## Supporting Information

# A Novel Nanosized {Co<sub>16</sub>} Metallamacrocycle Incorporating Four Linear {Co<sub>4</sub>} Subunits Bridged by Polytriazolate Ligands †

# Wei-Quan Lin,<sup>a</sup> Ji-Dong Leng<sup>a</sup> and Ming-Liang Tong<sup>\*a</sup>

<sup>*a*</sup> Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education / State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China. E-mail: tongml@mail.sysu.edu.cn

#### Experimental

Synthesis of complex 1: A mixture of  $Co(NO_3)_2 \cdot 6H_2O$  (0.056 g, 0.20 mmol), 3,5-H<sub>2</sub>bptp (0.037g, 0.10 mmol) in MeOH (12 mL) was sealed in a 25 mL Teflon-lined, stainless-steel vessel and heated at 160 °C for 72 h, and then cooled to room temperature. The blue crystal were obtained. (yield ca. 40% based on 3,5-H<sub>2</sub>bptp). C, H, N analysis calculated (%) for  $C_{42}H_{36}N_{20}O_{10}Co_4(H_2O)_{1.5}(MeCN)_1$ : C, 41.14; H, 3.29; N, 22.90. Found: C, 41.12; H, 3.25; N, 22.84. IR data (KBr),  $v(cm^{-1})$ : 3428w, 2805m, 1610m, 1466w, 1437m, 1386s, 1301m, 1280m, 1119w, 1054m, 1018m, 812w, 747m, 718w, 481w.

Synthesis of complex **2**: A mixture of  $CoCl_2 \cdot 6H_2O$  (0.048 g, 0.20 mmol), 1,3-H<sub>2</sub>bptb (0.037 g, 0.05 mmol) and 3,5-H<sub>3</sub>bptpt (0.037 g, 0.05 mmol) in MeOH/MeCN (V/V 1:1, 12 mL) was sealed in a 25 mL Teflon-lined, stainless-steel vessel and heated at 160 °C for 72 h, and then cooled to room temperature. The modena crystals were obtained (yield ca. 27% based on 1,3-H<sub>2</sub>bptb). C, H, N analysis calculated (%) for  $C_{204}H_{152}Co_{16}N_{76}O_{14}(H_2O)_{25}$ : C, 46.60; H, 3.84; N, 20.05. Found: C, 46.56; H, 3.92; N, 20.14. IR data (KBr),  $v(cm^{-1})$ : 3378w, 1607m, 1570s, 1519s, 1466m, 1436m, 1411w, 1327s, 1283s, 1255s, 1152vs, 1084s; 1049s; 1024s; 1006s; 805m; 740m; 694m; 662s; 636s; 445s; 415s.

**Materials and Measurements.** The commercially available chemicals and solvents were used and purified by standard procedures. The C, H and N microanayles were determined using an Elementar Vario-EL CHNS elemental anaylzer. IR spectra using KBr pellets were recorded on a Bio-Rad FTS-7 spectrometer. Magnetic susceptibility measurements were performed with a Quantum Design MPMS-XL7 SQUID. Polycrystalline samples of complex 1 and 2 were embedded in vaseline to prevent torqueing. All the ac susceptibility data were collected at zero dc field and 5 Oe ac amplitude. Data were corrected for the diamagnetic contribution calculated from Pascal constants.

## X-Ray Crystallography

Diffraction data for complex 1 were recorded on a Rigaku R-AXIS SPIDER IP diffractomer with Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at room temperature(298K) and complex 2 were recorded on a Bruker Apex CCD area detector diffractometer with Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at 150(2) K. The raw data frames were integrated with use of the Bruker SAINT package with a narrow frame algorithm.<sup>1</sup> An absorption correction based on symmetry equivalent reflections was applied using the SADABS program. The structures were solved with direct method and refined with full-matrix least-squares (SHELX-97).<sup>2</sup> All non-hydrogen atoms were refined anisotropically by full-matrix

least-squares on  $F^2$  using the SHELXTL program. Anisotropic thermal parameters were assigned to all non-hydrogen atoms. The hydrogen atoms on organic ligands were generated by the riding mode.

The disordered solvent molecules could not be modelled properly; thus, the program SQUEEZE,<sup>3</sup> a part of the PLATON package of crystallographic software, was used to calculate the solvent disorder area and remove its contribution to the overall intensity data. Selected bond distances and angles are listed in Table S1 in supporting information. The structure plots and space-filling diagram were produced with DIAMOND 3.1 and POV-Ray v3.62.<sup>4</sup>

### **Reference:**

- 1 R.H. Blessing, Acta Crystallogr., 1995, A51, 33.
- 2 G. M. Sheldrick, *Acta Crystallogr.*, 2008, A64, 112.
- 3 P. van der Sluis and A. L. Spek, *Acta Crystallogr.*, 1990, A46, 194.
- 4 W.T. Pennington, J. Appl. Cryst. 1999, 32, 1028.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2012



Fig. S1. The coordination environment of metal ions in complex 1.



