Supplementary Information
 Cobalt-catalyzed arylation of aldimines via chelation-assisted $\mathbf{C}-\mathbf{H}$ bond functionalization

Ke Gao and Naohiko Yoshikai*Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences,Nanyang Technological UniversitySingapore 637371, SingaporeTable of Contents
Materials and Methods S2
Optimization of Reaction Conditions S3
Addition of 2-Arylpyridine to Aromatic Aldimine (Table 1) S4
Formation of Isoindolinones via Self-Coupling of Aldimine (Scheme 2) S12
Synthesis of Indenones via Self-Coupling of Aldimines (Scheme 2 and Table 2) S13
Proposed Mechanism for the Formation of Indenone S21
NMR Spectra S22

Materials and Methods

General. All reactions dealing with air- or moisture-sensitive compound were performed by standard Schlenk techniques in oven-dried reaction vessels under nitrogen atmosphere. Analytical thin-layer chromatography (TLC) was performed on Merck 60 F254 silica gel plates. Flash chromatography was performed using $40-63 \mu \mathrm{~m}$ silica gel (Si 60 , Merck). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV-400 (400 MHz) NMR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane (0 ppm) and $\mathrm{CHCl}_{3}(77.0 \mathrm{ppm})$, respectively. Gas chromatographic (GC) analysis was performed on a Shimadzu GC-2010 system equipped with an FID detector and a capillary column, DB-5 (Agilent J\&W, 0.25 mm i.d. x $30 \mathrm{~m}, 0.25 \mu \mathrm{~m}$ film thickness). Gas chromatography-mass spectrometry (GC-MS) analysis was performed on a Shimadzu GCMS-QP2010 system equipped with a capillary column, Rxi ${ }^{\circledR}-5$ Sil MS (Restek, 0.25 mm i.d. x $30 \mathrm{~m}, 0.25 \mu \mathrm{~m}$ film thickness). High-resolution mass spectra (HRMS) were obtained with a Q-Tof Premier LC HR mass spectrometer. Melting points were measured on a Büchi M-565 apparatus and uncorrected.

Materials. Unless otherwise noted, commercial reagents were purchased from Aldrich, Alfa Aesar, and other commercial suppliers and were used as received. Anhydrous cobalt(II) bromide ($>99 \%$) was purchased from Alfa Aesar, and was used as received. THF was distilled over $\mathrm{Na} /$ benzophenone. Grignard reagents except MeMgCl (purchased from Aldrich) were prepared from the corresponding halides and magnesium turnings in anhydrous THF and titrated before use. The 2-arylpyridine derivatives were prepared by nickel-catalyzed cross-coupling according to the procedure reported by Mongin et al. ${ }^{1}$ The aldimines were prepared by condensation of the corresponding aldehydes and aniline or p-anisidine in EtOH.

Optimization of Reaction Conditions

Table S1. Screening conditions for the reaction of $\mathbf{1 a}$ with $\mathbf{2 a}$ or $\mathbf{2 b}{ }^{a}$

${ }^{a}$ The reaction was performed on a 0.3 mmol scale. ${ }^{b}$ Determined by GC using n-tridecane as an internal standard. ${ }^{c}$ Isolated yield. ${ }^{d} \mathrm{CoCl}_{2}$ was used instead of CoBr_{2}. The reaction time was 24 h. ${ }^{e} \mathrm{CoBr}_{2}$ was omitted from the reaction.

Addition of 2-Arylpyridine to Aromatic Aldimine (Table 1)

A Typical Procedure: 4-Methoxy- \boldsymbol{N}-(phenyl(2-(pyridin-2-yl)phenyl)methyl)aniline (3b). In a Schlenk tube were placed $\mathrm{CoCl}_{2}(3.9 \mathrm{mg}, 0.030 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(12.8 \mathrm{mg}, 0.030 \mathrm{mmol})$, 2-phenylpyridine ($\mathbf{1 a}, 43 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$), and THF (0.64 mL). To the mixture was added a THF solution of $t \mathrm{BuCH}_{2} \mathrm{MgBr}(0.63 \mathrm{M}, 0.86 \mathrm{~mL}, 0.54 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. After stirring for 30 min , (E)- N -benzylidene-4-methoxyaniline ($\mathbf{2 b}, 76.1 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added. The resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 24 h , and then allowed to room temperature. The reaction was quenched by sequential addition of $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluent: hexane/EtOAc $/ \mathrm{Et}_{3} \mathrm{~N}=10 / 1 / 0.1$) to afford the title compound as a brown oil ($89.0 \mathrm{mg}, 81 \%$).
3b: $R_{f} 0.17$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 3.71 (s, 3H), 4.28 (brs, 1H), 5.88 ($\mathrm{s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, ~ J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.36-7.40(\mathrm{~m}, 3 \mathrm{H})$, 7.53-7.59 (m, 2H), $8.65(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
 $\left.\mathrm{CDCl}_{3}\right): \delta 55.8,59.7,114.6,114.8,122.0,124.4,126.9,127.4,127.7$, 128.2, 128.4, 128.9, 130.2, 136.4, 140.5, 141.2, 141.8, 143.1, 149.1, 152.0, 159.7; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 367.1810$, found 367.1812.
\boldsymbol{N}-(Phenyl(2-(pyridin-2-yl)phenyl)methyl)aniline (3a): The typical procedure was applied to 2-phenylpyridine (1a, $43 \mu \mathrm{~L}, \quad 0.30 \mathrm{mmol})$ and (E)- N-benzylideneaniline ($\mathbf{2 a}, 65.2 \mathrm{mg}, 0.36 \mathrm{mmol}$) using $\mathrm{CoBr}_{2}(6.6 \mathrm{mg}, 0.030$ mmol) at $60^{\circ} \mathrm{C}$ for 6 h . Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}$ $=10 / 1 / 0.1$) of the crude product afforded the title compound as a yellow oil
 ($84.3 \mathrm{mg}, 84 \%$).
$R_{f} 0.15$ (hexane/EtOAc $=10 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.56$ (brs, 1 H$), 6.01(\mathrm{~s}, 1 \mathrm{H})$, $6.58(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.23(\mathrm{~m}, 9 \mathrm{H}), 7.39-7.44(\mathrm{~m}, 3 \mathrm{H})$, 7.55-7.59 (m, 2H), 8.66-8.67 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 59.0,113.5,117.4,122.0$, $124.3,127.0,127.4,127.7,128.2,128.4,128.9,129.2,130.3,136.4,140.5,141.0,142.9,147.4$, 149.1, 159.6; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 337.1705$, found 337.1702 .

