- Electronic Supplementary Material (ESI)-

Kinetics and mechanism of organocatalytic aza–Michael additions: direct observation of enamine intermediates

S. Lakhdar, M. Baidya, and Herbert Mayr*

Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5-13 (Haus F) 81377 München (Germany) Fax: (+49) 89-2180-77717 E-mail: herbert.mayr@cup.uni-muenchen.de

Table of Contents

1. General	S3
2. Product Characterization by NMR Spectroscopy	S3
3. Kinetics	S4
4. Determination of the Equilibrium Constants	S 8
5. Copies of the ¹ H and ¹³ C NMR spectra	S9

1. General

The ¹H and ¹³C NMR spectra were recorded at 600, 400 or 300 MHz and at 150, 100 or 75.5 MHz, respectively. The chemical shifts (δ) for ¹H and ¹³C are given in ppm relative to residual signals of the solvents (CD₃CN @ 1.94 ppm ¹H NMR, 117.4 ppm ¹³C NMR). Coupling constants are given in Hz. Carbon multiplicities were determined from HSQC experiments. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad singlet. NMR signal assignments are based on additional 2D-NMR experiments (COSY, NOESY, HSQC, and HMBC).

Commercially available acetonitrile (VWR, Prolabo, HPLC-gradient grade) was used without further purification for all kinetic experiments and determinations of equilibrium constants. The azoles **1a–g** were purified prior to use. The iminium ion **2** was prepared according to literature procedures.^{S1}

2. Product Characterization by NMR Spectroscopy

Under an atmosphere of nitrogen, 4 equivalents (or little excess) of imidazole 1c, were added directly to a CD_3CN solution of the iminium ion 2 in an NMR tube. After few minutes of shaking, the NMR study was performed, which shows the formation of the enamine 4c as a mixture of two diastereoisomers (1:1).

¹H NMR (400 MHz, CD₃CN): δ = 7.90 (s, 1H), 7.24-7.50 (m, 6H), 7.10-7.20 (m, 4H), 7.00-7.07 (m, 1H), 6.94-6.99 (m, 1H), 6.56 (d, *J* = 13.7 Hz, 1H, 1-H), 5.97 (dd, *J* = 9.0 Hz, 13, 6 Hz, 1H, 3-H), 4.91-5.08 (m, 1H, 2-H), 4.25 (bs, 4-H), 4.20 (bs, 4-H), 2.98-3.44 (m, 2H, 5-H), 2.65* (s, 3H, 8-H), 2.64[#] (s, 3H, 6H), 0.66* (s, 3H, 6H), 0.65[#] (s, 3H, 6-H); ¹³C NMR (101 MHz, CD₃CN) 168.8* (s, C=O), 168.7[#] (s, C=O), 142.3, 141.8, 136.9, 136.9, 136.3, 136.2, 133.3, 132.9 (d, C–1), 130.1 (d), 130.0,

129.3, 128.93, 128.8, 128.3, 127.8, 127.8, 127.5, 126.7, 126.6, 126.5, 126.5, 118.9, 118.8, 97.8* (d, C-2), 97.7[#] (d, C-2), 78.3* (s, C-7), 78.2[#] (s, C-7), 63.3* (d, C-3), 63.2[#] (d, C-3), 59.9* (d, C-4), 59.9[#] (d, C-4), 33.4^{*} (d, C-5), 33.4[#] (d, C-5), 25.0*, 25.0[#], 24.2^{*} (q, C-8), 24.2[#] (q, C-8).

*: diasteroisomer 1; #: diastereoisomer 2

^{S1 a) S. Lakhdar, T. Tokuyasu and H. Mayr, Angew. Chem., 2008, 120, 8851; Angew. Chem., Int. Ed., 2008, 47, 8723; b) S. Lakhdar, J. Ammer and H. Mayr Angew. Chem. 2011, 123, 10127-10130; Angew. Chem. Int. Ed. 2011, 50, 9953-9956.}

3. Kinetics

All reactions of azoles with iminium ion 2 were performed in acetonitrile at 20°C. The kinetics were followed photometrically using the stopped-flow technique described previously.^[S1] The kinetic runs were performed by mixing equal volumes of acetonitrile solutions of the azoles with acetonitrile solutions of 2 and monitoring the decrease of absorbances at the wavelength close to the absorption maxima of 2 (370 nm).

In general, azoles were applied in high excess over iminium ion **2** for achieving pseudo-firstorder conditions. The first-order rate constants k_{obs} (s⁻¹) were obtained by least-squares fitting of the absorbances (averaged from at least 6 kinetic runs) to the single exponential function $A = A_0 \exp(-k_{obs}t) + C$. Second-order rate constants k (M⁻¹ s⁻¹) were then obtained from the slope of the k_{obs} vs [1a–g] curve.

Table S1. Rate constants for the reaction of **1a** with **2** in acetonitrile (0.5% DMSO) (Stopped–flow method, 20 °C, $\lambda = 370$ nm).

