A highly enantioselective catalytic Strecker reaction of cyclic (Z)-aldimines

You-Dong Shao^a and Shi-Kai Tian*^{a,b}

^{*a*} Joint Laboratory of Green Synthetic Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China

Supporting information

Table of contents

General information	S-2
Preparation of cyclic (Z)-aldimines	S-2
General procedure for the catalytic asymmetric Strecker reaction of cyclic (Z)-aldimines	S-4
Analytical data for the products	S-5
Transformation of compound 3a	S-13
References	S-14
Copies of ¹ H and ¹³ C NMR spectra	S-15
Copies of HPLC spectra.	S-30
Crystal data	S-52

General information

¹H and ¹³C NMR spectra were recorded on a Bruker AC-400 FT (400 MHz and 100 MHz, respectively) using tetramethylsilane as an internal reference. Chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz, respectively. High resolution mass spectra were recorded on a LC-TOF spectrometer (Micromass). ESI-MS data were acquired using a Thermo LTQ Orbitrap XL instrument equipped with an ESI source and controlled by Xcalibur software. High pressure liquid chromatography (HPLC) analyses were performed on a Hewlett-Packard 1200 Series instrument equipped with an isostatic pump, using a chiral stationary phase column (Daicel Co. CHIRALPAK), and the UV detection was monitored at 254 nm. The chiral HPLC methods were calibrated with the corresponding racemic mixtures. Optical rotations were measured on a Perkin-Elmer 343 Polarimeter with a sodium lamp at λ = 589 nm and reported as [α] $_{\rm D}^{\rm T \, ^{\circ}C}$ (*c* = g/100 mL, solvent). Melting points were uncorrected.

Toluene and ethyl ether were distilled over sodium/benzophenone. Dichloromethane, chloroform, and 1,2-dichloroethane were distilled over calcium hydride. Ethyl acetate and acetonitrile were dried over aluminum oxide prior to use. Methanol was distilled over sodium. Chemicals were purchased from the Sinopharm Chemical Reagent Co., Meryer, Acros, Alfa Aesar, and AstaTech Pharmaceutical Co., and used as received. Cinchona alkaloid-derived thiourea catalysts were prepared according to known procedures.¹

Preparation of cyclic (Z)-aldimines

3*H*-Indoles **1a-b**, **1e**, and **1h**² and 2*H*-benzo[*b*][1,4]thiazines **1m-n**³ are known compounds, and they were prepared according to literature procedures. New 3*H*-indoles were prepared as shown below.²

To a solution of the aldehyde (2.0 mmol) in acetic acid (20 mL) was added the arylhydrazine (2.0 mmol). The mixture was heated at 60 °C for 0.5-2 h, cooled to room temperature, and concentrated under reduced pressure. The residue was dissolved in ethyl acetate (30 mL), and washed with ice-cold saturated aqueous sodium bicarbonate. The organic layer was dried over anhydrous sodium sulfate, and concentrated. The residue was subjected to column chromatography on silica gel, using ethyl acetate/petroleum ether (1:20 to 1:5) as eluent, to give a 3*H*-indole.

1c was obtained in 54% yield. Brown oil; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.52-7.48 (m, 1H), 7.32-7.28 (m, 1H), 7.15-7.10 (m, 1H), 1.94-1.55 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 179.4, 152.6, 146.5, 131.2, 127.5, 121.2, 115.1, 59.8, 31.7, 25.5, 23.9; HRMS (EI) calcd for C₁₃H₁₄BrN (M) 263.0310, found 263.0311.

1d was obtained in 55% yield. Yollowish oil; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.53-7.49 (m, 1H), 7.18 (s, 1H), 7.15-7.12 (m, 1H), 2.41 (s, 3H), 1.94-1.54 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 152.6, 145.0, 135.8, 128.4, 123.1, 120.8, 57.7, 32.0, 25.7, 24.1, 21.7; HRMS (EI) calcd for C₁₄H₁₇N (M) 199.1361, found 199.1358.

1f was obtained in 63% yield. Yollowish solid, m.p. 110 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.30 (s, 1H), 6.83 (s, 1H), 2.44 (s, 3H), 2.36 (s, 3H), 2.28-2.18 (m, 2H), 2.00-1.88 (m, 3H), 1.77-1.70 (m, 2H), 1.50-1.40 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 154.8, 138.7, 137.7, 132.7, 129.5, 119.7, 58.7, 29.8, 25.9, 25.0, 21.3, 18.1; HRMS (EI) calcd for C₁₅H₁₉N (M) 213.1517, found 213.1520.

1g was obtained in 70% yield. Brown solid, m.p. 98-99 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.13-8.09 (m, 1H), 7.98-7.95 (m, 1H), 7.90-7.85 (m, 2H), 7.58-7.54 (m, 1H), 7.49-7.45 (m, 1H), 2.46-2.37 (m, 2H), 2.11-2.00 (m, 3H), 1.92-1.78 (m, 2H), 1.65-1.56 (m, 1H), 1.53-1.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 179.2, 151.1, 138.1, 133.0, 129.7, 129.1, 128.6, 126.2, 124.8, 123.0, 120.6, 60.0, 31.7, 25.9, 25.1; HRMS (EI) calcd for C₁₇H₁₇N (M) 235.1361, found 235.1342.

1i was obtained in 47% yield. Yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.65-7.61 (m, 1H), 7.37-7.30 (m, 2H), 7.22-7.17 (m, 1H), 1.76-1.41 (m, 22H); ¹³C NMR (100 MHz, CDCl₃) δ 179.2, 154.6, 144.3, 127.6, 125.5, 123.0, 121.2, 60.1, 28.0, 26.7, 26.1, 22.7, 22.1, 21.0; HRMS (EI) calcd for C₁₉H₂₇N (M) 269.2143, found 269.2149.