4-Methoxy- N-((5-methoxy-2-(pyridin-2-yl)phenyl)(phenyl)methyl)aniline (3c): The typical procedure was applied to 2-(4-methoxyphenyl)pyridine (1b, 55.6 mg , 0.30 mmol) and (E)- N -benzylidene-4-methoxyaniline ($\mathbf{2 b}, 76.1 \mathrm{mg}$, 0.36 mmol) for 14 h . Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=10 / 1 / 0.1-5 / 1 / 0.1$) of the crude product afforded the title compound as a dark brown oil ($90.4 \mathrm{mg}, 76 \%$).
 $R_{f} 0.15$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.28$ (brs, 1H), 5.92 (s, 1H), 6.52 (app.d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.71 (app.d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89$ (dd, $J=$ $8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.57(\mathrm{~m}, 1 \mathrm{H}), 8.61-8.63(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.4,55.8,59.7,112.2,114.1,114.7,114.8,121.7,124.4$, 127.0, 127.7, 128.4, 131.6, 133.2, 136.3, 141.8, 142.9, 143.0, 149.1, 152.1, 159.5, 160.0; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$397.1916, found 397.1921.
N-((5-Fluoro-2-(pyridin-2-yl)phenyl)(phenyl)methyl)-4-methoxyaniline (3d): The typical procedure was applied to 2-(4-fluorophenyl)pyridine (1c, 52.0 mg , 0.30 mmol) and (E)- N -benzylidene-4-methoxyaniline ($\mathbf{2 b}, 76.1 \mathrm{mg}$, 0.36 mmol) for 14 h . Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc}^{2} / \mathrm{Et}_{3} \mathrm{~N}=10 / 1 / 0.1$) of the crude product afforded the title compound as a dark brown oil ($73.3 \mathrm{mg}, 64 \%$).
 $R_{f} 0.15$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{brs}, 1 \mathrm{H}), 5.88$ (s, 1H), 6.52 (app.d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.71 (app.d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.03-7.09 (m, 4H), 7.16-7.21 $(\mathrm{m}, 4 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 1 \mathrm{H}), 8.62-8.64(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 55.9,59.7,114.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 114.8,114.90\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right), 114.91,122.2$, $124.5,127.3,127.8,128.6$ (two signals overlapping), 132.1 ($\mathrm{d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}$), 136.5, 141.5, $142.5,144.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}\right), 149.2,152.3,158.9,163.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}\right) ;$ HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$385.1716, found 385.1719.

3-(((4-Methoxyphenyl)amino)(phenyl)methyl)- N, N-dimethyl-4-(pyridin-2-yl)aniline (3e):

 The typical procedure was applied to N, N-dimethyl-4-(pyridin-2-yl)aniline (1d, $59.5 \mathrm{mg}, 0.30 \mathrm{mmol}$) and (E)- N -benzylidene-4-methoxyaniline ($\mathbf{2 b}, 76.1 \mathrm{mg}, 0.36 \mathrm{mmol}$) for 24 h. Silica gel chromatography (eluent: hexane/EtOAc/Et ${ }_{3} \mathrm{~N}=$ $6 / 1 / 0.1-5 / 1 / 0.1$) of the crude product afforded the title compound as a
brown solid ($34.2 \mathrm{mg}, 28 \%$).
m.p. $125.0-126.1^{\circ} \mathrm{C} ; R_{f} 0.12$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.92(\mathrm{~s}, 6 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{brs}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 6.51$ (app.d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68-6.71(\mathrm{~m}, 3 \mathrm{H}), 6.82$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.18(\mathrm{~m}, 7 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 1 \mathrm{H}), 8.57-8.59(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 40.6,55.9,60.1,111.2,112.4,114.7,114.8,121.2,124.3$, 126.7, 127.7, 128.3, 128.9, 131.4, 136.2, 142.1, 142.2, 143.5, 149.0, 150.9, 152.0, 160.1; HRMS (ESI) Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 410.2232$, found 410.2230.

4-Methoxy- N-((4-methyl-2-(pyridin-2-yl)phenyl)(phenyl)methyl)aniline (3f): The typical procedure was applied to 2 -(m-tolyl)pyridine ($\mathbf{1 e}, 49 \mu \mathrm{~L}, 0.30$ mmol) and (E)- N -benzylidene-4-methoxyaniline ($\mathbf{2 b}, 76.1 \mathrm{mg}$, 0.36 mmol) for 16 h . Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=10 / 1 / 0.1$) of the crude product afforded the
 title compound as a brown oil ($53.9 \mathrm{mg}, 47 \%$).
$R_{f} 0.25$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.26$ (brs, 1H), 5.77 (s, 1H), 6.49 (app.d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.70 (app.d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13-7.22 (m, $9 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 1 \mathrm{H}), 8.63-8.65(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 21.2,55.9,59.5,114.6,114.8,122.0,124.3,126.9,127.8,128.2,128.4,129.6,130.9$, $136.3,137.0,138.3,140.4,141.8,143.3,149.2,152.0,159.7$; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 381.1967$, found 381.1969.

4-Methoxy-N-((3-methoxy-2-(pyridin-2-yl)phenyl)(phenyl)methyl)aniline (3g): The typical procedure was applied to 2-(2-methoxyphenyl)pyridine (1f, 52 $\mu \mathrm{L}, 0.30 \mathrm{mmol}$) and (E)- N-benzylidene-4-methoxyaniline ($\mathbf{2 b}$, $76.1 \mathrm{mg}, 0.36 \mathrm{mmol}$) for 24 h . Silica gel chromatography (eluent: hexane/EtOAc/ $\mathrm{Et}_{3} \mathrm{~N}=10 / 1 / 0.1-3 / 1 / 0.1$) of the crude
 product afforded the title compound as a dark brown oil (83.4 $\mathrm{mg}, 70 \%$).
$R_{f} 0.06$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44$ (app.d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.67$ (app.d, $J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.18(\mathrm{~m}, 5 \mathrm{H})$, $7.34(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.53(\mathrm{~m}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 55.88,55.91,60.2,110.1,114.6,114.8,120.0,122.0,126.2,127.1,127.8,128.4$,
129.6, 129.7, 135.8, 141.9, 142.9, 143.0, 149.4, 152.0, 156.3, 157.3; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$397.1916, found 397.1920.

4-Methoxy- N-(phenyl(2-(pyridin-2-yl)thiophen-3-yl)methyl)aniline (3h): The typical procedure was applied to 2-(thiophen-2-yl)pyridine ($\mathbf{1 g}, 48.4 \mathrm{mg}$, 0.30 mmol) and (E)- N -benzylidene-4-methoxyaniline ($\mathbf{2 b}, 76.1 \mathrm{mg}$, 0.36 mmol) for 24 h . Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=10 / 1 / 0.1-7 / 1 / 0.1$) of the crude product
 afforded the title compound as a dark brown solid ($56.3 \mathrm{mg}, 48 \%$). m.p. 104.1-105.9 ${ }^{\circ} \mathrm{C} ; R_{f} 0.33$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.70(\mathrm{~s}, 3 \mathrm{H})$, 4.25 (brs, 1H), 6.17 (s, 1H), 6.52 (app.d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.71 (app.d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.01 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.63(\mathrm{~m}, 1 \mathrm{H}), 8.63-8.65(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 55.8,57.0,114.7,114.9,122.0,122.5,126.2,127.3,127.5,128.7,129.6,136.9$, $139.4,141.5,141.9,142.9,149.7,152.2,152.8$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$ 373.1375 , found 373.1376 .

