Electronic Supplementary Information

A Novel OxidativeTransformation of Alcohols to Nitriles: An Efficient Utility of Azide as a Nitrogen Source

Balaji V. Rokade, Sanjeev K. Malekar and Kandikere Ramaiah Prabhu^{*}

Contents

1	General experimental	ESI 2
2	Starting material preparation	ESI 2
3	Typical experimental procedure	ESI 2
4	Optimization studies: <i>Screening of different solvents; SI-Table 1</i>	ESI 3
5	Optimization studies: <i>Screening of copper salts; SI-Table 2</i>	ESI 3
6	Control Experiments: <i>SI-Scheme 1</i>	ESI 4
7	Mechanistic studies	ESI 5
8	Characterization data for Nitriles	ESI 5 – ESI 13
9	References	ESI 14
10	¹ H and ¹³ C NMR Spectra of nitriles	ESI 15 - ESI 72

General experimental

NMR spectra were recorded in CDCl₃, Tetramethylsilane (TMS; $\delta = 0.00$ ppm) served as internal standards for ¹H NMR. The corresponding residual non-deuterated solvent signal (CDCl₃: $\delta = 77.00$ ppm) was used as internal standards for ¹³C NMR. Column chromatography were conducted on silica gel 230-400 mesh or 100-200 mesh (Merck). Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

Note: Although we have not encountered disastrous results during our experiments, while using azides proper safety precautions should be followed!!!

Starting material preparation:

The starting materials, cinnamyl alcohols were prepared from the corresponding aldehydes using general procedure shown in the following scheme and spectral data are in agreement with the literature.

Benzylic alcohols were prepared from the corresponding aldehydes using sodium borohydride reduction and spectral data are in agreement with the literature.

Typical experimental procedure: synthesis of aryl and alkenyl nitriles from benzyl and allyl alcohols :

Trimethylsilylazide (0.75 mmol) was added dropwise to a well-stirred mixture of alcohol (0.5 mmol), $Cu(ClO_4)_2 \cdot 6H_2O$ (0.025 mmol), DDQ (1.1 mmol) in 1,2-dichloroethane (2 ml) and stirred at 60 °C till the reaction is completed (monitored by TLC). After removal of the solvent under reduced pressure, the reaction mixture was cooled to room temperature, the residue was dissolved in small amount of CH_2Cl_2 (2 mL), passed through alumina, and purified by column chromatography on silica gel.

Optimization studies: Screening of different solvents

ОН	u(ClO ₄) ₂ ·6H ₂ O (10 mo TMSN ₃ (2.0 equiv) DDQ (3.0 equiv) Solvent, RT	I %)
Entry	Solvent	Yield (%) ^a
1	H₂O	nd
2	MeOH	nd
3	THF	55
4	Toluene	95
5	CH ₃ CN	98
6	DCE	100

SI Table 1. Solvent Screening

^a Yields were determined by ¹H NMR analyses w.r.t starting material. nd = not detected (<1%).

SI Table 2. Screening for amount of Cu(ClO₄)₂·6H₂O,TMSN₃ and DDQ

^a Yields were determined by ¹H NMR analyses with respect to starting material.

Control Experiments:

SI Scheme 1. Control experiments

Mechanistic studies:

It is known that cinnamyl azide is oxidized in the presence of DDQ to the corresponding nitrile.¹ Similarly, benzaldehyde is known to react with TMSN₃ to form corresponding α -silyloxy azido derivatives in the presence of Lewis acids.² We have also observed that aldehyde and azides were formed as by-products in few control experiments (Table 1 and 2). In light of these observations, we carried out few more control experiments (ESI Scheme 1). The reaction of cinnamyl alcohol with TMSN₃ in the presence of Cu(ClO₄)₂·6H₂O (5 mol %) furnished the corresponding azide in almost quantitative yield. However, under the similar reaction condition, benzyl alcohol failed to furnish the corresponding azide even under forcing conditions. Further, it was observed that the reaction of cinnamaldehyde with Cu(ClO₄)₂·6H₂O (5 mol %), TMSN₃ and DDQ furnished the corresponding cinnamonitrile in almost quantitative yield. These experiments indicate that the benzyl alcohol and cinnamyl alcohol are following different route to furnish their corresponding nitriles.

