Supplementary Information

A Début for Base Stabilized Monoalkylsilylenes

Ramachandran Azhakar, Rajendra S. Ghadwal, * Herbert W. Roesky, *Hilke Wolf and

Dietmar Stalke*

Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077

Göttingen, Germany

AUTHOR EMAIL ADDRESS hroesky@gwdg.de, rghadwal@uni-goettingen.de,

dstalke@chemie.uni-goettingen.de

Experimental Section

Syntheses were carried out under an inert atmosphere of dinitrogen in oven dried glassware using standard Schlenk techniques. All other manipulations were accomplished in a dinitrogen filled glove box. Solvents were purified by MBRAUN solvent purification system MB SPS-800. All chemicals were purchased from Aldrich and used without further purification. LSiCl^{S1} (1) and KC(SiMe₃)₃^{S2} were prepared as reported in the literature. ¹H and ²⁹Si NMR spectra were recorded with a Bruker Avance DPX 300 or a Bruker Avance DRX 500 spectrometer, using C₆D₆ as a solvent. Chemical shifts δ are given relative to SiMe₄. EI– MS spectra were obtained using a Finnigan MAT 8230 spectrometer. Elemental analyses were performed at the Institut für Anorganische Chemie, Universität Göttingen.

Synthesis of LSitBu (2) Toluene (60 mL) was added to a 100 mL Schlenk flask containing LSiCl (0.41 g, 1.39 mmol) at room temperture. To this solution LitBu (1.7 M in pentane, 0.85 mL, 1.45 mmol) was added. The reaction mixture was stirred for 6 h. Then it was filtered and the solvent was removed *in vacuo* to obtain 2. (0.40 g, 91%). Elemental analysis (%) calcd for $C_{19}H_{32}N_2Si$ (316.56): C, 72.09; H, 10.19; N, 8.85. Found: C, 72.02; H, 10.25; N, 8.67. ¹H NMR (500 MHz, C_6D_6 , 25 °C): δ 1.11 (s, 18H, $C(CH_3)_3$), 1.30 (s, 9H, $SiC(CH_3)_3$), 6.88–7.08 (m, 5 H, C_6H_5) ppm. ²⁹Si{¹H} NMR (99.36 MHz, C_6D_6 , 25 °C): δ 61.5 ppm. EI–MS: *m/z* 316 [M⁺].

Synthesis of LSi[C(SiMe₃)₃] (3) Toluene (60 mL) was added to a 100 mL Schlenk flask containing LSiCl (0.31 g, 1.05 mmol) and KC(SiMe₃)₃ (0.29 g, 1.07 mmol) at room temperature. The reaction mixture was stirred for 6 h. Then it was filtered and the solvent was removed *in vacuo* to obtain 3. (0.46 g, 88%). Elemental analysis (%) calcd for $C_{25}H_{50}N_2Si_4$ (491.02): C, 61.15; H, 10.26; N, 5.71. Found: C, 61.06; H, 10.01; N, 5.56. ¹H NMR (500 MHz, C₆D₆, 25 °C): δ 0.57 (s, 27H, SiC[Si(CH₃)₃], 1.23 (s, 18H, C(CH₃)₃), 6.83–7.21 (m,

2

5 H, C₆*H*₅) ppm. ²⁹Si{¹H} NMR (59.63 MHz, C₆D₆, 25 °C): δ 72.7 *Si*C[Si(CH₃)₃], -0.4 SiC[*Si*(CH₃)₃] ppm. EI–MS: *m/z* 490 [M⁺].

Synthesis of [LSitBu(μ –O)]₂ (4) Toluene (60 mL) was added to a 100 mL Schlenk flask containing 2 (0.31 g, 0.98 mmol). To this solution, dry N₂O was passed through for 10 min. Then the solution was reduced *in vacuo* to about 30 mL and stored at –32 °C in a freezer for 3 days to obtain colorless single crystals of 4. (0.22 g, 73%). Elemental analysis (%) calcd for C₃₈H₆₄N₄O₂Si₂ (665.11): C, 68.62; H, 9.70; N, 8.42. Found: C, 68.42; H, 9.50; N, 8.32. ¹H NMR (500 MHz, C₆D₆, 25 °C): δ 1.35 (s, 36H, C(CH₃)₃), 1.68 (s, 18H, SiC(CH₃)₃), 6.88–7.08 (m, 5 H, C₆H₅) ppm. ²⁹Si{¹H} NMR (99.36 MHz, C₆D₆, 25 °C): δ –74.3 ppm. EI–MS: *m/z* 665 [M⁺].