Fig. S2. Packing diagram of complex 2.



Fig. S3. Side view of the  $\{Co_{16}\}$  mtallamacrocycle of complex 2.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2012



**Fig. S4.** Bridging mode of 3,5-bptpt<sup>3-</sup> ligand.



Fig. S5. Field-dependent magnetization plots at 2 K for 1 and 2.



**Figure S6.** Temperature dependence of AC magnetic susceptibility at various frequency of **2**. Color code: black, 1 Hz; red, 1488 Hz.



Scheme S1. Coordination modes of the three polytriazolate ligands.

| <b>Table S1.</b> Selected interatomic distances | (Å | ) and an | gles | (deg) | for cc | mplex 2 | 2. |
|-------------------------------------------------|----|----------|------|-------|--------|---------|----|
|-------------------------------------------------|----|----------|------|-------|--------|---------|----|

| Co1-O1                          | 1.890(3)   | Co3-O2                      | 2.044(3)   |  |
|---------------------------------|------------|-----------------------------|------------|--|
| Co1-O6 <sup><i>i</i></sup>      | 1.910(4)   | Co3-N32                     | 2.046(4)   |  |
| Co1-N15                         | 2.013(4)   | Co3-N25                     | 2.109(4)   |  |
| Co1-N5                          | 2.016(4)   | Co3-N7                      | 2.126(4)   |  |
| Co2-O1                          | 2.035(4)   | Co3-N8                      | 2.164(4)   |  |
| Co2-N16                         | 2.044(4)   | Co3-N31                     | 2.429(5)   |  |
| Co2-N6                          | 2.107(4)   | Co4-O2                      | 1.924(3)   |  |
| Co2-N26                         | 2.109(4)   | Co4-O3                      | 1.951(3)   |  |
| Co2-N27                         | 2.213(5)   | Co4-N24                     | 2.049(4)   |  |
| Co2-N17                         | 2.375(5)   | Co4-N33                     | 2.083(4)   |  |
| Co5-O4                          | 1.932(3)   | Co7-O5                      | 2.034(3)   |  |
| Co5-O3                          | 1.965(3)   | Co7-N13 <sup><i>i</i></sup> | 2.049(4)   |  |
| Co5-N23                         | 2.056(4)   | $Co7-N3^i$                  | 2.108(4)   |  |
| Co5-N34                         | 2.063(4)   | Co7-N21                     | 2.130(4)   |  |
| Co6-N35                         | 2.034(4)   | Co7-N20                     | 2.208(5)   |  |
| Co6-O4                          | 2.057(3)   | $Co7-N12^i$                 | 2.372(5)   |  |
| $Co6-N2^i$                      | 2.111(4)   | Co8-O5                      | 1.906(3)   |  |
| Co6-N22                         | 2.139(4)   | Co8-O6                      | 1.934(4)   |  |
| $Co6-N1^i$                      | 2.188(4)   | $Co8-N14^i$                 | 2.006(4)   |  |
| Co6-N36                         | 2.359(5)   | $Co8-N4^i$                  | 2.024(4)   |  |
|                                 |            |                             |            |  |
| O1-Co1-O6 <sup><i>i</i></sup>   | 116.17(15) | O2-Co3-N32                  | 85.59(15)  |  |
| O1-Co1-N15                      | 97.99(17)  | O2-Co3-N25                  | 100.38(16) |  |
| O6 <sup><i>i</i></sup> -Co1-N15 | 120.73(18) | N32-Co3-N25                 | 100.89(16) |  |
| O1-Co1-N5                       | 124.39(16) | O2-Co3-N7                   | 92.04(14)  |  |
| O6 <sup><i>i</i></sup> -Co1-N5  | 97.82(17)  | N32-Co3-N7                  | 167.69(17) |  |
| N15-Co1-N5                      | 100.48(17) | N25-Co3-N7                  | 91.42(16)  |  |
| O1-Co2-N16                      | 85.97(16)  | O2-Co3-N8                   | 96.18(16)  |  |
| O1-Co2-N6                       | 98.29(16)  | N32-Co3-N8                  | 91.96(17)  |  |
| N16-Co2-N6                      | 104.67(17) | N25-Co3-N8                  | 159.70(17) |  |
| O1-Co2-N26                      | 92.99(15)  | N7-Co3-N8                   | 76.26(16)  |  |
| N16-Co2-N26                     | 161.41(18) | O2-Co3-N31                  | 156.34(15) |  |
| N6-Co2-N26                      | 93.86(17)  | N32-Co3-N31                 | 71.41(17)  |  |
| O1-Co2-N27                      | 91.25(17)  | N25-Co3-N31                 | 79.25(18)  |  |
| N16-Co2-N27                     | 85.54(18)  | N7-Co3-N31                  | 111.61(16) |  |
| N6-Co2-N27                      | 166.41(18) | N8-Co3-N31                  | 90.23(18)  |  |
| N26-Co2-N27                     | 75.91(18)  | O2-Co4-O3                   | 127.06(14) |  |
| O1-Co2-N17                      | 156.69(14) | O2-Co4-N24                  | 124.17(15) |  |
| N16-Co2-N17                     | 72.19(17)  | O3-Co4-N24                  | 101.28(15) |  |
| N6-Co2-N17                      | 80.01(16)  | O2-Co4-N33                  | 93.09(15)  |  |
| N26-Co2-N17                     | 110.31(16) | O3-Co4-N33                  | 107.05(15) |  |
| N27-Co2-N17                     | 95.00(18)  | N24-Co4-N33                 | 98.05(15)  |  |
| O4-Co5-O3                       | 128.77(14) | O5-Co7-N13i                 | 85.30(16)  |  |