Characterization data for Nitriles:

(E)-Cinnamonitrile (2a):

Colorless liquid; Yield = 98 %; R_f (15% EtOAc/Hexane) 0.7; Prepared as shown in general experimental procedure. **IR** (Neat, cm⁻¹): 2218; ¹**H NMR** (400 MHz, CDCl₃): δ 7.45-7.36 (m, 6H), 5.87 (d, J = 16.8 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ 150.5, 133.4, 131.1, 129.0, 127.3, 118.1, 96.2; **HRESI-MS** (*m*/*z*): Calculated for C₉H₇N (M+H): 130.0657, found (M+H): 130.0656.

(E)-4-Methylcinnamonitrile (2b):

White solid; Yield = 92 %; *mp*: 72 - 73 °C (lit.³ 72 - 73 °C); R_f (15% EtOAc/Hexane) 0.75; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2215; ¹H **NMR** (400 MHz, CDCl₃): δ 7.38-7.33 (m, 3H), 7.20 (d, J = 8 Hz, 2H), 5.81 (d, J = 16.8 Hz, 1H), 2.38 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 150.5, 141.8, 130.8, 129.8, 127.3, 118.4, 95.0, 21.5; **HRESI-MS** (*m/z*): Calculated for C₁₀H₉N (M+Na): 166.0633, found (M+Na): 166.0635.

(E)-4-Methoxycinnamonitrile (2c):

White solid; Yield = 86 %; *mp*: 63 - 65 °C (lit.⁴ 62 - 65 °C); R_f (25% EtOAc/Hexane) 0.65; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2214; ¹**H NMR** (400 MHz, CDCl₃): δ 7.39 (d, J = 8 Hz, 2H), 7.32 (d, J = 16.8 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 5.71 (d, J = 16.4 Hz, 1H), 3.84 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 162.0, 150.0, 129.0, 126.3, 118.7, 114.4, 93.3, 55.4; **HRESI-MS** (*m/z*): Calculated for C₁₀H₉NO (M+H): 160.0762, found (M+H): 160.0765.

(E)-4-Allyloxycinnamonitrile (2d):

White solid; Yield = 73%; *mp*: 50 - 52 °C; R_f (25% EtOAc/Hexane) 0.5; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2211; ¹H **NMR** (400 MHz, CDCl₃): δ 7.40-7.30 (m, 3H), 6.92 (d, J = 8.8 Hz, 2H), 6.09-5.99 (m, 1H), 5.71 (d, J = 16.8 Hz, 1H), 5.44-5.30 (dd, 2H), 4.58-4.56 (d, 2H); ¹³C **NMR** (100 MHz, CDCl₃): δ 160.1, 150.0, 132.5, 129.0, 126.4, 118.7, 118.2, 115.2, 93.4, 68.9; **HRESI-MS** (*m*/*z*): Calculated for C₁₂H₁₁NO (M+Na): 208.0738, found (M+Na): 208.0736.

(E)-4-Chlorocinnamonitrile (2e):

White solid; Yield = 97 %; *mp*: 78 - 80 °C (lit.⁵ 83 - 84 °C); R_f (25% EtOAc/Hexane) 0.8; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2225; ¹H **NMR** (400 MHz, CDCl₃): δ 7.39-7.33 (m, 5H), 5.86 (d, J = 16.4 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃): δ 149.1, 137.2, 131.9, 129.4, 128.5, 117.8, 96.9; **HRESI-MS** (*m/z*): Calculated for C₉H₆ClN (M+Na): 186.0086, found (M+Na): 186.0087.

(E)-4-Nitrocinnamonitrile (2f):

Yellow Solid; Yield = 83 %; *mp:* 198 - 200 °C (lit.⁶ 200 - 201 °C); R_f (25% EtOAc/Hexane) 0.56; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2217; ¹H **NMR** (400 MHz, CDCl₃): δ 8.28 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 8.8 Hz, 2H), 7.47 (d, J = 16.8 Hz, 1H), 6.06 (d, J = 16.8 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃): δ 149.0, 147.7, 139.1, 128.1, 124.4, 116.9, 101.0; Anal.Calcd for C₉H₆N₂O₂ C, 62.07; H, 3.47; N, 16.09; Found: C, 62.25; H, 4.06; N, 15.12.