Crystal Structure Determination. Suitable single crystals for X-ray structural analysis of **3** and **4** were obtained by slow evaporation of their corresponding toluene solutions and the crystals were mounted at low temperature in an inert oil under argon atmosphere by applying the X-Temp2 device.^{S3} The diffraction data were collected at 100 K on a Bruker D8 three circle diffractometer equipped with a SMART APEX II CCD detector and an INCOATEC Ag microsource with INCOATEC Quazar mirror optics ($\lambda = 0.5608$ Å).^{S4} The data were integrated with SAINT^{S5} and an empirical absorption correction with SADABS^{S6} was applied. The structures were solved by direct methods (SHELXS-97) and refined against all data by full-matrix least-squares methods on F^2 (SHELXL-97).^{S7} All non-hydrogen-atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotropically on calculated positions using a riding model with their U_{iso} values constrained to 1.5 U_{eq} of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for all other carbon atoms.

Parameters	3	4
Empirical formula	$C_{25}H_{50}N_2Si_4$	$C_{38}H_{64}N_4O_2Si_2$
Formula Weight	491.03	665.11
Crystal system	monoclinic	triclinic
Space group	$P2_{1}/n$	Pī
Unit cell dimensions	a = 14.7600(10) Å	a = 9.878(3) Å
	b = 12.02020(10)Å	b = 10.371(4) Å
	c = 17.706(2) Å	c = 11.472(5) Å
	$\beta = 112.04(2)^{\circ}$	$\alpha = 110.480(10)$
		$\beta = 94.95(2)$
		$\gamma = 116.21(2)$
Volume, Z	2955.8(5) Å ³ , 4	946.3(6) Å ³ , 1
Density (calcd)	1.103 g/cm^3	1.167 g/cm^3
Absorption coefficient	0.216 mm ⁻¹	0.131 mm ⁻¹
F (000)	1080	364
Crystal size/mm	0.20 x 0.20 x 0.20	0.50 x 0.50 x 0.30
θ range for data collection	1.54 to 27.11°	1.98 to 28.35°
Limiting indices	-18≤ <i>h</i> ≤18;	-13≤ <i>h</i> ≤13;
	-15≤ <i>k</i> ≤15;	-13≤ <i>k</i> ≤13;
	22≤ <i>l</i> ≤22	-15≤ <i>l</i> ≤15
Reflections collected	50349	27594
Independent reflections	$6530 (R_{\rm int} = 0.0277)$	$4682 (R_{\rm int} = 0.0284)$
Completeness to θ	99.9% (<i>θ</i> = 27.11°)	99.5% (<i>θ</i> = 28.35°)
Refinement method	Full- matrix least - squares on F^2	Full- matrix least - squares on F^2
Data/restraints/ parameters	6530 / 0 / 295	4682 / 0 / 217
Goodness - of - fit on F^2	1.046	1.060
Final <i>R</i> indices [$I > 2\sigma(I)$]	R1 = 0.0278, wR2 = 0.0715	R1 = 0.0327, wR2 = 0.0909
R indices (all data)	R1 = 0.0325, wR2 = 0.0740	R1 = 0.0339, wR2 = 0.0918
Largest diff. peak and hole	0.354 and -0.200 eÅ $^{-3}$	0.450 and -0.216 eÅ ⁻³

Table S1. Crystal and Structure Refinement parameters for compounds 3 and 4.

References

- S1. S. S. Sen, H. W. Roesky, D. Stern, J. Henn and D. Stalke, J. Am. Chem. Soc., 2010, 132, 1123–1126.
- S2. C. Eaborn, P. B. Hitchcock, K. Izod, A. J. Jaggar and J. D. Smith, *Organometallics*, 1994, 13, 753–754.
- S3. (a) D. Stalke, *Chem. Soc. Rev.*, 1998, 27, 171-178; (b) T. Kottke and D. Stalke, *J. Appl. Crystallogr.*, 1993, 26, 615-619.
- S4. T. Schulz, K. Meindl, D. Leusser, D. Stern, J. Graf, C. Michaelsen, M. Ruf, G. M. Sheldrick and D. Stalke, J. Appl. Crystallogr., 2009, 42, 885-891.
- S5. SAINT, Bruker AXS Inc., Madison, Wisconsin (USA) 2000.
- S6. G. M. Sheldrick, SADABS, Universität Göttingen, Germany, 2000.
- S7. G. M. Sheldrick, Crystallogr.Sect. A, 2008, 64, 112–122.