1j was obtained in 51% yield. Yollowish solid, m.p. 112-123 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.70-7.67 (m, 1H), 7.52-7.44 (m, 1H), 7.41-7.36 (m, 1H), 7.32-7.28 (m, 1H), 4.17-4.10 (m, 2H), 3.96-3.88 (m, 2H), 2.02-1.94 (m, 2H), 1.68-1.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 154.3, 143.1, 128.3, 126.5, 122.2, 121.5, 65.5, 55.0, 31.1; HRMS (EI) calcd for $C_{12}H_{13}NO$ (M) 187.0997, found 187.0983.

1k was obtained in 67% yield. Brown solid, m.p. 56-57 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.57-7.50 (m, 3H), 7.42-7.31 (m, 5H), 5.20 (s, 2H), 4.13-4.07 (m, 2H), 3.60-3.51 (m, 2H), 1.86-1.79 (m, 2H), 1.71-1.65 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 155.5, 153.1, 144.8, 136.6, 131.7, 128.7, 128.4, 128.2, 125.9, 123.0, 120.7, 67.6, 56.4, 42.0, 30.6; HRMS (EI) calcd for C₂₀H₁₉N₂O₂Br (M) 398.0630, found 398.0638.

11 was obtained in 32% yield. Red oil; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.63-7.60 (m, 1H), 7.35-7.28 (m, 1H), 7.26-7.23 (m, 2H), 1.91-1.74 (m, 4H), 1.25-1.11 (m, 4H), 1.05-0.94 (m, 2H), 0.88-0.78 (m, 2H), 0.77 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 179.6, 155.8, 142.6, 127.6, 126.0, 121.9, 121.1, 62.2, 35.2, 26.6, 23.2, 13.9; HRMS (EI) calcd for C₁₆H₂₃N (M) 229.1830, found 229.1801.

General procedure for the catalytic asymmetric Strecker reaction of cyclic (Z)-aldimines

To a flame dried reaction vial equipped with a magnetic stirring bar were added powdered 3 Å molecular sieves (20.0 mg). The molecular sieves were thermally activated under vacuum for 30 min, and cooled to 10 °C under nitrogen. To the reaction vial were added cyclic (*Z*)-aldimine **1** (0.10 mmol), catalyst **QD-a** or **Q-a** (5.9 mg, 0.010 mmol), 1,2-dichloroethane (1.0 mL), ethyl cyanoformate (**2a**, 12.0 mg, 0.12 mmol), and methanol (3.8 mg, 0.12 mmol). The resulting mixture was stirred at 10 °C for a period as specified in Table 2, and directly charged onto silica gel. Product **3** or **3'** was isolated using petroleum ether/ethyl acetate ($20/1 \sim 3/1$) as eluent.

The absolute configuration of 2-cyanoindoline 3b and 3-cyano-3,4-dihydro-2*H*-benzo[*b*][1,4]thiazine 3m was determined to be *S* and *R*, respectively, by single-crystal X-ray analysis, and that of the rest products was determined by analogy.

Analytical data for the products

3a was obtained as a white solid in 99% yield and 96% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 25.1 min, t_r (minor) = 32.8 min]. m.p. 82-84 °C; $[\alpha]_D^{25} = +169.0$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.12-7.07 (m, 2H), 6.87-6.82 (m, 1H), 6.72-6.68 (m, 1H), 4.47 (s, 1H), 4.13 (br., s, 1H), 2.20-2.14 (m, 1H), 2.02-1.72 (m, 5H), 1.51-1.36 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 147.2, 135.1, 128.4, 123.0, 120.6, 119.6, 110.6, 57.2, 49.9, 35.6, 33.0, 25.5, 23.3, 23.2; HRMS (EI) calcd for C₁₄H₁₆N₂ (M) 212.1313, found 212.1316.

3a' was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by Q-a.

The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 23.8 min, t_r (major) = 30.1 min]. $[\alpha]_D^{25} = -171.4$ (c = 1.0, CHCl₃).

3b was obtained as a white solid in 73% yield and 97% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 13.6 min, t_r (minor) = 18.3 min]. m.p. 101-102 °C; $[\alpha]_D^{25} = +152.5$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.07-7.02 (m, 2H), 6.63-6.60 (m, 1H), 4.49 (s, 1H), 2.19-2.14 (m, 1H), 1.97-1.73 (m, 5H), 1.49-1.35 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 137.0, 128.2, 125.3, 123.4, 119.1, 111.4, 57.5, 50.0, 35.4, 32.8, 25.3, 23.1, 23.0; HRMS (EI) calcd for C₁₄H₁₅N₂Cl (M) 246.0924, found 246.0941.

3b' was obtained as a white solid in 80% yield and 97% ee from a reaction catalyzed by **Q-a**. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 13.6 min, t_r (major) = 17.4 min]. $[\alpha]_D^{25} = -153.2$ (c = 1.0, CHCl₃).

3c was obtained as a white solid in 83% yield and 98% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 13.8 min, t_r (minor) = 18.9 min]. m.p. 97-98 °C; $[\alpha]_D^{25} = +149.5$ (c = 2.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.17 (m, 2H), 6.58-6.54 (m, 1H), 4.48 (s, 1H), 2.18-2.13 (m, 1H), 1.96-1.70 (m, 5H), 1.49-1.34 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 137.5, 131.1, 126.2, 119.1, 112.4, 112.0, 57.4, 50.0, 35.5, 32.8, 25.3, 23.1, 23.0; HRMS (EI) calcd for C₁₄H₁₅N₂Br (M) 290.0419, found 290.0426.