4-Methoxy- \boldsymbol{N}-((2-(4-methylpyridin-2-yl)phenyl)(phenyl)methyl)aniline (3i): The typical procedure was applied to 4-methyl-2-phenylpyridine ($\mathbf{1 h}, 50.8 \mathrm{mg}$, 0.30 mmol) and (E)- N -benzylidene-4-methoxyaniline ($\mathbf{2 b}, 76.1$ $\mathrm{mg}, 0.36 \mathrm{mmol}$) for 24 h . Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=6 / 1 / 0.1$) of the crude product afforded the title compound as a brown solid ($76.5 \mathrm{mg}, 67 \%$).
 m.p. $126.4-127.3^{\circ} \mathrm{C} ; R_{f} 0.20$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.35(\mathrm{~s}, 3 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{brs}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 6.49(\operatorname{app} . \mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.70($ app.d, $J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.51(\mathrm{~m}, 1 \mathrm{H}), 8.48$ (dd, $J=1.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.3,55.8,59.6,114.6,114.8,123.8$, 126.9, 127.3, 127.7, 128.2, 128.4, 128.7, 130.2, 131.5, 136.9, 140.4, 141.2, 141.8, 143.2, 149.5, 152.0, 156.7; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$381.1967, found 381.1962.

4-Methoxy- N-((5-methoxy-2-(3-methylpyridin-2-yl)phenyl)(phenyl)methyl)aniline

The typical procedure was applied to 2-(4-methoxyphenyl)-3-methylpyridine ($1 \mathrm{i}, 56 \mu \mathrm{~L}, 0.30$ mmol) and (E)- N-benzylidene-4-methoxyaniline ($\mathbf{2 b}, 76.1 \mathrm{mg}, 0.36 \mathrm{mmol}$) for 24 h . Silica gel
chromatography (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=6 / 1 / 0.1$) of the crude product afforded the title compound as a yellow oil ($62.6 \mathrm{mg}, 51 \%$).
$R_{f} 0.16$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.63(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.32(\mathrm{brs}, 1 \mathrm{H}), 5.40(\mathrm{~s}$, $1 \mathrm{H}), 6.52$ (brs, 2H), $6.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{dd}, J=8.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (brs, 2H), 7.08-7.13 (m, 5H), 7.19-7.23 (m, 1H), $7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.45-8.47(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
 CDCl_{3}): $\delta 19.0,55.5,55.9,60.8,111.9,114.7,114.8,122.4,124.9,127.1,127.7,128.4,129.2$, 130.7, 132.4, 132.9, 138.0, 141.9, 142.3, 146.5, 152.1, 158.8, 159.7; HRMS (ESI) Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 411.2073$, found 411.2076.
\boldsymbol{N}-((2-(1H-pyrazol-1-yl)phenyl)(phenyl)methyl)aniline (3k): The typical procedure was applied to 1 -phenyl- 1 H -pyrazole ($\mathbf{1 j}, 40 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) and (E)- N-benzylideneaniline ($\mathbf{2 b}, 65.2 \mathrm{mg}, 0.36 \mathrm{mmol}$) for 24 h . Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=15 / 1 / 0.1-10 / 1 / 0.1$) of the
 crude product afforded the title compound as a light yellow oil ($59.3 \mathrm{mg}, 61 \%$). $R_{f} 0.42$ (hexane/EtOAc $\left.=5 / 1\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.35(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.08-7.10 (m, 2H), 7.12-7.16 (m, 2H), 7.21-7.25 (m, 4H), 7.35 (td, $J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (td, $J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{td}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 57.6,106.5,113.6,117.8,127.2,127.5,127.6$, 128.2, 128.59, 128.62, 129.26, 129.31, 131.2, 138.9, 139.5, 140.7, 142.1, 147.0; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 326.1657$, found 326.1658.

4-Methoxy- \boldsymbol{N}-((2-(pyridin-2-yl)phenyl)(p-tolyl)methyl)aniline (31): The typical procedure was applied to 2-phenylpyridine ($\mathbf{1 a}, 43 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) and (E)-4-methoxy- N-(4-methylbenzylidene)aniline ($2 \mathbf{c}, 81.1 \mathrm{mg}, 0.36$ mmol) for 24 h . Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc}^{2} / \mathrm{Et}_{3} \mathrm{~N}=7 / 1 / 0.1$) of the crude product afforded the title
 compound as a dark red solid ($97.3 \mathrm{mg}, 85 \%$).
m.p. 89.3-91.6 ${ }^{\circ} \mathrm{C} ; R_{f} 0.25$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.28(\mathrm{~s}, 3 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{brs}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 6.49$ (app.d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.69$ (app.d, $J=8.8 \mathrm{~Hz}$, 2H), 7.02 ($\mathrm{s}, 4 \mathrm{H}$), 7.18-7.23 (m, 2H), 7.33-7.39 (m, 3H), 7.53-7.56 (m, 2H), 8.62-8.64 (m, 1H);
${ }^{13}{ }^{13}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.2,55.8,59.3,114.6,114.7,122.0,124.3,127.2,127.6,128.0$, 128.8, 129.1, 130.1, 136.3, 136.5, 140.1, 140.4, 141.3, 141.8, 149.1, 151.9, 159.6; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$381.1967, found 381.1970.

4-Methoxy- N-((4-methoxyphenyl)(2-(pyridin-2-yl)phenyl)methyl)aniline (3m): The typical procedure was applied to 2-phenylpyridine ($\mathbf{1 a}, 43 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) and (E)-4-methoxy- N-(4-methoxybenzylidene)aniline ($2 d, 86.9 \mathrm{mg}$, 0.36 mmol) for 24 h . Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=10 / 1 / 0.1-5 / 1 / 0.1$) of the crude product afforded
 the title compound as a dark brown oil ($92.8 \mathrm{mg}, 78 \%$).
$R_{f} 0.13$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.22$ (brs, 1H), $5.83(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.71-6.75(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.15-7.20 (m, 2H), 7.35-7.40 (m, 3H), 7.56-7.60 (m, 2H), $8.65(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 55.3,55.8,59.0,113.7,114.6,114.7,121.9,124.3,127.2,127.8,128.8$ (two signals overlapping), 130.1, 135.3, 136.3, 140.4, 141.3, 141.8, 149.1, 151.9, 158.5, 159.7; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$397.1916, found 397.1918.
N-((4-Fluorophenyl)(2-(pyridin-2-yl)phenyl)methyl)-4-methoxyaniline (3n): The typical procedure was applied to 2-phenylpyridine ($\mathbf{1 a}, 43 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) and (E)- N-(4-fluorobenzylidene)-4-methoxyaniline ($\mathbf{2 e}, 82.5 \mathrm{mg}, 0.36$ mmol) for 24 h . Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc}^{2} / \mathrm{Et}_{3} \mathrm{~N}=10 / 1 / 0.1-7 / 1 / 0.1$) of the crude product afforded the title compound as a brown oil ($30.4 \mathrm{mg}, 26 \%$).
 $R_{f} 0.17$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{brs}, 1 \mathrm{H}), 5.83$ (s, 1H), 6.48 (app.d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.70 (app.d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.06-7.09 (m, 2H), 7.15 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.49(\mathrm{~m}$, $1 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 1 \mathrm{H}), 8.61-8.62(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.9,59.0,114.7$, $114.9,115.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 121.1,124.3,127.5,128.2,129.0,129.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 130.3$, $136.5,138.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 140.5,141.1,141.6,149.1,152.2,159.7,161.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=244\right.$ Hz); HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 385.1716$, found 385.1718 .

