## **Electronic Supplementary Information (ESI)**

## Strong supramolecular binding of Li<sup>+</sup>@C<sub>60</sub> with sulfonated *meso*-tetraphenylporphyrins and long-lived photoinduced charge separation

Kei Ohkubo,<sup>a</sup> Yuki Kawashima<sup>a</sup> and Shunichi Fukuzumi<sup>\*a,b</sup>

<sup>a</sup> Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, JAPAN. Fax: +81- 6-6879-7370; Tel: +81- 6-6879-7369; E-mail: fukuzumi@chem.eng.osaka-u.ac.jp



**Fig. S1** (a) UV-vis spectra of ZnTPPS<sup>4</sup> (2.0 × 10<sup>-6</sup> M) in the presence of various concentrations of Li<sup>+</sup>@C<sub>60</sub> (0 to 2.2 x 10<sup>-5</sup> M) in PhCN. (b) Absorption profile at 430 nm. Inset: Plot of  $(\alpha^{-1} - 1)^{-1} vs$ . [Li<sup>+</sup>@C<sub>60</sub>] –  $\alpha$ [ZnTPPS<sup>4-</sup>]<sub>0</sub>;  $\alpha = (A - A_0)/(A_{\infty} - A_0)$ .



**Fig. S2** Job's plots for the formation of supramolecule between (a)  $H_2TPPS^{4-}$  (b)  $ZnTPPS^{4-}$  and  $Li^+@C_{60}$  in PhCN.



**Fig. S3** (a) Fluorescence spectra of ZnTPPS<sup>4-</sup> (2.0 x 10<sup>-6</sup> M) in the presence of various concentrations of Li<sup>+</sup>@C<sub>60</sub> (0 to 2.5 x 10<sup>-5</sup> M) in deaerated PhCN. The arrows indicate the direction of change; (b) Plot of the fluorescence intensity *vs*. [Li<sup>+</sup>@C<sub>60</sub>] at 608 nm. Inset: Plot of  $(\alpha^{-1} - 1)^{-1} vs$ . [Li<sup>+</sup>@C<sub>60</sub>] –  $\alpha$ [ZnTPPS<sup>4-</sup>]<sub>0</sub>;  $\alpha = (I - I_0)/(I_{\infty} - I_0)$ .



**Fig. S4** Cyclic voltammograms and differential pulse voltammograms of (a)  $H_2TPPS^{4}-Li^{+}@C_{60}$  (b)  $ZnTPPS^{4}-Li^{+}@C_{60}$  complexes in deaerated PhCN containing 0.10 M TBAPF<sub>6</sub>. Scan rate: 100 mV s<sup>-1</sup> for CV and 4 mV s<sup>-1</sup> for DPV.



**Fig. S5** (a) Transient absorption spectra of  $ZnTPPS^{4-}$  (2.5 × 10<sup>-5</sup> M) in the presence of Li<sup>+</sup>@C<sub>60</sub> (5.0 × 10<sup>-5</sup> M) in deaerated PhCN at 298 K taken at 2, 10 and 100 ps after femtosecond laser excitation at 388 nm. (b) Time profiles at 735 nm. Inset: First-order plot.



**Fig. S6** Transient absorption spectrum of the singlet excited states of (a)  $H_2TPPS^{4-}$  (b) ZnTPPS<sup>4-</sup>obtained by femtosecond laser flash at 430 nm of deaerated PhCN solutions containing porphyrins (5.0 × 10<sup>-6</sup> M) taken at 5 ps after laser excitation at 298 K.



**Fig. S7** Transient absorption spectrum of the singlet excited state of  $\text{Li}^+@C_{60}$  obtained by femtosecond laser flash at 410 nm of a deaerated PhCN solution containing  $\text{Li}^+@C_{60}$  (6.0 × 10<sup>-4</sup> M) taken at 3 ps after laser excitation at 298 K.



**Fig. S8** Second-order kinetic analyses for the decays of CS states of (a)  $[(H_2TPPS^4)-Li^+@C_{60}]$  and (b)  $[(ZnTPPS^4)-Li^+@C_{60}]$  with the laser intensity of 3 mJ/pulse



**Fig. S9** (a) Transient absorption spectra of ZnTPPS<sup>4-</sup> ( $2.5 \times 10^{-5}$  M) in the presence of Li<sup>+</sup>@C<sub>60</sub> ( $5.0 \times 10^{-5}$  M) in deaerated PhCN at 298 K taken at 5 and 300  $\mu$ s after nanosecond laser excitation at 550 nm; (b) Decay time profiles at 1035 nm with different laser intensities (1, 3, 6 mJ/pulse). Inset: First-order plots.