1.388(2) \mathrm{C} 1$	C2	$1.379(3)$
N1	C4	$1.386(2) \mathrm{C} 3$	C2	$1.381(3)$
N1	C8	$1.445(2) \mathrm{C} 8$	C9	$1.484(3)$
C4	C3	$1.399(2)$		

Table 5 Bond Angles for syd110701.

Atom	Atom	Atom	Angle/•	Atom	Atom	Atom

Table 6 Torsion Angles for syd110701.

A	B	C	D	Angle/•
C8	N1	C4	C3	-162.15 (16)
C8	N1	C4	C5	21.1(3)
C5	S1	C7	C10	75.93 (15)
C5	S1	C7	C11	-163.22(14)
C5	S1	C7	C8	-44.80(13)
C5	C6	C1	C2	-0.1(3)
N1	C4	C3	C2	-175.84(16)
C5	C4	C3	C2	1.1 (3)
C1	C6	C5	C4	-0.1(3)
C1	C6	C5	S1	-177.65(15)
N1	C4	C5	C6	176.46 (16)
C3	C4	C5	C6	-0.4(2)
N1	C4	C5	S1	-6.1(2)
C3	C4	C5	S1	177.07 (13)
C7	S1	C5	C6	-163.75 (14)
C7	S1	C5	C4	18.79 (16)
C6	C1	C2	C3	$0.8(3)$
C4	C3	C2	C1	-1.3(3)
C4	N1	C8	C9	72.7 (2)
C4	N1	C8	C7	-52.8(2)
C10	C7	C8	N1	-58.26(19)
C11	C7	C8	N1	178.86 (16)
S1	C7	C8	N1	63.49 (15)
C10	C7	C8	C9	176.06 (17)
C11	C7	C8	C9	53.18 (19)
S1	C7	C8	C9	-62.19(16)
N1	C8	C9	N2	49 (6)
C7	C8	C9	N2	175 (100)

Table 7 Hydrogen Atom Coordinates ($\AA \times 10^{4}$) and Isotropic Displacement Parameters ($\AA^{2 \times 10^{3}}$) for syd110701.

Atom	x	y	z	U(eq)
H6	4063	7509	8394	61
H1	5149	5417	8776	71
H3	10944	6928	9535	55
H2	8625	5124	9333	67
H10B	10172	9805	7736	96
H10C	11151	11257	7742	96
H10A	8946	10941	7295	96
H8	11118	11301	9105	51
H11B	8920	13092	8425	94
H11C	6701	12690	8841	94
H11A	6768	12694	7971	94
H4	11560 (3)	9241 (19)	9437 (10)	54(6)

[^0]: Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for syd110701. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a \times b \times U_{12}\right]$