4-Methoxy- \boldsymbol{N}-((2-(pyridin-2-yl)phenyl)(m-tolyl)methyl)aniline (3o): The typical procedure was applied to 2-phenylpyridine (1a, $43 \quad \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ and
(E)-4-methoxy- N-(3-methylbenzylidene)aniline ($2 \mathbf{2 f}, 81.1 \mathrm{mg}, 0.36 \mathrm{mmol}$) for 13 h . Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=7 / 1 / 0.1$) of the crude product afforded the title compound as a dark red oil ($87.8 \mathrm{mg}, 77 \%$). $R_{f} 0.20$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.24$ (s , $3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{brs}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 6.51($ app.d, $J=9.2 \mathrm{~Hz}$,
 2H), 6.71 (app.d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 2 \mathrm{H})$, 8.65-8.66 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.5,55.8,59.7,114.6,114.8,122.0,124.4$, $124.8,127.3,127.7,128.1,128.3,128.4,128.9,130.1,136.3,137.9,140.5,141.3,141.9,143.0$, 149.1, 152.0, 159.7; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 381.1967$, found 381.1962.

4-Methoxy- \boldsymbol{N}-((2-(pyridin-2-yl)phenyl)(o-tolyl)methyl)aniline (3p): The typical procedure was applied to 2-phenylpyridine (1a, $43 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) and (E)-4-methoxy- N-(2-methylbenzylidene)aniline ($\mathbf{2 g}, 81.1 \mathrm{mg}, 0.36$ mmol) for 24 h. Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc}^{2} / \mathrm{Et}_{3} \mathrm{~N}=10 / 1 / 0.1-5 / 1 / 0.1$) of the crude product afforded the title compound as a light yellow solid ($88.3 \mathrm{mg}, 77 \%$).
 m.p. $120.0-121.3^{\circ} \mathrm{C} ; R_{f} 0.19$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.96(\mathrm{~s}, 3 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{brs}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 6.45$ (app.d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ (app.d, $J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.05-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.39(\mathrm{~m}$, $2 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.52(\mathrm{~m}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 19.1,55.8,56.7,114.1,114.8,121.9,124.0,126.0,127.1,127.4,127.6,128.2,128.7$, $130.0,130.5,136.2,136.3,139.9,140.8,140.9,141.8,149.2,151.9,159.5$; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 381.1967$, found 381.1972.

4-Methoxy- \boldsymbol{N}-((2-methoxyphenyl)(2-(pyridin-2-yl)phenyl)methyl)aniline (3q): The typical procedure was applied to 2-phenylpyridine ($\mathbf{1 a}, 43 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) and (E)-4-methoxy- N-(2-methoxybenzylidene) aniline ($\mathbf{2 h}, 86.9 \mathrm{mg}$, 0.36 mmol) for 24 h . Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=10 / 1 / 0.1-5 / 1 / 0.1-3 / 1 / 0.1$) of the crude product afforded the title compound as a dark brown oil ($62.9 \mathrm{mg}, 53 \%$).
 $R_{f} 0.13$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.22$ (brs, 1H), 5.99 (s, 1H), 6.44 (app.d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.67 (app.d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.72$ (d, $J=$
$8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.34(\mathrm{~m}, 2 \mathrm{H})$, 7.39-7.41 (m, 2H), 7.54-7.58 (m, 1H), 8.61-8.62 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 54.1$, $55.3,55.9,110.6,114.5,114.8,120.6,121.8,124.1,127.2,128.0,128.21,128.24,128.6,130.0$, 130.9, 136.0, 140.76, 140.79, 141.9, 149.2, 151.9, 156.9, 159.7; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$397.1916, found 397.1911.
N-([1,1'-Biphenyl]-2-yl(2-(pyridin-2-yl)phenyl)methyl)-4-methoxyaniline (3r): The typical procedure was applied to 2-phenylpyridine ($\mathbf{1 a}, 43 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) and (E)- N-([1,1'-biphenyl]-2-ylmethylene)-4-methoxyaniline (2i, 103.4 $\mathrm{mg}, 0.36 \mathrm{mmol}$) for 48 h . Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=10 / 1 / 0.1-7 / 1 / 0.1$) of the crude product afforded the title compound as a light yellow solid ($46.7 \mathrm{mg}, 35 \%$).
 m.p. $142.1-143.1{ }^{\circ} \mathrm{C} ; R_{f} 0.16$ (hexane/EtOAc $=5 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.71(\mathrm{~s}, 3 \mathrm{H})$, 4.22 (brs, 1H), 5.69 (s, 1H), 6.41 (app.d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.67 (app.d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.73 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.24-7.27 (m, 3H), 7.28-7.32 (m, 2H), 7.34-7.47 (m, 2H), 7.47-7.49 (m, 1H), 8.27-8.28 $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.8,57.0,114.5,114.7,121.6,123.5,126.9,127.0$, $127.3,127.6,128.0,128.3,128.4,128.7,129.1,130.1,130.4,135.9,139.9,140.7,140.8,141.0$, 141.5, 141.9, 149.0, 151.9, 159.0; HRMS (ESI) Calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 443.2123$, found 443.2127 .

Formation of Isoindolinones via Self-Coupling of Aldimine (Scheme 2)

In a Schlenk tube were placed $\mathrm{CoBr}_{2}(6.6 \mathrm{mg}, 0.030 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(12.8 \mathrm{mg}, 0.030 \mathrm{mmol})$, (E)-4-methoxy- N-(1-(p-tolyl)ethylidene)aniline ($2 \mathbf{c}, 67.6 \mathrm{mg}, 0.30 \mathrm{mmol}$), and THF (0.64 mL). To the mixture was added a THF solution of $t \mathrm{BuCH}_{2} \mathrm{MgBr}(0.63 \mathrm{M}, 0.86 \mathrm{~mL}, 0.54 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$. After stirring for 30 min , another portion of $\mathbf{2 c}(67.6 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 6 h , and then allowed to room temperature. The reaction was quenched by the addition of ether (1 mL) and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, followed by dilution with ethyl acetate (3 mL). The resulting mixture was stirred under air for 96 h , and then extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluent: hexane/EtOAc $=5 / 1$ to $3 / 1$ to $1 / 1$) to afford 2-(4-methoxyphenyl)-5-methyl-3-(p-tolyl)isoindolin-1-one (5, $16.3 \quad \mathrm{mg}, \quad 16 \quad \%)$ and 3-hydroxy-2-(4-methoxyphenyl)-5-methyl-3-(p-tolyl)isoindolin-1-one (6, $52.8 \mathrm{mg}, 49 \%$) both as off-white solids. Note that GC-MS analysis of the crude mixture obtained just after quenching gave a major peak at $m / z=327$, indicating the formation of isoindole 4 (see Scheme 2). Attempted isolation of $\mathbf{4}$ by silica gel chromatography was not successful, resulting in the formation of 5,6 , and other intractable products.

