Supporting Information for

Interior Aliphatic C-H Bond Activation on Iron(II) N-Confused Porphyrin Through Synergistic Nitric Oxide Binding and Iron Oxidation Wei-Min Ching^{a,b} and Chen-Hsiung Hung^{*a}

^aInstitute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan. Fax: 886-2-27831237; Tel: 886-2-27898570; E-mail: chhung@chem.sinica.edu.tw ^bDepartment of Chemistry, National Taiwan Normal University, Taipei Taiwan

Contents

General information

Synthesis of [Fe(CTPP*CH*₃)NO] (**3**).

Synthesis of [Fe(CTPPCH₃)(¹⁵NO)].

Synthesis of ${[Fe(HCTPPCH_3)]_2O}(BF_4)_2$ (4).

Synthesis of [Fe(*H*CTPP*CH*₂)NO][BF₄] (**5**).

Density Functional Theory Calculations

Crystal Structure Determinations of Complexes [Fe(*H*CTPP*CH*₃)Br] (2), [Fe(CTPP*CH*₃)NO] (3),

 $\{[Fe(HCTPPCH_3)]_2O\}(BF_4)_2$ (4), and $[Fe(HCTPPCH_2)NO][BF_4]$ (5).

Table S1. Structural Parameters for [Fe(*H*CTPP*CH*₃)Br] (2), [Fe(CTPP*CH*₃)NO] (3),

{[Fe(*H*CTPP*CH*₃)]₂O}(BF₄)₂ (**4**), and [Fe(*H*CTPP*CH*₂)NO][BF₄] (**5**)

Figure S1. The crystal structure of $[Fe^{II}(HCTPPCH_3)Br]$ (2).

Figure S2. The Uv-vis spectrum of [Fe(CTPP*CH*₃)NO] (**3**)

Figure S3. The IR spectrum of $\{Fe(NO)\}^7$ [Fe(CTPPCH₃)NO] (**3**) and [Fe(CTPPCH₃)¹⁵NO].

Figure S4. The NMR spectra of [Fe(CTPPCH₃)NO] (**3**) and [Fe(d_{20} -CTPPCH₃)NO].

Figure S5. The Uv-vis spectrum of $\{[Fe(HCTPPCH_3)]_2O\}(BF_4)_2$ (4).

Figure S6. The NMR spectrum of $\{[Fe(HCTPPCH_3)]_2O\}(BF_4)_2$ (4).

Figure S7. The Uv-vis spectrum of [Fe(*H*CTPP*CH*₂)NO][BF₄] (**5**).

Figure S8. The IR spectrum of ${Fe(NO)}^{6}$ [Fe(*H*CTPP*CH*₂)NO][BF₄] (5).

Figure S9. The NMR spectrum of [Fe(*H*CTPP*CH*₂)NO][BF₄] (5).

General Information. Dichloromethane, toluene, *n*-hexane and THF were degassed and dried under N₂ using PS-400 solvent purification system (Innovative Technology) equipped with activated alumina stainless steel columns. Each freshly distilled solvent was stored in a round-bottom flask with J-Young tap, sent into an inert atmosphere dry box, and bubbled with nitrogen for at least 30 min to remove any residual oxygen. The starting compound [CTPPCH₃]H₂, was prepared following previously reported procedures.^{1,2} The iron metalltion of [CTPPCH₃]H₂ is modified from the literature method and the spectroscopic data is consistent with the literature report.³ Other starting materials were commercially obtained and used without further purification. UV-vis spectra were recorded with an Agilent 8453 spectrophotometer. FT-IR measurements were carried out by a Perkin Elmer Paragon 1000 spectrophotometer. Elemental analyses were carried out with a PerkinElmer CHN Analyzer (Model 2400). The ESI mass spectrum was recorded on a QSTAR[™] Hybrid LC/MS/MS system. ¹H NMR spectra were recorded on a Bruker Spectrospin 400 Ultra ShieldTM and a Bruker Spectrospin 500 Ultra ShieldTM spectrometer. EPR spectra were recorded on a Bruker E580 FT/CW EPR spectrometer.

Synthesis of [Fe(CTPP*CH*₃)NO] (3). In a N₂-filled dry box, [Fe^{II}(*H*CTPP*CH*₃)Br] (19.6 mg, 0.0257 mmol) dissolved in 6 mL of anhydrous THF was added into 2.1 equiv of NaOMe (5.46×10^{-2} M in MeOH, 1.0 mL), and the mixture was stirred at ambient temperature for 0.5 h. A completion of reaction was obtained when the *Soret* band was shifted from 466 nm, for starting [Fe^{II}(*H*CTPP*CH*₃)Br], to 470 nm. The solvent was removed under reduced pressure, and the solid was redissolved in small amount of CH₂Cl₂. The solution was filtered through a No. 2 paper filter to remove excess NaOMe and NaBr. The solvent was removed under reduced pressure again.