3c' was obtained as a white solid in 90% yield and 96% ee from a reaction catalyzed by **Q-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 12.0 min, t_r (major) = 15.8 min]. [α]_D²⁵ = -142.8 (c = 1.1, CHCl₃).

3d was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 12.5 min, t_r (minor) = 14.2 min]. m.p. 92-94 °C; $[\alpha]_D^{25} = +168.6$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.91-6.88 (m, 2H), 6.61-6.58 (m, 1H), 4.45 (s, 1H), 2.28 (s, 3H), 2.18-2.13 (m, 1H), 2.00-1.71 (m, 5H), 1.50-1.34 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 135.4, 130.0, 128.8, 123.6, 119.7, 110.5, 57.4, 49.9, 35.5, 33.0, 25.5, 23.3, 23.2, 21.1; HRMS (EI) calcd for C₁₅H₁₈N₂ (M) 226.1470, found 226.1477.

3d' was obtained as a white solid in 99% yield and 98% ee from a reaction catalyzed by **Q-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 12.4 min, t_r (major) = 14.1 min]. $[\alpha]_D^{25} = -170.6$ (c = 1.0, CHCl₃).

3e was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak AD,

isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 14.6 min, t_r (major) = 18.5 min]. m.p. 92-93 °C; $[\alpha]_D^{25} = +196.1$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.71-6.60 (m, 3H), 4.46 (s, 1H), 3.97 (br., s, 1H), 3.76 (s, 3H), 2.19-2.13 (m, 1H), 1.97-1.70 (m, 5H), 1.49-1.35 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 140.8, 136.9, 119.7, 113.0, 111.2, 110.0, 57.7, 56.0, 50.1, 35.3, 32.9, 25.4, 23.3, 23.1; HRMS (EI) calcd for C₁₅H₁₈N₂O (M) 242.1419, found 242.1422.

3e' was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by **Q-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak AD, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 14.9 min, t_r (minor) = 18.1 min]. [α]_D²⁵ = -194.3 (c = 1.0, CHCl₃).

3f was obtained as a white solid in 99% yield and 98% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 15.3 min, t_r (minor) = 18.0 min]. m.p. 77-79 °C; $[\alpha]_D^{25} = +173.1$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.41 (s, 1H), 6.37 (s, 1H), 4.53 (s, 1H), 2.40-2.25 (m, 5H), 2.22 (s, 3H), 1.87-1.72 (m, 4H), 1.63-1.54 (m, 1H), 1.46-1.28 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 138.2, 134.0, 128.5, 124.8, 120.2, 109.5, 56.4, 51.5, 32.9, 31.8, 25.5, 23.6, 23.3, 21.2, 19.5; HRMS (EI) calcd for C₁₆H₂₀N₂ (M) 240.1626, found 240.1655.

3f' was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by **Q-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 15.2 min, t_r (major) = 17.9 min]. [α]_D²⁵ = -167.3 (c = 1.0, CHCl₃).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

3g was obtained as a white solid in 99% yield and 95% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 19.7 min, t_r (minor) = 28.4 min]. m.p. 160-161 °C; $[\alpha]_D^{25} = +283.0$ (c = 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.4, Hz, 1H), 7.80-7.76 (m, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.45-7.40 (m, 1H), 7.28-7.23 (m, 1H), 7.00 (d, J = 8.8 Hz, 1H), 4.72 (s, 1H), 4.27 (br., s, 1H), 2.86-2.76 (m, 1H), 2.49-2.43 (m, 1H), 2.04-1.80 (m, 5H), 1.53-1.43 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 130.6, 130.5, 130.3, 129.9, 126.6, 124.0, 122.5, 121.5, 120.1, 113.1, 57.0, 52.9, 33.5, 32.6, 25.6, 23.8, 23.4; HRMS (EI) calcd for C₁₈H₁₈N₂ (M) 262.1470, found 262.1485.

3g' was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by **Q-a**. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 19.9 min, t_r (major) = 28.6 min]. [α]_D²⁵ = -304.4 (c = 0.4, CHCl₃).

3h was obtained as a yellowish oil in 93% yield and 92% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 9.9 min, t_r (minor) = 17.8 min]. $[\alpha]_D^{25} = +159.1$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.12-7.05 (m, 2H), 6.87-6.83 (m, 1H), 6.70 (d, J = 8.0 Hz, 1H), 4.29 (s, 1H), 2.32-2.25 (m, 1H), 2.06-1.74 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 134.9, 128.2, 122.5, 120.9, 119.3, 110.5, 60.2, 56.7, 39.7, 36.1, 25.0, 24.9; HRMS (EI) calcd for C₁₃H₁₄N₂ (M) 198.1157, found 198.1176.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2012

3h' was obtained as a yellowish oil in 83% yield and 98% ee from a reaction catalyzed by **Q-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 9.3 min, t_r (major) = 15.9 min]. [α]_D²⁵ = -171.6 (c = 1.0, CHCl₃).

3i was obtained as a white solid in 99% yield and 93% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 10.0 min, t_r (minor) = 13.0 min]. m.p. 119-120 °C; $[\alpha]_D^{25} = +100.2$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.11-7.06 (m, 1H), 7.05-7.02 (m, 1H), 6.83-6.79 (m, 1H), 6.69 (d, J = 7.6 Hz, 1H), 4.22 (s, 1H), 2.00-1.87 (m, 3H), 1.61-1.31 (m, 19H); ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 133.9, 128.2, 124.2, 120.1, 119.3, 110.6, 59.8, 51.7, 31.3, 28.6, 26.5, 26.4, 26.2, 22.7, 22.6, 22.2, 22.1, 19.4, 19.3; HRMS (EI) calcd for C₂₀H₂₈N₂ (M) 296.2252, found 296.2259.