2-(4-Methoxyphenyl)-5-methyl-3-(p-tolyl)isoindolin-1-one (5): m.p. 161.3-162.4 ${ }^{\circ} \mathrm{C}$; $R_{f} 0.29$ (hexane/EtOAc $=3 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.28$ (s , $3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 5.91$ (s, 1H), 6.82 (app.d, $J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.01$ (s, 1H), 7.04-7.09 (m, 4H), 7.28 (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.42 (app.d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.83 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.3,22.1,55.5,66.0,114.3$, $123.5,123.9,124.8,127.3,129.0,129.7,129.9,130.9,135.0$,
 138.3, 143.2, 146.4, 157.1, 168.1; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 344.1651$, found 344.1650 .

3-Hydroxy-2-(4-methoxyphenyl)-5-methyl-3-(p-tolyl)isoindolin-1-one (6): m.p. 208.8-210.1 ${ }^{\circ} \mathrm{C} ; R_{f} 0.16$ (hexane/EtOAc $=3 / 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 6.82$ (app.d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.05-7.07 (m, 3H), 7.21 (app.d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.32-7.36 (m, 3H), 7.44 ($\mathrm{s}, 1 \mathrm{H}$), 7.69 (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 21.1,21.8,55.6$,
 92.4, 114.0, 123.3, 123.5, 126.5, 128.0, 129.4 (two signals overlapping), 129.7, 130.5, 137.4,
137.7, 143.8, 150.6, 157.6, 166.8; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 360.1600$, found 360.1596.

Synthesis of Indenones via Self-Coupling of Aldimines (Scheme 2 and Table 2)

A Typical Procedure: 2-(4-Methoxyphenyl)-5-methyl-3-(p-tolyl)-1H-inden-1-one (7a). In a Schlenk tube were placed $\mathrm{CoBr}_{2}(6.6 \mathrm{mg}, 0.030 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(12.8 \mathrm{mg}, 0.030 \mathrm{mmol})$, (E)-4-methoxy- N-(1-(p-tolyl)ethylidene)aniline ($2 \mathbf{c}, 67.6 \mathrm{mg}, 0.30 \mathrm{mmol}$), and THF (0.71 mL). To the mixture was added a THF solution of $t \operatorname{BuCH}{ }_{2} \mathrm{MgBr}(0.68 \mathrm{M}, 0.79 \mathrm{~mL}, 0.54 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. After stirring for 30 min , another portion of $\mathbf{2 c}(67.6 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added. The resulting mixture was stirred at room temperature for 12 h , followed by the addition of $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ and 4-methoxybenzaldehyde ($73 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$). After stirring for 1 h , aq. $\mathrm{HCl}(3 \mathrm{M}, 1 \mathrm{~mL})$ was added, and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . The reaction was cooled to room temperature, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc}=50 / 1$) to afford the title compound as a red solid ($72.0 \mathrm{mg}, 71 \%$ based on $\mathbf{2 c}$).
7a: m.p. 173.5-174.3 ${ }^{\circ} \mathrm{C} ; R_{f} 0.40$ (hexane/EtOAc $=10 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.80$ (s, 3H), 6.82 (app.d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94$ (s, 1H), 7.05 (d, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.29$ (app.d, $J=8.0 \mathrm{~Hz}$,
 $2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.7,22.3,55.3,113.8,122.4$, 123.0, 123.6, 128.6 (two signals overlapping), 128.7, 129.7, 130.3, 131.4, 132.1, 139.3, 144.4, 146.2, 153.8, 159.2, 196.9; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 341.1542$, found 341.1540.

2-(4-Methoxyphenyl)-3-phenyl-1H-inden-1-one (7b): The typical procedure was applied to (E) - N-benzylidene-4-methoxyaniline (2b, $126.8 \mathrm{mg}, 0.60 \mathrm{mmol}$) and 4-methoxybenzaldehyde ($73 \mu \mathrm{~L}, 0.60$ mmol). Silica gel chromatography (eluent: hexane/EtOAc $=50 / 1$) of the crude product afforded the title compound as a light red solid
 ($64.0 \mathrm{mg}, 68 \%$).
m.p. $116.8-117.5{ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.118-119{ }^{\circ} \mathrm{C}\right) ;{ }^{2} R_{f} 0.47$ (hexane/EtOAc $=8 / 1$); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,
CDCl_{3}): $\delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.81$ (app.d, $\left.J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.28(\mathrm{~m}$, $3 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 55.4,113.8,121.1,123.0,123.3,128.7,128.8,129.0,129.3,130.9,131.5,132.1$, 133.2, 133.6, 145.7, 154.0, 159.4, 197.2; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$313.1229, found 313.1226 .

4-(1-Oxo-3-phenyl-1 \boldsymbol{H}-inden-2-yl)benzonitrile (7c): The typical procedure was applied to (E) - N-benzylidene-4-methoxyaniline ($\mathbf{2 b}$, $126.8 \mathrm{mg}, 0.60 \mathrm{mmol}$) and 4-cyanobenzaldehyde ($78.7 \mathrm{mg}, 0.60$ mmol). Silica gel chromatography (eluent: hexane/EtOAc $=25 / 1$) of
 the crude product afforded the title compound as a red solid $(63.6 \mathrm{mg}$, 69\%).
m.p. 139.1-139.9 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.142-144{ }^{\circ} \mathrm{C}\right) ;{ }^{3} R_{f} 0.27$ (hexane/EtOAc $=10 / 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 3 \mathrm{H})$, 7.53 (app.d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 111.2$, $119.0,122.1,123.5,128.5,129.3,129.9,130.2,130.5$ (two signals overlapping), 130.7, 132.0, 132.1, 134.0, 135.9, 144.7, 158.0, 195.6; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 308.1075$, found 308.1078 .

3-Phenyl-2-(4-(trifluoromethyl)phenyl)- $\mathbf{H} \boldsymbol{H}$-inden-1-one (7d): The typical procedure was applied to (E)- N-benzylidene-4-methoxyaniline ($\mathbf{2 b}, 126.8 \mathrm{mg}, 0.60$ mmol) and 4-trifluoromethylbenzaldehyde ($82 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$). Silica gel chromatography (eluent: hexane/EtOAc $=100 / 1$) of the crude product afforded the title compound as a light red oil $(66.3 \mathrm{mg}$, 63\%).

$R_{f} 0.53$ (hexane/EtOAc $=10 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.31-7.35 (m, 1H), 7.36-7.42 (m, 5H), 7.43-7.46 (m, 3H), $7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 121.9,123.5,124.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{H}}=248 \mathrm{~Hz}\right), 125.2(\mathrm{q}$, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{H}}=4.0 \mathrm{~Hz}\right), 128.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{H}}=30 \mathrm{~Hz}\right), 128.6,129.3,129.7,130.0,130.2,130.4,130.8,132.4$, 133.9, 134.7, 145.0, 157.3, 196.0; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 351.0997$, found 351.0999 .