The solid was redissolved in 10 mL of THF then send out of the dry-box. The solution was bubbled with 1% NO gas under N₂-filled atmosphere. After 20 minutes, the color of solution was changed from light green to dark green. The solvent was removed by reduced pressure and the solid was stored in a N₂-filled dry-box. Recrystallization in dry-box using vapor diffusion of *n*-hexane into CH_2Cl_2 solution of crude $Fe(HCTPPCH_3)NO$ afforded pure product (11.8 mg, 91.5% yield). The crystals obtained from recrystallization can be used directly for X-ray crystallographic analysis.

¹H NMR (500 MHz, chloroform-*d*, 298 K): $\delta = 17.01$ (s, 1H), 16.23 (s, 1H), 13.90 (s, 1H), 13.24 (s, 1H), 10.39 (s, 2H), 7.4–9.0 (m, 21H). UV-VIS (CH₂Cl₂) [λ_{max} , nm (log ϵ , M⁻¹cm⁻¹)]: 321 (4.47), 440 (4.80). HSMS (ESI-MS): Calcd. for C₄₅H₃₁N₅FeO {M + H}⁺, 713.1878; Found: 713.1876. FT-IR (KBr, cm⁻¹): 1659 v(NO).

Synthesis of [Fe(CTPP*CH*₃)(¹⁵NO)]. Following the same synthetic procedures for the preparation of [Fe(CTPP*CH*₃)NO] starting with [Fe^{II}(*H*CTPP*CH*₃)Br] (20.9 mg, 0.0274 mmol) and 2.7 equiv of NaOMe (1.88×10^{-2} M in MeOH, 1.0 mL) in 9 mL mixed solvent of THF/MeOH (8:1, v/v). FT-IR (KBr, cm⁻¹): 1630 v(¹⁵NO). Other spectroscopic data is identical to **3**.

Synthesis of {[Fe(*H*CTPP*CH*₃)]₂O}(BF₄)₂ (4). In a N₂-filled dry box, [Fe^{II}(*H*CTPP*CH*₃)Br] (23.3 mg, 0.0305 mmol) and AgBF₄ (13.0 mg, 0.0668 mmol) were dissolved in 10 mL of anhydrous THF, and the reaction was refluxed for 1 h. The solvent was removed by reduced pressure and the solid was redissolved in small amount of CH₂Cl₂. The solution was filtered through a No. 2 paper filter to remove excess AgBF₄ and AgBr. The solvent was removed under reduced pressure again. The solid was redissolved in 10 mL of dry THF, sent out from the drybox, and stirred under air for 1.5 hours. The shift of *Soret* band from 420 to 407 nm was observed; the solvent was removed by reduced pressure and the solid was stored in a N₂-filled dry-box. Recrystallization in dry-box using vapor diffusion of *n*-hexane into THF solution of crude {Fe(*H*CTPP*CH*₃)]₂O}(BF₄)₂ afforded pure product (15.9 mg, 66.9% yield).

¹H NMR (500 MHz, chloroform-*d*, 298 K): $\delta = 21.69$ (b, 3H), 16.0–14.0 (m, 4H), 11.32 (s, 1H), 10.06 (s, 1H), 7.0–6.0 (m, 21H), 4.33(b, 1H). UV-VIS (CH₂Cl₂) [λ_{max}, nm (log ε, M⁻¹cm⁻¹)]: 314 (4.82), 342 (4.83), 407 (4.92), 445 (4.87), 580 (4.10), 758 (4.12). HSMS (ESI-MS) : Calcd. for C₉₀H₆₁N₈Fe₂O {M–2(HBF₄)+H}⁺, 1381.3667; Found: 1381.3680.

Synthesis of $[Fe(HCTPPCH_2)NO][BF_4]$ (5). Method (a) In a N₂-filled dry box, [Fe(CTPPCH₃)NO] (11.5 mg, 0.01614 mmol) and AgBF₄ (7.2 mg, 0.0370 mmol) were dissolved in 5 mL of anhydrous THF, and the reaction was stirred at ambient temperature for 15 minutes. The shift of *Soret* band from 440 to 474 nm was observed; the solvent was removed under reduced pressure and the solid was redissolved in small amount of CH₂Cl₂. The solution was filtered through a No. 2 paper filter to remove excess AgBF₄ and AgBr. The solvent was removed under reduced pressure again. Recrystallization in dry-box using vapor diffusion of *n*-hexane into CH₂Cl₂ solution of crude [Fe(*H*CTPPCH₂)NO][BF₄] afforded pure product (11.8 mg, 91.5% yield).