3i' was obtained as a white solid in 99% yield and 94% ee from a reaction catalyzed by **Q-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 10.0 min, t_r (major) = 13.0 min]. [α]_D²⁵ = -104.9 (c = 1.0, CHCl₃).

3j was obtained as a white solid in 99% yield and 91% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 21.8 min, t_r (minor) = 27.6 min]. m.p. 217-218 °C; $[\alpha]_D^{25} = +146.5$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.17 (d, *J* = 7.6 Hz, 1H), 7.08-7.02 (m, 1H), 6.75-6.69 (m, 1H), 6.67-6.63 (m, 2H), 4.91 (s, 1H), 3.97-3.91 (m, 1H), 3.76-3.64 (m, 2H), 3.53-3.45 (m, 1H), 2.28-2.20 (m, 1H), 1.90-1.82 (m, 1H), 1.67-1.60 (m, 1H), 1.55-1.47 (m, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 148.4, 133.8, 128.2, 122.7, 119.8, 118.9, 109.7, 63.8, 63.6, 56.1, 46.7, 34.9, 32.2; HRMS (EI) calcd for C₁₃H₁₂N₂O (M) 214.1106, found 214.1112.

3j' was obtained as a white solid in 99% yield and 98% ee from a reaction catalyzed by **Q-a**. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 22.7 min, t_r (major) = 28.5 min]. $[\alpha]_D^{25} = -166.7$ (c = 0.2, CHCl₃).

3k was obtained as a white solid in 85% yield and 97% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (20:80), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 17.9 min, t_r (minor) = 22.6 min]. m.p. 67-69 °C; $[\alpha]_D^{25} = +145.5$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.30 (m, 5H), 7.22 (dd, J = 8.4, 2.0 Hz, 1H), 7.17 (d, J = 2.0 Hz, 1H), 6.59 (d, J = 8.4 Hz, 1H), 5.17 (s, 2H), 4.49 (s, 1H), 4.20-4.15 (m, 1H), 4.08-4.04 (m, 1H), 3.17-3.07 (m, 2H), 2.20-2.06 (m, 2H), 1.84-1.80 (m, 1H), 1.65-1.56 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 146.3, 136.6, 135.3, 131.8, 128.7, 128.3, 128.1, 126.3, 118.3, 112.6, 112.2, 67.5, 56.8, 48.3, 41.1, 40.9, 34.5, 32.0; HRMS (EI) calcd for C₂₁H₂₀N₃O₂Br (M) 425.0739, found 425.0772.

3k' was obtained as a white solid in 79% yield and 97% ee from a reaction catalyzed by **Q-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (20:80), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 18.0 min, t_r (major) = 22.4 min]. [α]_D²⁵ = -146.8 (c = 1.0, CHCl₃).

31 was obtained as a yellowish oil in 98% yield and 96% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak AD, isopropanol/hexane (2:98), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 12.2 min, t_r (minor) = 17.2 min]. [α]_D²⁵ = +169.7 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.12-7.06 (m, 1H), 7.00 (d, *J* = 7.2 Hz, 1H), 6.86-6.80 (m, 1H), 6.68 (d, *J* = 7.6 Hz, 1H), 4.37 (d, *J* = 2.8 Hz, 1H), 4.11 (br., s, 1H), 2.01-1.92 (m, 1H), 1.84-1.61 (m, 3H), 1.45-1.11 (m, 8H), 1.00-0.85 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 133.1, 128.3, 123.9, 120.2, 119.0, 110.4, 58.8, 52.4, 36.8, 35.5, 26.3, 26.2, 23.3, 23.2, 14.1; HRMS (EI) calcd for C₁₇H₂₄N₂ (M) 256.1939, found 256.1959.

31' was obtained as a yellowish oil in 95% yield and 98% ee from a reaction catalyzed by **Q-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak AD, isopropanol/hexane (2:98), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 12.1 min, t_r (major) = 17.1 min]. $[\alpha]_D^{25} = -177.9$ (c = 1.0, CHCl₃).

3m was obtained as a white solid in 90% yield and 94% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 20.0 min, t_r (minor) = 23.0 min]. m.p. 120-121 °C; $[\alpha]_D^{25} = +179.5$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.02-6.94 (m, 2H), 6.80-6.74 (m, 1H), 6.60 (dd, J = 8.0, 1.2 Hz, 1H), 4.20 (s, 1H), 1.57 (s, 3H), 1.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.5, 127.9, 126.1, 120.4, 117.7, 116.0, 115.9, 54.3, 40.8, 27.8, 26.3; HRMS (EI) calcd for C₁₁H₁₂N₂S (M) 204.0721, found 204.0726.

3m' was obtained as a white solid in 98% yield and 97% ee from a reaction catalyzed by **Q-a**. The ee value was determined by chiral stationary phase HPLC analysis [Hypersil + Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 20.3 min, t_r (major) = 23.5 min]. [α]_D²⁵ = -186.6 (c = 1.0, CHCl₃).

3n was obtained as a white solid in 99% yield and 94% ee from a reaction catalyzed by **QD-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 18.2 min, t_r (minor) = 20.1 min]. m.p. 121-122 °C; $[\alpha]_D^{25} = +224.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.03 (dd, J = 8.0, 1.2 Hz, 1H), 7.00-6.93 (m, 1H), 6.78-6.73 (m, 1H), 6.58-6.55 (m, 1H), 4.40 (br., s, 1H), 4.26 (s, 1H), 2.09-2.01 (m, 1H), 1.92-1.46 (m, 8H), 1.37-1.27 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.9, 127.9, 125.8, 120.2, 117.7, 115.8, 115.5, 53.7, 45.5, 35.1, 34.8, 25.6, 21.6, 21.5; HRMS (EI) calcd for C₁₄H₁₆N₂S (M) 244.1034, found 244.1035.