2-(2,6-Difluorophenyl)-3-phenyl-1H-inden-1-one (7e): The typical procedure was applied to (E)- N -benzylidene-4-methoxyaniline ($\mathbf{2 b}, 126.8$ $\mathrm{mg}, 0.60 \mathrm{mmol}$) and 2,6 -difluorobenzaldehyde ($65 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$). Silica gel chromatography (eluent: hexane/EtOAc $=50 / 1$) of the crude product
 afforded the title compound as a yellow solid ($76.6 \mathrm{mg}, 80 \%$).
m.p. 133.3-134.5 ${ }^{\circ} \mathrm{C} ; R_{f} 0.50$ (hexane/EtOAc $=8 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.85-6.89$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.63(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 109.2\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right), 111.7\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=19 \mathrm{~Hz},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}\right)$, $122.0,123.5,127.8,128.9,129.6,130.1,130.4\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right), 131.5,132.6,133.5,144.8$, $144.8,160.1,161.0\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=249 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}\right.$), 194.4; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 319.0934$, found 319.0933.

2-(4-Methoxyphenyl)-3-phenyl-1H-inden-1-one (7f): The typical procedure was applied to (E)- N-benzylidene-4-methoxyaniline ($\mathbf{2 b}, 126.8 \mathrm{mg}, 0.60 \mathrm{mmol}$) and 3,5-diiodo-4-hydroxybenzaldehyde ($224.3 \mathrm{mg}, 0.60 \mathrm{mmol}$). Silica gel chromatography (eluent: hexane/EtOAc $=3 / 1$) of the crude product afforded the title compound as a dark red solid $(91.5 \mathrm{mg}$, 55\%).

m.p. 177.2-178.4 ${ }^{\circ} \mathrm{C} ; R_{f} 0.55$ (hexane/EtOAc $=3 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.82$ (brs, $1 \mathrm{H}), 7.13(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.47(\mathrm{~m}, 3 \mathrm{H})$, $7.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 81.9,121.7,123.3,127.2$, $128.5,128.8,129.2,129.5,130.0,130.6,132.2,133.9,140.7,145.0,153.2,156.0,196.1 ;$ HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{I}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 550.9005$, found 550.9000 .

3-Phenyl-2-(pyridin-4-yl)-1H-inden-1-one (7g): The typical procedure was applied to (E)- N-benzylidene-4-methoxyaniline ($\mathbf{2 b}, 126.8 \mathrm{mg}, 0.60$ mmol) and 4-pyridinecaboxaldehyde ($56 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$). Silica gel chromatography (eluent: hexane/EtOAc $=5 / 1$) of the crude product afforded the title compound as an orange solid ($64.9 \mathrm{mg}, 76 \%$).
 m.p. 131.3-132.5 ${ }^{\circ} \mathrm{C} ; R_{f} 0.20$ (hexane/EtOAc $=3 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17-7.18$ (m, 3H), 7.34-7.47 (m, 7H), 7.61 (dd, $J=7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 122.2,123.5,124.4,128.4,129.3,129.7,130.0,130.2,130.8,132.0$, 133.9, 138.9, 144.7, 149.8, 158.7, 195.4; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$284.1075,
found 284.1078.

2-(Furan-2-yl)-3-phenyl-1H-inden-1-one (7h): The typical procedure was applied to (E)- N-benzylidene-4-methoxyaniline ($\mathbf{2 b}, 126.8 \mathrm{mg}, 0.60 \mathrm{mmol}$) and furfural ($50 \mu \mathrm{~L}, 0.60$ mmol). Silica gel chromatography (eluent: hexane/EtOAc $=50 / 1$) of the crude product afforded the title compound as a dark red solid (27.3 mg , 33\%).
m.p. 92.3-93.7 ${ }^{\circ} \mathrm{C} ; R_{f} 0.55$ (hexane/EtOAc $=8 / 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 CDCl_{3}): $\delta 6.43-6.44(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.50(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 111.7, 112.7, 121.7, 122.1, 123.2, 128.4, 128.8, 128.9, 129.4, 131.0, 133.2, 134.0, 143.1, 146.6, 147.3, 150.9, 195.2; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$273.0916, found 273.0916.

Ethyl 1-oxo-3-phenyl-1H-indene-2-carboxylate (7i): The typical procedure was applied to (E)- N -benzylidene-4-methoxyaniline ($\mathbf{2 b}$, $126.8 \mathrm{mg}, 0.60 \mathrm{mmol}$) and ethyl glyoxalate (50% solution in toluene, 120 $\mu \mathrm{L}, 0.60 \mathrm{mmol}$). Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc}=$
 $30 / 1-10 / 1$) of the crude product afforded the title compound as a yellow solid ($34.0 \mathrm{mg}, 41 \%$). m.p. 84.0-84.8 ${ }^{\circ} \mathrm{C}$ (lit. $87-88{ }^{\circ} \mathrm{C}$) ${ }^{4} R_{f} 0.20$ (hexane/EtOAc $=10 / 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.20(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.42(\mathrm{~m}$, 2 H), 7.50-7.54 (m, 5H), 7.59-7.61 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1,61.1,123.6$, 124.6, 128.3, 128.6, 130.6 (two signals overlapping) 130.7, 131.2, 131.7, 133.7, 143.3, 163.2, 165.1, 192.3; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$279.1021, found 279.1019.

5-Methoxy-2,3-bis(4-methoxyphenyl)-1H-inden-1-one (7j): The typical procedure was applied to (E)-4-methoxy- N-(4-methoxybenzylidene)aniline (2d, $144.8 \mathrm{mg}, 0.60 \mathrm{mmol}$) and 4-methoxybenzaldehyde (73 $\mu \mathrm{L}, 0.60 \mathrm{mmol}$). Silica gel chromatography (eluent: hexane $/ \mathrm{EtOAc}=15 / 1-5 / 1$) of the crude product afforded the title compound as an orange solid ($94.9 \mathrm{mg}, 81 \%$).
 m.p. $\quad 169.4-170.1 \quad{ }^{\circ} \mathrm{C} \quad$ (lit. $\left.\quad 173-175 \quad{ }^{\circ} \mathrm{C}\right) ;{ }^{5} \quad R_{f} \quad 0.21$ (hexane/EtOAc $=8 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$,
6.63 (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (app.d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ (app.d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.24(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.3,55.4,55.8,110.0,110.3,113.7,114.3,123.7,123.8$, 124.7, 125.2, 130.3, 131.4, 132.7, 148.2, 151.7, 159.2, 160.3, 164.4, 195.7; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 373.1440$, found 373.1439 . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed good agreement with the literature data. ${ }^{6}$

5-Fluoro-3-(4-fluorophenyl)-2-(4-methoxyphenyl)-1H-inden-1-one (7k): The typical procedure was applied to (E)-N-(4-fluorobenzylidene)-4-methoxyaniline ($\mathbf{2 e}, 137.6 \mathrm{mg}$, 0.60 mmol) and 4-methoxybenzaldehyde ($73 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$). Silica gel chromatography (eluent: hexane/EtOAc $=50 / 1$) of the crude product afforded the title compound as a light red solid
 (59.6 mg, 57\%).
m.p. 180.4-181.3 ${ }^{\circ} \mathrm{C} ; R_{f} 0.38$ (hexane/EtOAc $=8 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.79(\mathrm{~s}, 3 \mathrm{H})$, 6.78-6.83 (m, 3H), 6.87-6.92 (m, 1H), 7.10-7.15 (m, 2H), 7.20-7.22 (m, 2H), 7.34-7.38 (m, 2H), $7.54(\mathrm{dd}, J=8.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.4,109.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=26 \mathrm{~Hz}\right)$, $114.0,114.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 116.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 122.7,125.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 126.6(\mathrm{~d}$, $\left.{ }^{4} J_{\text {C-F }}=3 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 130.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 131.5,133.6,148.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9\right.$ $\mathrm{Hz}), 150.6,159.7,162.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=249 \mathrm{~Hz}\right), 166.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=253 \mathrm{~Hz}\right), 195.2 ;$ HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 349.1040$, found 349.1035.