(E)-3-(4-(Trifluoromethyl)phenyl)-2-propenenitrile (2g):

White solid; Yield = 90%; *mp*: 92 – 94 °C; R_f (15% EtOAc/Hexane) 0.6; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2226; ¹**H NMR** (400 MHz, CDCl₃): δ 7.68 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8Hz, 2H), 7.44 (d, J = 16.8 Hz, 1H), 6.00 (d, J = 16.8 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ 148.7, 136.7, 132.7 (q, J = 32.7 Hz), 127.6, 126.1 (q, J = 3.3 Hz), 123.6 (q, J = 270.7 Hz), 117.3, 99.2; **HRESI-MS** (*m*/*z*): Calculated for C₁₀H₆F₃N (M+H): 198.0531, found (M+H): 198.0530.

(E)-1-Napthylcinnamonitrile (2h):

White solid; Yield = 72 %; *mp*: 73 - 76 °C (lit.⁷ 72 - 75 °C); R_f (15% EtOAc/Hexane) 0.45; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2217; ¹H **NMR** (400 MHz, CDCl₃): δ 8.21 (d, J = 16 Hz, 1H), 8.03-7.87 (m, 3H), 7.65-7.46 (m, 4H), 5.95 (d, J = 16.4 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃): δ 147.8, 133.6, 131.5, 130.8, 130.6, 128.8, 127.3, 126.5, 125.3, 124.6, 122.7, 118.2, 98.7; **HRESI-MS** (*m*/*z*): Calculated for C₁₃H₉N (M+Na): 202.0633, found (M+Na): 202.0631.

(E)-3-(2-furyl)propenonitrile (2i):

White solid; Yield = 72 %; *mp*: 35 - 36 °C (lit.⁸ 36 °C); R_f (25% EtOAc/Hexane) 0.6; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2226; ¹H **NMR** (400 MHz, CDCl₃):

δ 7.49 (s, 1H), 7.11 (d, J = 16.4 Hz, 1H), 6.62 (d, J = 3.6 Hz, 1H), 6.50 (dd, J_1 = 1.6 Hz, J_2 = 3.2 Hz, 1H), 5.76 (d, J = 16.4 Hz, 1H); ¹³**C** NMR (100 MHz, CDCl₃): δ 149.8, 145.4, 136.1, 118.2, 115.4, 112.6, 93.4; **HRESI-MS** (*m*/*z*): Calculated for C₇H₅NO (M+H):120.0449, found (M+H): 120.0449.

2E,4E/ 2Z,4E5 - Phenylpenta-2,4-dienenitrile (2j): 2E,4E : 2Z,4E = 8.9 : 1.1

Yellow oil; Yield = 60 %; R_f (15% EtOAc/Hexane) 0.5; Prepared as shown in general experimental procedure. **IR** (Neat, cm⁻¹): 2217; **2E,4E(major isomer)**: ¹**H NMR** (400 MHz, CDCl₃): δ 7.52-7.35 (m, 5H), 7.18-7.12 (m, 1H), 6.91-6.78 (m, 2H), 5.44 (d, J = 16 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ 150.3, 141.4, 135.2, 129.6, 128.9, 127.6, 125.4, 118.3, 98.2; **HRESI-MS** (*m/z*): Calculated for C₁₁H₉N (M+Na):178.0633, found (M+Na):178.0632.

Benzonitrile¹ (6a):

Colorless liquid; Yield = 80 %, *Rf* (10 % EtOAc/Hexane) 0.80; Prepared as shown in general experimental procedure. **IR** (Neat, cm⁻¹): 2225; ¹**H NMR** (400 MHz, CDCl₃): δ 7.66-7.59 (m, 3H), 7.49-7.45 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 132.7, 132.0, 129.0, 118.8, 112.3.