3n' was obtained as a white solid in 99% yield and 97% ee from a reaction catalyzed by **Q-a**. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak IC, isopropanol/hexane (5:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 18.1 min, t_r (major) = 19.9 min]. $[\alpha]_D^{25} = -233.6$ (c = 1.0, CHCl₃).

Transformation of compound 3a⁴

To a solution of compound **3a** (96% ee, 21.2 mg, 0.10 mmol) in methanol (1.0 mL) at room temperature were added LiOH·H₂O (8.4 mg, 0.20 mmol), aqueous H₂O₂ (30 wt%, 48 μ L, 0.50

mmol), and water (0.30 mL). The mixture was stirred for 1 h, added water (5 mL), and extracted with ethyl acetate (4 × 10 mL). The organic phases were combined, washed with brine, dried over anhydrous sodium sulfate, and concentrated. The residue was subjected to column chromatography on silica gel, using petroleum ether/ethyl acetate (5/1~1/1) as eluent, to give compound **4** (16.2 mg, 70%) as a white solid. The ee value was determined by chiral stationary phase HPLC analysis [Chiralpak AD, isopropanol/hexane (15:85), 1.0 mL/min, λ = 254 nm, t_r (minor) = 7.4 min, t_r (major) = 15.8 min]. m.p. 165-166 °C; [α]_D²⁵ = -112.0 (c = 0.15, EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 7.6 Hz, 1H), 7.13-7.08 (m, 1H), 6.86-6.81 (m, 1H), 6.79 (br., s, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 5.61 (br., s, 1H), 4.04 (s, 1H), 2.05-1.40 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 148.0, 136.9, 127.7, 125.2, 120.1, 110.5, 73.1, 48.8, 36.8, 32.4, 25.4, 22.7, 21.5; HRMS (ESI) calcd for C₁₄H₁₉N₂O⁺ (M+H)⁺ 231.14919, found 231.14835.

References

- 1 (a) J. Ye, D. J. Dixon and P. S. Hynes, *Chem. Commun.*, 2005, 4481; (b) B. Vakulya, S. Varga, A. Csámpai and T. Soós, *Org. Lett.*, 2005, 7, 1967; (c) S. H. McCooey and S. J. Connon, *Angew. Chem., Int. Ed.*, 2005, 44, 6367; (d) J. Luo, L.-W. Xu, R. A. S. Hay and Y. Lu, *Org. Lett.*, 2009, 11, 437.
- 2 K. G. Liu and A. J. Robichaud, Tetrahedron Lett., 2007, 48, 461.
- 3 M. Watzke, K. Schulz, K. Johannes, P. Ullrich and J. Martens, Eur. J. Org. Chem., 2008, 3859.
- 4 K. Funabashi, H. Ratni, M. Kanai and M. Shibasaki, J. Am. Chem. Soc., 2001, 123, 10784.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	24.412	4472.1	148	0.4676	0.809	50.327
2	32.148	4413.9	115	0.5965	0.947	49.673

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	23.844	119.1	5.1	0.3607	0.991	1.547
2	30.146	7578.6	243.4	0.487	1.038	98.453

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	13.584	12826.5	556.2	0.3579	0.787	98.406
2	18.294	207.7	6.8	0.4688	1.005	1.594

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	12.991	6524.8	267.4	0.3852	0.917	50.091
2	17.479	6501.1	222.2	0.4578	0.935	49.909

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	12.004	544.4	26.1	0.3234	0.878	2.234
2	15.828	23828.7	933.8	0.3953	0.822	97.766

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	12.538	6533.2	326.3	0.3093	0.758	98.457
2	14.201	102.4	4.6	0.3429	0.907	1.543

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	14.206	1442.7	45.7	0.4875	0.758	50.103
2	17.917	1436.8	38.9	0.574	0.8	49.897

rumber	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	14.937	5974.5	262.4	0.3501	0.673	98.233
2	18.072	107.5	4	0.4189	0.887	1.767

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	15.26	5081.7	217.6	0.3598	0.734	98.795
2	17.983	62	2.2	0.4259	0.784	1.205

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	19.687	4391.7	161.5	0.425	0.917	49.695
2	28.239	4445.6	114.3	0.6053	0.894	50.305

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	19.922	490.5	17.9	0.4237	0.919	1.422
2	28.58	34008.6	787.4	0.6859	0.79	98.578

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	9.868	5715.5	344	0.2579	0.734	95.799
2	17.836	250.7	9.7	0.4002	0.931	4.201

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	9.978	2053.3	121.6	0.2611	0.807	50.525
2	12.961	2010.6	94.1	0.3322	0.913	49.475

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	10.018	73.5	4.4	0.2517	0.928	2.931
2	12.975	2432.6	123	0.308	0.946	97.069

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	21.787	1357.1	54.2	0.3913	1.063	95.622
2	27.561	62.1	1.9	0.4975	0.962	4.378

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	18.027	1978.7	52	0.5895	0.837	50.132
2	22.745	1968.3	40.2	0.7554	0.826	49.868

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	18.006	240.8	4.9	0.7233	0.657	1.333
2	22.375	17821	379.2	0.7274	0.754	98.667

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	12.21	3856.9	151	0.4013	0.891	98.204
2	17.206	70.5	2.1	0.4958	0.868	1.796

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	20.327	3742.7	163.8	0.354	0.773	49.798
2	23.481	3773.1	146	0.4004	0.767	50.202

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	20.341	100.1	4.6	0.3426	0.867	1.701
2	23.523	5787.4	214	0.4175	0.726	98.299

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	18.195	6058.5	205.4	0.4562	0.784	96.794
2	20.092	200.7	6.3	0.4925	1.044	3.206

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	7.333	1332.9	78.1	0.2843	0.786	51.761
2	14.862	1242.2	37.3	0.5552	0.878	48.239

The crystal data of compound **3b** have been deposited in CCDC with number 837035.