2-(4-Methoxyphenyl)-6-methyl-3-(m-tolyl)-1H-inden-1-one (71): The typical procedure was applied to (E)-4-methoxy- N-(3-methylbenzylidene)aniline (2f, $135.2 \mathrm{mg}, 0.60 \mathrm{mmol}$) and 4-methoxybenzaldehyde ($73 \mu \mathrm{~L}$, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc $=50 / 1)$ of the crude product afforded a mixture of the title compound and its minor regioisomer
 (2-(4-methoxyphenyl)-4-methyl-3-(m-tolyl)- 1 H -inden-1-one) as a dark red solid (67.1 mg , 66%). The ratio of the regioisomers was determined to be $2.7: 1$ by ${ }^{1} \mathrm{H}$ NMR analysis.
$R_{f} 0.48$ (hexane/EtOAc $=8 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer): $\delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.37$ ($\mathrm{s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.16(\mathrm{~m}, 2 \mathrm{H})$, 7.17-7.26(m, 3H), $7.28(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
CDCl_{3}): $\delta 21.5,21.6,55.3,113.7$ (two signals overlapping), 121.0, 123.5, 124.1, 125.8, 128.6, 129.0, 130.0, 131.2, 131.28, 131.33, 133.5, 138.6, 139.0, 143.0, 154.5, 159.2, 197.6; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 341.1542$, found 341.1537.

2-(4-Methoxyphenyl)-7-methyl-3-(o-tolyl)-1H-inden-1-one (7m): The typical procedure was applied to (E)-4-methoxy- N-(2-methylbenzylidene)aniline (2g, $135.2 \mathrm{mg}, 0.60 \mathrm{mmol}$) and 4-methoxybenzaldehyde ($73 \mu \mathrm{~L}, 0.60$ mmol). Silica gel chromatography (eluent: hexane/EtOAc $=100 / 1$) of the crude product afforded the title compound as a light red oil ($21.7 \mathrm{mg}, 21 \%$).
 $R_{f} 0.45$ (hexane/EtOAc $=10 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 3.78$ $(\mathrm{s}, 3 \mathrm{H}), 6.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.5,20.1,55.3,113.8,119.1$, 124.1, 126.4, 126.9, 128.4, 128.8, 130.6, 131.0, 132.06, 132.14, 133.1, 133.4, 136.0, 137.8, 146.8, 153.4, 159.3, 198.5; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 341.1542$, found 341.1537.

5-Methoxy-3-(4-methoxyphenyl)-2-(naphthalen-2-yl)-1H-in den-1-one (7n): The typical procedure was applied to (E)-4-methoxy-N-(4-methoxybenzylidene)aniline (2d, 144.8 $\mathrm{mg}, 0.60 \mathrm{mmol}$) and 2-naphthaldehyde ($93.7 \mathrm{mg}, 0.60 \mathrm{mmol}$). Silica gel chromatography (eluent: hexane/EtOAc $=10 / 1-5 / 1$)
 of the crude product afforded the title compound as a red solid ($84.2 \mathrm{mg}, 72 \%$).
m.p. $59.6-60.8{ }^{\circ} \mathrm{C} ; R_{f} 0.18$ (hexane/EtOAc $=10 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 6.69$ (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ (app.d, $J=8.8 \mathrm{~Hz}$, 2 H), 7.23 (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ (app.d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.44-7.47 (m, 2H), 7.57 (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 55.4,55.9,110.4,110.7,114.4,124.0,124.9,125.0,126.1,126.4$, $127.5,127.6,127.7,128.6,128.9,129.9,130.5,132.8,133.0,133.4,148.0,153.4,160.6,164.5$, 195.3; HRMS (ESI) Calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 393.1491$, found 393.1496.

Methyl 4-(5-methoxy-3-(4-methoxyphenyl)-1-oxo-1H-inden-2-yl)benzoate (70): The typical procedure was applied to (E)-4-methoxy- N-(4-methoxybenzylidene)aniline (2d, $144.8 \mathrm{mg}, 0.60 \mathrm{mmol}$) and methyl 4-formylbenzoate (98.5 $\mathrm{mg}, 0.60 \mathrm{mmol}$). Silica gel chromatography (eluent: hexane/EtOAc $=10 / 1-3 / 1$) of the crude product afforded the title compound as an orange solid ($88.7 \mathrm{mg}, 74 \%$).
 m.p. $114.3-115.6^{\circ} \mathrm{C} ; R_{f} 0.30$ (hexane $/ \mathrm{EtOAc}=3 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 3.825(\mathrm{~s}$, $3 \mathrm{H}), 3.833(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.68(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (app.d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (app.d, $J=8.8 \mathrm{~Hz} 2 \mathrm{H}$), 7.35 (app.d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.53 (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.92 (app.d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.2,55.5,55.9$, $110.8,111.0,114.5,123.8,124.4,125.0,129.0,129.4,130.1,130.3,132.1,136.3,147.5,154.8$, 160.8, 164.5, 167.1, 194.6; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 401.1389$, found 401.1386.

2,2'-(1,3-Phenylene)bis(5-methyl-3-(p-tolyl)-1H-inden-1-one) (7p): In a Schlenk tube were placed $\mathrm{CoBr}_{2}(13.2 \mathrm{mg}, 0.060 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(23.6$ mg (0.060 mmol , (E)-4-methoxy- N-(1-(p-tolyl)ethylidene) aniline (2c, $135.2 \mathrm{mg}, 0.60 \mathrm{mmol})$, and THF (1.42 mL). To the mixture was added a THF solution of
 $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{MgBr}(0.68 \mathrm{M}, 1.58 \mathrm{~mL}, 1.08 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$. After stirring for 30 min , another portion of $\mathbf{2 c}(135.2 \mathrm{mg}, 0.60 \mathrm{mmol})$ was added. The resulting mixture was stirred at room temperature for 12 h , followed by the addition of $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mL})$ and isophthalaldehyde ($26.8 \mathrm{mg}, 0.20 \mathrm{mmol}$). After stirring for 1 h , aq. $\mathrm{HCl}(3 \mathrm{M}, 2 \mathrm{~mL}$) was added, and the resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h . The reaction was cooled to room temperature, and the aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluent: hexane/EtOAc $=3 / 1$) to afford the title compound as a dark red solid ($75.3 \mathrm{mg}, 69 \%$ based on isophthalaldehyde).
m.p. 193.4-194.5 ${ }^{\circ} \mathrm{C} ; R_{f} 0.15$ (hexane/EtOAc $=10 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.34$ (s, $6 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 8 \mathrm{H})$, $7.32(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.7,22.3,122.7,123.1$,
127.9, 128.7 (two signals overlapping), 129.0, 129.4, 129.6, 129.9, 131.2, 131.8, 132.6, 139.5, 144.3, 145.9, 155.3, 196.2; HRMS (ESI) Calcd for $\mathrm{C}_{40} \mathrm{H}_{31} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 543.2324$, found 543.2325 .