[2] (M)	[1a] (M)	$k_{\rm obs}~({\rm s}^{-1})$	7.50
1.20×10^{-4}	8.88×10^{-3}	4.56	
$1.20 imes 10^{-4}$	1.14×10^{-2}	5.11	³ ³ ² ³ 3.00
1.20×10^{4}	1.27×10^{2}	5.45	$k_{obs} = 2.75 \times 10^2 [1a] + 2.03$ 1.50 R ² = 0.9932
1.20×10^{4}	1.52×10^{2}	6.16	0
$1.20 imes 10^{-4}$	$1.78 imes 10^{-2}$	6.99	$0 \qquad 4.00 \times 10^3 8.00 \times 10^3 1.20 \times 10^2 1.60 \times 10^2 2.00 \times 10^2$ [1a] / M \longrightarrow
$k_{2} =$	$2.75 \times 10^2 \text{ M}^{-1}$	s ⁻¹	

Table S2. Rate constants for the reaction of **1b** with **2** in acetonitrile (Stopped–flow method, 20 °C, $\lambda = 370$ nm).

Table S3. Rate constants for the reaction of **1c** with **2** in acetonitrile (Stopped–flow method, 20 °C, $\lambda = 370$ nm).

[2] (M)	[1c] (M)	$k_{\rm obs}~({\rm s}^{-1})$	3.25 × 10 ¹
1.20×10^{-4} 1.20×10^{-4}	1.82×10^{-3}	9.20	2.60×10^{1}
1.20×10^{-4} 1.20×10^{-4}	3.65×10^{-3} 5.47×10^{-3}	1.39×10^{1} 1.96×10^{1}	$ \overset{8}{\sim} 1.30 \times 10^{1} $ $ k_{obs} = 3.01 \times 10^{3} [1c] + 3.31 $ $ R^{2} = 0.9985 $
1.20×10^{-4} 1.20×10^{-4}	7.30×10^{-3}	2.51×10^{1}	$0 \begin{bmatrix} 2.00 \times 10^{3} & 4.00 \times 10^{3} & 6.00 \times 10^{3} & 8.00 \times 10^{3} & 1.00 \times 10^{3} \end{bmatrix}$
$k_2 =$	9.12×10^{3} M ⁻¹	3.10×10 s ⁻¹	[1c] / M ───→

Table S4. Rate constants for the reaction of **1d** with **2** in acetonitrile (Stopped–flow method, 20 °C, $\lambda = 370$ nm).

Table S5. Rate constants for the reaction of **1e** with **2** in acetonitrile (Stopped–flow method, 20 °C, $\lambda = 370$ nm).

Table S6. Rate constants for the reaction of **1f** with **2** in acetonitrile (Stopped–flow method, 20 °C, $\lambda = 370$ nm).

Table S7. Rate constants for the reaction of **1g** with **2** in acetonitrile (Stopped–flow method, 20 °C, $\lambda = 370$ nm).

4. Determination of the Equilibrium Constants

Entry	A _t	(A ₀ –A)	[2] _t	[1b] _t	K (L mol ⁻¹)
0			$7.19\times10^{\text{-5}}$	0	
1	0.750	0.510	$4.26\times10^{\text{-5}}$	$7.26 imes 10^{-4}$	9.95×10^2
2	0.437	0.818	$2.48 imes 10^{-5}$	$1.45 imes 10^{-3}$	1.32×10^3
3	0.272	0.978	$1.55 imes 10^{-5}$	$2.16 imes 10^{-3}$	1.68×10^3
4	0.200	1.045	$1.14 imes 10^{-5}$	2.87×10^{-3}	$1.83 imes 10^3$

Table S8. Equilibrium constant for the reaction of 1b with 2 in acetonitrile (20 °C, 370 nm).

 $K = (1.61 \pm 0.26) \times 10^3 \text{ L mol}^{-1}$

Table S9. Equilibirium constant for the reaction of 1e with 2 in acetonitrile (20 °C, 370 nm).

Entry	A _t	(A ₀ –A)	[2] _t	[1b] _t	$K (L \text{ mol}^{-1})$
0			$7.26 imes 10^{-5}$	0	
1	1.010	0.209	$5.97 imes 10^{-5}$	1.01×10^{-3}	$2.18 imes 10^2$
2	0.894	0.315	$5.28\times10^{\text{-5}}$	2.01×10^{-3}	$1.81 imes 10^2$
3	0.790	0.410	$4.67 imes 10^{-5}$	$2.98 imes 10^{-3}$	$1.76 imes 10^2$
4	0.691	0.499	$4.08 imes 10^{-5}$	3.95×10^{-3}	$1.85 imes 10^2$
5	0.609	0.571	3.60×10^{-5}	4.89×10^{-3}	$1.93 imes 10^2$

 $K = (1.84 \pm 0.70) \times 10^2 \text{ L mol}^{-1}$

Copies of the ¹H, ¹³C, NMR spectra

*: excess imidazole

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

S12