Table 1 Crystal data and structure refinement for 110726

Identification code	110726
Empirical formula	C ₁₄ H ₁₅ ClN ₂
Formula weight	246.73
Temperature	291(2)
Crystal system	Monoclinic
Space group	P21
a/Å, b/Å, c/Å	7.2479(3), 7.0711(4), 13.0826(6)
α/°, β/°, γ/°,	90.00, 98.024(5), 90.00
Volume/Å ³	663.93(6)
Z	2
$ ho \ calc mg/mm^3$	1.234
m/mm•1	0.267
F(000)	260
Crystal size	$0.42 \times 0.36 \times 0.31$
Theta range for data collection	3.15 to 26.37°
Index ranges	$-9 \le h \le 9$, $-8 \le k \le 8$, $-16 \le 1 \le 13$
Reflections collected	6023
Independent reflections	2686[R(int) = 0.0243]
Data/restraints/parameters	2686/2/158
Goodness-of-fit on F ²	1.024
Final R indexes [I>2 σ (I)]	$R_1 = 0.0460, WR_2 = 0.0895$
Final R indexes [all data]	$R_1 = 0.0640, wR_2 = 0.0981$
Largest diff. peak/hole	0.231/-0.272

Table 2 Atomic Coordinates (Å×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 110726. U_{eq}is defined as 1/3 of of the trace of the orthogonalised U_{IJ}tensor.

Atom	x	у	z	U(eq)
C11	12948.5(11)	2115.1(19)	5499.4(6)	107.8(4)
N1	8674(3)	-1218(3)	1808.7(17)	56.1(6)
C3	9339(3)	1177(3)	2972.5(17)	41.8(5)
C8	7666(3)	1857(3)	2226.3(16)	41.4(5)
C7	7822(4)	472(4)	1310.1(18)	48.8(6)
C9	5868(3)	1420(4)	2686.2(18)	54.1(7)
C4	9850(3)	-620(4)	2690.3(19)	48.8(6)
N2	9890(4)	1769(4)	-16.1(19)	79(7)
C2	10257(3)	2027(4)	3845.3(17)	52.2(6)
C5	11274(4)	-1601(4)	3273(3)	67.7(8)
C10	4113(3)	2106(5)	2008(2)	73(9)
C14	8982(4)	1244(4)	564.5(19)	56.6(7)
C13	7728(4)	3949(4)	1936(2)	53(6)
C1	11712(4)	1045(5)	4412(2)	65.6(8)
C12	5967(4)	4573(5)	1236(3)	73.8(9)
C6	12215(4)	-724(5)	4143(2)	74(9)
C11	4245(4)	4182(6)	1741(3)	88.9(11)

Table 3 Anisotropic Displacement Parameters (Å2×103) for 110726. The Anisotropic displacement factor exponenttakes the form: -2 $\pi^2 [h^2 a^{*2} U_{11}+...+2hka \times b \times U_{12}]$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C11	63.1(4)	193.1(11)	61.2(4)	-14(6)	-12.1(4)	-10.7(6)
N1	78.8(16)	43.5(13)	50(13)	-6.6(11)	22.6(12)	-6.9(11)
C3	38.2(11)	51.1(14)	38.4(11)	0.8(11)	13.5(10)	-1.9(10)
C8	37.1(11)	48.8(14)	38.9(11)	-3(11)	7.1(9)	-4.5(11)
C7	52.4(15)	53.8(15)	41.1(13)	-2.1(11)	10.4(11)	-15.9(12)
C9	42.5(12)	72.1(18)	49.2(13)	6.3(13)	11.9(11)	-0.2(12)
C4	50.5(14)	52.6(16)	47.4(15)	5.7(12)	21.8(12)	0.6(12)
N2	110.6(19)	73.6(19)	60.5(14)	3.4(13)	38.9(14)	-8.6(15)
C2	42.2(12)	70.5(17)	45.2(12)	-7.7(13)	10.6(10)	-2.3(13)
C5	68(19)	62.5(19)	79(2)	20.8(16)	32.1(17)	22.3(15)
C10	38.3(13)	108(3)	72(17)	14.3(19)	6.9(12)	-0.9(16)
C14	73.2(18)	58.6(16)	40(12)	-2.8(13)	15.2(13)	-10.5(14)
C13	53(15)	47.3(15)	57.3(16)	0(13)	3(12)	-3.3(12)
C1	40.2(14)	112(3)	45.3(14)	2.5(17)	8.6(12)	-2.3(16)
C12	70.8(19)	61.4(18)	84(2)	17.1(16)	-6.2(17)	4.3(15)
C6	48.9(16)	110(3)	65(2)	26(2)	15.7(15)	19.7(18)
C11	54.3(19)	110(3)	99(3)	21(2)	-1(17)	27(2)

Table 4 Bond Lengths for 110726.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C11	C1	1.745(3)	С9	C10	1.525(3)
N1	C4	1.400(3)	C4	C5	1.382(4)
N1	C7	1.457(3)	N2	C14	1.135(3)
C3	C2	1.377(3)	C2	C1	1.388(4)
C3	C4	1.388(3)	C5	C6	1.389(4)
C3	C8	1.524(3)	C10	C11	1.515(5)
C8	C13	1.529(4)	C13	C12	1.529(4)
C8	C9	1.541(3)	C1	C6	1.363(4)
C8	C7	1.564(3)	C12	C11	1.516(4)
C7	C14	1.478(4)			

Table 5 Bond Angles for 110726.