1-(2-Benzoylphenyl)-3,3-dimethylbutan-1-one (7q): The typical procedure was applied to (E)- N-benzylidene-4-methoxyaniline $(\mathbf{2 b}, 63.4 \mathrm{mg}, \quad 0.30 \mathrm{mmol})$ and pivalaldehyde ($65 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$). Silica gel chromatography (eluent: hexane/EtOAc $=20 / 1-5 / 1$) of the crude product afforded the title compound as a red oil ($39.0 \mathrm{mg}, 46 \%$).
$R_{f} 0.20$ (hexane $/ \mathrm{EtOAc}=10 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.94(\mathrm{~s}, 9 \mathrm{H})$,
 $2.75(\mathrm{~s}, 2 \mathrm{H}), 7.39-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.74(\mathrm{~m}, 2 \mathrm{H})$, 7.82-7.84 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.8,31.7,51.5,128.5,128.7,129.0,129.6$, 129.8, 131.7, 133.0, 137.6, 139.9, 141.0, 198.0, 201.3; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+} 281.1542$, found 281.1545 .

Proposed Mechanism for the Formation of Indenone

Below is shown a possible mechanism for the formation of indene, which is similar to that proposed for the reaction of isobenzofuran and benzaldehyde by Kuninobu and Takai. ${ }^{6}$ Formation of the diketone product $\mathbf{7 q}$ from pivalaldehyde can be explained by hydrolysis of the intermediate \mathbf{A}.

Scheme S1. Proposed mechanism for the condensation of isoindole and aldehyde
(1) (a) Mongin, F.; Mojovic, L.; Guillamet, B.; Trécourt, F.; Quéguiner, G. J. Org. Chem. 2002, 67, 8991. (b) Rebstock, A.-S.; Mongin, F.; Trécourt, F.; Quéguiner, G. Tetrahedron 2003, 59, 4973.
(2) Bergman, E. D. J. Org. Chem. 1956, 21, 461.
(3) Koelsch, C. F. J.Am. Chem. Soc. 1936, 58, 1331.
(4) Yost, W. L.; Burger, A. J. Org. Chem. 1950, 15, 1113.
(5) Neunhoeffer, v. H.; Vötter, H.-D.; Gais-Mutterer, M. Tetrahedron Lett. 1973, 14, 219.
(6) Kuninobu, Y.; Matsuki, T.; Takai, K. Org. Lett. 2010, 12, 2948.

NMR Spectra

3a

GK03-408, 13C NMR CDC13 BBOFO1 400 HZ

Fin

3b

GK03-5.32-1, 1.3C NMR CDC1.3 BBFO1.

	SN:
	$\dot{8}$
	V

3c

GK0.3-5.36, 13 C NMR CDC13 BBFO1. 400 MHz

$\because 7$		Fio	\cdots
	\% \% ${ }_{1}$	\cdots	
V	V/VV/1/V	V	V

3d

GK03-5.37, 13 C NMR CDC13 BBFO1. 400 MHz

3 e

[^0]
$3 f$

GK0.3-539, 13 C NMR CDC13 BBFO1. 400 MHz

3g

GK0.3-582-2, 1.3 C NMR CDCl. 3400 MHz BBOFO1.

GK0.3-570, 13 C NMR CDC1 3400 MHz BBOFO1.

$3 i$

GK0.3-560-1, 1.3C NMR CDC1. 3400 MHz BBOFO1.

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

3j

GK04-2.47 1 H NMR 400 MH . BBFO1. CDC1. 3

GK04-247 13C NMR 400 MHz BBFO1 CDC1 3

| |
| :--- |
| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | ppm |

3k

31

GK0.3-591, 13 C NMR CDC13 400 MHz BBOFO1.

$\underset{\sim}{\text { anion }}$

3m

GKO4-04, 13 C NMR CDC13 400 MHz , BBFO1

3n

GK04-0.3, 1 H NMR CDC1. 3400 MHz , BBFO1.

30

GK03-519-3, 13C NMR CDC1. 3 BBFO1.

$\sqrt{n y \infty}$

3p

GKD4－10， 13 C NMR CDCl3 400 MHz ，BBFO1．

品下momm	¢ベส	¢o
	Fi＊	宜熍
S 4 ，	V	V

	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30

3q

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

3r

5

GK03-52.0-2, 1.3C NMR CDCl. 3 BBFO1. 400MH7.

6

GK0.3-52.0-3, 1. HMR DMSO BBFO1. 400 MHz

GK0.3-52.0-3, 1. H NMR DMSO BBFO1. 400 MHz

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

7a

$\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} \mathrm{ppm}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

7b

GKO4-21. 1.3C NMR CDC1. 3400 MHz , BBFO?

\sqrt{n}

[^1]
7c

[^2]Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

7d

GKO4-191, 13 C NMR $400 \mathrm{MHz}, \mathrm{BBFO} 2, \mathrm{CDC} 13$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

7e

GK04-177 13C NMR 400MHz BBFO2 CDC13

7f

GK04-176 $\quad 13 \mathrm{C}$ NMR 400 MHz BBFO2. CDCl. 3

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

7g

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

7h

GK04-186 1 H NMR 400 MHz BBOFO1 CDCl 3

GK04-186 13 C NMR 400 MHz BBOF01. CDCl 3

$7 \mathbf{i}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

7j

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

7k

whld
$\begin{array}{llllllllllllllllll}8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & & \mathrm{ppm}\end{array}$

$|\stackrel{o}{\circ}|$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

71

GK04-179 13C NMR 400MHz BBFO2. CDCl 3

7m

GKO4-188-1 1 H NMR 400 MHz BBOFO1 CDCl. 3

[^3]Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

7n

GK04-206 1 H NMR 400 MHz BBFO1. CDC1. 3

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

70

7p

```
GK04-238 1H NMR 400 MHz. BBFO1. CDCl.3
```



```
    *)
```


GK04-238 13C NMR 400 MHz BBFO1 CDCl3

$\begin{array}{llllllllllllllllllll} & 140 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 \\ 20 & 10 & \mathrm{ppm}\end{array}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012
$7 q$

[^0]: 190

[^1]: $\begin{array}{lllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}$

[^2]: $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

[^3]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