Method (b) In a N₂-filled dry box, $[Fe^{II}(HCTPPCH_3)Br]$ (20.9 mg, 0.0274 mmol) and AgBF₄ (11.9 mg, 0.0611 mmol) were dissolved in 15 mL of anhydrous THF, and the reaction was refluxed for 1.5 hour. The solvent was removed by reduced pressure and the solid was redissolved in small amount of CH₂Cl₂. The solution was filtered through a No. 2 paper filter to remove excess AgBF₄ and AgBr. Extra 25 mL DCM added into the solution then send out of the dry-box. The solution reacted with 1% NO gas in the N₂-filled atmosphere. After 30 minutes, the color of reaction was changed from green to brown. The ¹H NMR, Uv-vis and IR spectra of the final product were identical to the product from the method (a).

¹H NMR (400 MHz, chloroform-*d*, 298 K): $\delta = 14.17$ (s, 1H), 9.79 (d, J = 3.5 Hz, 1H), 8.67 (d, J = 5.0 Hz, 1H), 8.62 (d, J = 5.0 Hz, 1H), 8.48 (d, J = 5.0 Hz, 1H), 8.40 (d, J = 5.1 Hz, 1H), 8.36 (d, J = 5.1 Hz, 1H), 8.28 (d, J = 5.0 Hz, 1H), 8.2-8.1 (m, 2H), 8.06 (d, J = 6.7 Hz, 1H), 8.00 (d, J = 7.0 Hz, 1H), 7.9–7.6 (m, 13H), -1.28 (d, J = 1.3 Hz, 1H), -1.51 (d, J = 1.3 Hz, 1H). UV-VIS (CH₂Cl₂) [λ_{max} , nm (log ε, M⁻¹cm⁻¹)]: 336 (4.50), 375 (4.45), 474 (4.67). HSMS (ESI-MS): Calcd. for C₄₅H₃₀N₅OFe {M – BF₄}⁺, 712.1800; Found, 712.1799. FT-IR (KBr, cm⁻¹): 1706 v(NO). **Density Functional Calculations.** The structures of the models $[Fe(NCPCH_3)(NO)]$ (**3a**)/ $[Fe(HNCPCH_2)(NO)]$ (**3b**) for $\{Fe(NO)\}^7$ and $[Fe(NCPCH_3)(NO)]^+$ (**5a**)/ $[Fe(HNCPCH_2)(NO)]^+$ (**5b**) for $\{Fe(NO)\}^6$ have been fully optimized using BP86/TZVP. For all of the calculations, the four phenyl rings on the N-confused porphyrin core have been replaced by hydrogen to simplify the calculations. The starting coordinates of 3a and 5b were adopted directly from the crystal structures of 3 and 5 while the removal of an electron and addition of an electron from 3a and 5b resulted initial setup of 5a and 3b for optimization. Vibrational frequencies have been calculated showing no imaginary frequencies. All these methods were used as implemented in the Gaussian 03 package.

Crystal Structure Determinations for $[Fe(HCTPPCH_3)Br]$ (2), [Fe(CTPPCH₃)NO] (3), {[Fe(HCTPPCH₃)]₂O}(BF₄)₂ (4), and [Fe(HCTPPCH₂)NO][BF₄] (5)

Diffraction measurements were carried out at 150(2) K on a Bruker SMART Apex CCD diffractometer equipped with graphite-monochromated Mo K α radiation (λ = 0.71073 Å). The structures were solved by direct methods and refined using full-matrix least-squares methods against F^2 values using the SHELXTL^{4, 5} program packages. Most of the protons can be observed from the residual electron density maps but further refinements didn't provide good model. Therefore, the positions of the hydrogen atoms were geometrically generated with a fixed distance and were assigned isotropic thermal parameters by the SHELXTL idealization methods. Refinement was carried out using anisotropic thermal parameters for all the non-hydrogen atoms. The absorption correction program SADABS⁶ was used for these three structures. Summary and experimental details for X-ray data collections

are provided in Table S1.