Atom	Atom	Atom	Angle/•	Atom	Atom	Atom	Angle/•
C4	N1	C7	107.0(2)	C5	C4	C3	121.3(2)
C2	C3	C4	120.3(2)	C5	C4	N1	128.7(3)
C2	C3	C8	130.0(2)	C3	C4	N1	110.0(2)
C4	C3	C8	109.65(19)	C3	C2	C1	117.9(3)
C3	C8	C13	114.55(18)	C4	C5	C6	118.2(3)
C3	C8	C9	109.08(18)	C11	C10	C9	111.6(2)
C13	C8	С9	110.3(2)	N2	C14	C7	177.4(3)
C3	C8	C7	99.04(18)	C12	C13	C8	112.1(2)
C13	C8	C7	114.07(19)	C6	C1	C2	122.2(3)
C9	C8	C7	109.21(19)	C6	C1	C11	118.9(2)
N1	C7	C14	110.7(2)	C2	C1	Cl1	118.9(3)
N1	C7	C8	104.01(18)	C11	C12	C13	110.8(2)
C14	C7	C8	112.52(19)	C1	C6	C5	120.2(3)
C10	С9	C8	113.0(2)	C10	C11	C12	111.1(3)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Table 6 Hydrogen Bonds for 110726.

D	н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	$D-H-A/^{\circ}$
N1	H1	N2	0.871(17)	2.200(19)	3.048(3)	164(3)

Table 7 Torsion Angles for 110726.

Α	В	С	D	Angle/•
C2	C3	C8	C13	42.8(3)
C4	C3	C8	C13	-140.6(2)
C2	C3	C8	C9	-81.4(3)
C4	C3	C8	C9	95.3(2)
C2	C3	C8	C7	164.6(2)
C4	C3	C8	C7	-18.8(2)
C4	N1	C7	C14	89.5(2)
C4	N1	C7	C8	-31.6(3)
C3	C8	C7	N1	29.6(2)
C13	C8	C7	N1	151.8(2)
C9	C8	C7	N1	-84.3(2)
C3	C8	C7	C14	-90.3(2)
C13	C8	C7	C14	31.9(3)
C9	C8	C7	C14	155.8(2)
C3	C8	C9	C10	178.2(2)
C13	C8	C9	C10	51.6(3)
C7	C8	C9	C10	-74.6(3)
C2	C3	C4	C5	0.3(3)
C8	C3	C4	C5	-176.7(2)
C2	C3	C4	N1	177.4(2)
C8	C3	C4	N1	0.4(3)
C7	N1	C4	C5	-162.9(3)
C7	N1	C4	C3	20.2(3)
C4	C3	C2	C1	1.1(3)
C8	C3	C2	C1	177.4(2)
C3	C4	C5	C6	-1.3(4)
N1	C4	C5	C6	-177.9(3)
C8	C9	C10	C11	-53.2(3)
N1	C7	C14	N2	35(6)

Table 8 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 110726.

Atom	x	у	z	U(eq)
H7	6576	171	955	59
H9A	5778	65	2784	65
H9B	5941	2014	3359	65
H2	9913	3222	4049	63
H5	11594	-2814	3088	81
H10A	3925	1368	1377	88
H10B	3045	1910	2367	88
H13A	7873	4706	2561	64
H13B	8803	4174	1587	64
H12B	6041	5915	1093	89
H12A	5876	3900	585	89
H6	13191	-1346	4544	89
H11B	4291	4934	2364	107
H11A	3144	4550	1275	107
H1	9110(4)	-1990(3)	1378(18)	66(9)

The crystal data of compound **3m** have been deposited in CCDC with number 832628.

Table 1 Crystal data and structure refinement for syd110701

Identification code	syd110701
Empirical formula	$C_{11}H_{12}SN_2$
Formula weight	204.29
Temperature	291(2)
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å, b/Å, c/Å	5.9323(3), 10.0252(8), 18.0127(16)
α/°, β/°, γ/°,	90.00, 90.00, 90.00
Volume/Å ³	1071.26(14)
Z	4
$\rho_{calc}mg/mm^3$	1.267
m/mm ^{•1}	0.263
F(000)	432
Crystal size	$0.42 \times 0.36 \times 0.32$
Theta range for data collection	3.62 to 26.37°
Index ranges	$\textbf{-7} \leq h \leq \textbf{7}, \textbf{-12} \leq k \leq \textbf{12}, \textbf{-22} \leq \textbf{l} \leq \textbf{22}$
Reflections collected	9400
Independent reflections	2199[R(int) = 0.0294]
Data/restraints/parameters	2199/1/133
Goodness-of-fit on F ²	1.045
Final R indexes [I>2 σ (I)]	$R_1 = 0.0317, wR_2 = 0.0754$
Final R indexes [all data]	$R_1 = 0.0366, WR_2 = 0.0783$
Largest diff. peak/hole	0.156/-0.154

Table 2 Atomic Coordinates (Å×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for syd110701. U_{eq}is defined as 1/3 of of the trace of the orthogonalised U_{IJ}tensor.