| O4-Co5-N23                              | 123.51(15) | O5-Co7-N3i                                           | 101.48(15) |  |
|-----------------------------------------|------------|------------------------------------------------------|------------|--|
| O3-Co5-N23                              | 101.93(15) | N13 <sup><i>i</i></sup> -Co7-N3i                     | 105.95(17) |  |
| O4-Co5-N34                              | 94.82(15)  | O5-Co7-N21                                           | 89.83(15)  |  |
| O3-Co5-N34                              | 105.72(15) | N13 <sup><i>i</i></sup> -Co7-N21                     | 162.47(17) |  |
| N23-Co5-N34                             | 93.30(15)  | N3 <sup><i>i</i></sup> -Co7-N21                      | 91.52(16)  |  |
| N35-Co6-O4                              | 86.00(15)  | O5-Co7-N20                                           | 97.94(15)  |  |
| N35-Co6-N2 <sup><i>i</i></sup>          | 165.25(17) | N13 <sup>i</sup> -Co7-N20                            | 88.01(17)  |  |
| O4-Co6-N2 <sup><i>i</i></sup>           | 92.75(14)  | N3 <sup><i>i</i></sup> -Co7-N20                      | 156.85(17) |  |
| N35-Co6-N22                             | 101.73(16) | N21-Co7-N20                                          | 75.98(16)  |  |
| O4-Co6-N22                              | 98.23(15)  | O5-Co7-N12 <sup>i</sup>                              | 156.25(15) |  |
| N2 <sup><i>i</i></sup> -Co6-N22         | 93.00(16)  | N13 <sup><i>i</i></sup> -Co7-N12 <sup><i>i</i></sup> | 71.51(17)  |  |
| N35-Co6-N1 <sup><i>i</i></sup>          | 89.40(16)  | N3 <sup><i>i</i></sup> -Co7-N12 <sup><i>i</i></sup>  | 80.70(16)  |  |
| O4-Co6-N1 <sup><i>i</i></sup>           | 91.97(14)  | N21-Co7-N12 <sup><i>i</i></sup>                      | 113.85(16) |  |
| N2 <i>i</i> -Co6-N1 <sup><i>i</i></sup> | 75.95(16)  | N20-Co7-N12 <sup>i</sup>                             | 86.60(17)  |  |
| N22-Co6-N1 <sup><i>i</i></sup>          | 165.35(16) | O5-Co8-O6                                            | 116.13(16) |  |
| N35-Co6-N36                             | 72.46(17)  | O5-Co8-N14 <sup>i</sup>                              | 96.49(16)  |  |
| O4-Co6-N36                              | 156.69(15) | O6-Co8-N14 <sup>i</sup>                              | 119.99(17) |  |
| N2 <sup><i>i</i></sup> -Co6-N36         | 110.35(17) | O5-Co8-N4 <sup><i>i</i></sup>                        | 126.29(16) |  |
| N22-Co6-N36                             | 78.10(15)  | O6-Co8-N4 <sup>i</sup>                               | 96.53(17)  |  |
| N1 <sup><i>i</i></sup> -Co6-N36         | 96.52(16)  | N14 <sup><i>i</i></sup> -Co8-N4 <sup><i>i</i></sup>  | 102.57(17) |  |