	2	3	4	5
code	i12300mp	i11526p2	i10995mp	i11970mc
formula	C ₄₉ H ₃₉ BrFeN ₄ O	C ₄₆ H ₃₂ Cl ₂ FeN ₅ O	$C_{93}H_{68}B_2Cl_6F_8Fe_2N_8O$	C46.5H33BCl3F4FeN5O
formula weight	835.60	797.50	1811.57	926.79
crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic
space group	$P2_{1}/c$	P-1	$P2_1/n$	C2/c
a, Å	12.4227(9)	11.7119(11)	18.0177(11)	35.1501(17)
<i>b</i> , Å	25.958(2)	12.9672(10)	16.7896(10)	13.7918(6)
<i>c</i> , Å	13.1178(12)	14.6335(11)	28.1291(17)	19.1196(9)
α , deg	90	64.680(5)	90	90
β , deg	114.087(5)	86.090(6)	106.170(3)	119.319(3)
γ, deg	90	65.569(5)	90	90
$V, Å^{\overline{3}}$	3861.8(6)	1813.0(3)	8172.7(9)	8081.6(6)
Z value	4	2	4	8
$\rho_{\rm calc}, {\rm g/cm}^3$	1.437	1.461	1.472	1.523
μ , mm ⁻¹	1.470	0.610	0.625	0.636
F_{000}	1720	822	3704	3784
<i>T</i> , K	150	150	150	150
	$-14 \leq h \leq 14$	$-14 \leq h \leq 13$	$-19 \leq h \leq 21$	$-41 \leq h \leq 41$
hkl ranges	$-29 \leq k \leq 31$	$-13 \leq k \leq 15$	$-20 \leq k \leq 19$	$-16 \leq k \leq 15$
	$-15 \leq l \leq 15$	$-17 \leq l \leq 17$	$-32 \leq l \leq 33$	$-22 \leq l \leq 22$
GOF	1.034	0.934	1.071	1.064
R_1 , wR_2 ($I \ge 2\sigma(I)$)	0.0568, 0.1341	0.0744, 0.1605	0.0834, 0.2009	0.0454, 0.1320
Largest diff. peak and hole $(e.Å^{-3})$	⁴ 1.263 and -0.610	0.673 and -0.613	0.881 and -0.816	1.226 and -0.690
$R_I = \Sigma \ F_o \ $	$-\left F_{c}\right /\Sigma\left F_{o}\right ; wR_{2}$	$= [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2 / \Sigma w (F_o^2 - F_o^2)^2 / \Sigma w (F_o^2 - F_o^2) /$	${}^{2})^{2}]^{1/2}; w = 1/\sigma^{2}(F_{o})$	

Table S1. Structural Parameters for [Fe(HCTPPCH ₃)Br] (2), [Fe(CTPPCH ₃)NO] (4)	3),
$\{[Fe(HCTPPCH_3)]_2O\}(BF_4)_2$ (4), and $[Fe(HCTPPCH_2)NO][BF_4]$ (5)	

References

- 1. I. Schmidt and P. J. Chmielewski, Inorg. Chem., 2003, 42, 5579-5593.
- 2. P. J. Chmielewski, L. Latos-Grazynski and T. Glowiak, J. Am. Chem. Soc., 1996, 118, 5690-5701.
- 3. K. Rachlewicz, D. Gorzelanczyk and L. Latos-Grazynski, *Inorg. Chem.*, 2006, 45, 9742-9747.
- 4. Sheldrick, G. M. SHELXS-97—Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1997.
- 5. Sheldrick, G. M. SHELXL-97—Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.
- 6. Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction Program; University of Göttingen: Germany, 1996.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Figure S1. The crystal structure of [Fe^{II}(*H*CTPP*CH*₃)Br] **(2)**. Selected Distances: Fe(1)-N(3), 2.055(5); Fe(1)-N(4), 2.139(4); Fe(1)-N(2), 2.145(4); Fe(1)-Br(1), 2.4220(9); Fe(1)-C(1), 2.466(6); N(1)-C(20), 1.341(6); N(1)-C(2), 1.393(7); N(1)-H(1), 0.8800.

Figure S2. The Uv-vis spectrum of [Fe(CTPPCH₃)NO] (**3**)

Figure S3. The IR spectrum of $\{Fe(NO)\}^7$ [Fe(CTPP*CH*₃)NO] (**3**) and [Fe(CTPP*CH*₃)¹⁵NO].

Figure S4. The NMR spectra of $[Fe(CTPPCH_3)NO]$ (3) and $[Fe(d_{20}-CTPPCH_3)NO]$.

Figure S5. The Uv-vis spectrum of ${[Fe(HCTPPCH_3)]_2O}(BF_4)_2$ (4).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Figure S6. The NMR spectrum of $\{[Fe(HCTPPCH_3)]_2O\}(BF_4)_2$ (4).

Figure S7. The Uv-vis spectrum of [Fe(*H*CTPP*CH*₂)NO][BF₄] (5)

Figure S8. The IR spectrum of ${Fe(NO)}^{6}$ [Fe(*H*CTPP*CH*₂)NO][BF₄] (5).

Figure S9. The NMR spectrum of [Fe(*H*CTPP*CH*₂)NO][BF₄] (**5**).