Atom	x	У	ζ	U(eq)
S1	5799.9(7)	10069.2(5)	8442.3(3)	53.65(15)
N2	7588(4)	11426.4(18)	10337.5(11)	72.3(5)
C6	5458(3)	7397(19)	8621.1(11)	50.6(5)
N1	10454(3)	9376.2(15)	9149.4(9)	43.8(4)
C4	8943(3)	8331.5(16)	9066.8(9)	37.4(4)
C7	8385(3)	11058.9(17)	8418.2(11)	44.4(4)
C1	6101(4)	6142(2)	8848.3(11)	59.1(5)
C3	9565(3)	7052.1(17)	9299.2(10)	45.6(4)
C5	6840(3)	8498.7(16)	8723.1(9)	39.4(4)
C2	8169(4)	5969.8(19)	9184(11)	55.8(5)
C10	9794(4)	10736(2)	7734.5(12)	63.9(6)
C8	9750(3)	10754.9(16)	9123.6(10)	42.7(4)
C9	8497(3)	11144.4(18)	9802.6(11)	50.4(4)
C11	7622(4)	12520.1(19)	8413.7(13)	62.6(6)

Table 3 Anisotropic Displacement Parameters (Å^{2×103}) for syd110701. The Anisotropic displacement factor exponent takes the form: -2 π ²[h²a^{*2}U₁₁+...+2hka×b×U₁₂]

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S1	38.4(2)	51.6(2)	71(3)	5.4(2)	-11.1(2)	2.3(2)
N2	90.8(14)	70.4(12)	55.7(11)	-4.7(10)	10.8(10)	18.6(11)
C6	47.1(10)	57(11)	47.7(11)	-4.3(8)	1(8)	-13.1(9)
N1	34.9(7)	44(8)	52.5(10)	-2.9(7)	-7.6(7)	0.7(6)
C4	37.8(8)	40(8)	34.5(9)	-4.2(7)	4.8(7)	2(7)
C7	44.7(9)	42.1(8)	46.4(10)	2.7(8)	2.3(8)	-0.8(7)
C1	71.6(14)	48.3(10)	57.4(12)	-5.2(9)	12.4(11)	-19.2(10)
C3	49.8(10)	48.2(10)	38.7(10)	-1.3(7)	5.1(8)	8.9(8)
C5	39.5(9)	42.5(9)	36.1(9)	-4.7(7)	1.5(7)	-2.2(7)
C2	78.1(13)	38.2(9)	51.2(12)	1.8(9)	15.4(11)	4.1(9)
C10	66.1(13)	78.7(14)	47(12)	2.7(10)	10(10)	7.4(11)
C8	41.4(9)	38.8(9)	47.9(11)	-3.7(7)	0.5(8)	-4.8(7)
C9	58(11)	43.2(9)	50.1(11)	-1.5(8)	-1.3(9)	2.9(8)
C11	78.4(15)	45.3(10)	64.1(14)	9.7(10)	2.7(12)	5.6(10)

Table 4 Bond Lengths for syd110701.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	C5	1.7650(17)	C4	C5	1.403(2)
S1	C7	1.8272(18)	C7	C10	1.523(3)
N2	C9	1.140(3)	C7	C11	1.533(2)
C6	C1	1.377(3)	C7	C8	1.537(2)
C6	C5	1.388(2)	C1	C2	1.379(3)
N1	C4	1.386(2)	C3	C2	1.381(3)
N1	C8	1.445(2)	C8	C9	1.484(3)
C4	C3	1.399(2)			

Table 5 Bond Angles for syd110701.

Atom	Atom	Atom	Angle/•	Atom	Atom	Atom	Angle/•
C5	S1	C7	101.41(8)	C8	C7	S1	108.35(12)
C1	C6	C5	121.61(19)	C6	C1	C2	119.42(19)
C4	N1	C8	122.19(13)	C2	C3	C4	121.16(18)
N1	C4	C3	119.35(15)	C6	C5	C4	119.26(16)
N1	C4	C5	122.13(15)	C6	C5	S1	117.74(14)
C3	C4	C5	118.44(16)	C4	C5	S1	122.95(13)
C10	C7	C11	111.17(17)	C1	C2	C3	120.09(18)
C10	C7	C8	109.70(15)	N1	C8	C9	111.72(16)
C11	C7	C8	110.45(16)	N1	C8	C7	111.63(14)
C10	C7	S1	111.35(14)	C9	C8	C7	111.43(15)
C11	C7	S1	105.73(13)	N2	С9	C8	177.8(2)

Table 6 Torsion Angles for syd110701.

Α	В	С	D	Angle/•
C8	N1	C4	C3	-162.15(16)
C8	N1	C4	C5	21.1(3)
C5	S1	C7	C10	75.93(15)
C5	S1	C7	C11	-163.22(14)
C5	S1	C7	C8	-44.80(13)
C5	C6	C1	C2	-0.1(3)
N1	C4	C3	C2	-175.84(16)
C5	C4	C3	C2	1.1(3)
C1	C6	C5	C4	-0.1(3)
C1	C6	C5	S1	-177.65(15)
N1	C4	C5	C6	176.46(16)
C3	C4	C5	C6	-0.4(2)
N1	C4	C5	S1	-6.1(2)
C3	C4	C5	S1	177.07(13)
C7	S1	C5	C6	-163.75(14)
C7	S1	C5	C4	18.79(16)
C6	C1	C2	C3	0.8(3)
C4	C3	C2	C1	-1.3(3)
C4	N1	C8	C9	72.7(2)
C4	N1	C8	C7	-52.8(2)
C10	C7	C8	N1	-58.26(19)
C11	C7	C8	N1	178.86(16)
S1	C7	C8	N1	63.49(15)
C10	C7	C8	C9	176.06(17)
C11	C7	C8	C9	53.18(19)
S1	C7	C8	C9	-62.19(16)
N1	C8	С9	N2	49(6)
C7	C8	С9	N2	175(100)

Atom	x	У	z	U(eq)
H6	4063	7509	8394	61
H1	5149	5417	8776	71
H3	10944	6928	9535	55
H2	8625	5124	9333	67
H10B	10172	9805	7736	96
H10C	11151	11257	7742	96
H10A	8946	10941	7295	96
H8	11118	11301	9105	51
H11B	8920	13092	8425	94
H11C	6701	12690	8841	94
H11A	6768	12694	7971	94
H4	11560(3)	9241(19)	9437(10)	54(6)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for syd110701.