1-Naphthonitrile (6b):

White solid; Yield = 72 %; *mp*: 55 - 57 °C (lit.⁹ 56 - 58 °C); R_f (10 % EtOAc/Hexane) 0.6; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹); 2222; ¹H **NMR** (400 MHz, CDCl₃): δ 8.23 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.93 - 7.90 (m, 2H), 7.69 (t, J = 7.6 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃): δ 133.2, 132.9, 132.6, 132.3, 128.6, 128.5, 127.5, 125.1, 124.9, 117.8, 110.1; **HRESI-MS** (*m/z*): Calculated for C₁₁H₇N (M+): 153.0578, found (M+): 153.0578.

White solid; Yield = 78 %; *mp*: 27 – 29 °C (lit.¹⁰ 26 – 28 °C); R_f (15 % EtOAc/Hexane) 0.7; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹); 2228; ¹H **NMR** (400 MHz, CDCl₃): δ 7.54 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8 Hz, 2H), 2.42 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 143.6, 132.0, 129.8, 119.1, 109.2, 21.8; **HRESI-MS** (*m/z*): Calculated for C₈H₇N (M+H): 118.0657, found (M+H): 118.0649

4-Methoxybenzonitrile (6d):

White solid; Yield = 82 %, *mp*: 55 – 57 °C (lit.¹ 56 - 57 °C); *Rf* (10 % EtOAc/Hexane) 0.40; Prepared as shown in general experimental procedure. **IR** (KBr, cm-1): 2222; ¹H **NMR** (400 MHz, CDCl₃): δ 7.58 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.8Hz, 2H), 3.86 (s, 3H); ¹³ C **NMR** (100 MHz, CDCl₃): δ 162.8, 133.9, 119.2, 114.7, 103.9, 55.5; **HRESI-MS** (*m/z*): Calculated for C₈H₇NO (M + Na): 156.0425, found (M + Na): 156.0422.

4-(allyloxy)benzonitrile (6e):

Brown solid; Yield = 82 %; *mp*: 41 - 43 °C (lit.¹¹ 43 - 44 °C); R_f (10% EtOAc/Hexane) 0.4; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2218 ; ¹**H NMR** (400 MHz, CDCl₃): δ 7.58 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 6.08 – 5.98 (m, 1H), 5.42 (d, J = 17.2 Hz, 1H), 5.33 (d, J = 10.4 Hz, 1H), 4.59 (d, J = 5.2 Hz, 2H); ¹³C **NMR** (100 MHz, CDCl₃): δ 161.8, 133.9, 132.0, 119.1, 118.4, 115.4, 104.0, 68.9; **HRESI-MS** (*m/z*): Calculated for C₁₀H₉NO (M+Na): 182.0582, found (M+Na): 182.0583.

4-(2-propynyloxy)benzonitrile (6f):

White solid; Yield = 74 %; *mp*: 109 - 111 °C (lit.¹² 113 - 114 °C); R_f (15% EtOAc/Hexane) 0.4; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2223; ¹**H NMR** (400 MHz, CDCl₃): δ 7.61 (d, J = 8.8 Hz, 2H), 7.04 (d, J = 8.8 Hz, 2H), 4.75 (d, J = 2.4 Hz, 2H), 2.57 (t, J = 2.4 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃): δ 160.6, 133.9, 118.9, 115.6, 104.9, 76.7, 76.5, 55.9; **HRESI-MS** (*m/z*): Calculated for C₁₀H₇NO (M+Na): 180.0425, found (M+Na): 180.0422.

4-(Benzyloxy)benzonitrile (6g) :

White solid; Yield = 96 %; *mp*: 92 - 94 °C (lit.^{13a} 91 - 94 °C); R_f (10% EtOAc/Hexane) 0.45; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2217; ¹**H NMR** (400 MHz, CDCl₃): δ 7.58 (d, J = 8.8 Hz, 2H), 7.41 - 7.35 (m, 5H), 7.02 (d, J = 8.8 Hz, 2H), 5.11 (s, 2H); ¹³C **NMR** (100 MHz, CDCl₃): δ 161.9, 135.6, 134.0, 128.7, 128.4, 127.4, 119.1, 115.5, 104.2, 70.2; **HRESI-MS** (*m/z*): Calculated for C₁₄H₁₁NO (M+Na): 232.0738, found (M+Na): 232.0735.

Piperonylnitrile (6h):

White solid; Yield = 82 %; *mp*: 83 – 85 °C (lit.¹¹ 90 - 93 °C); R_f (15 % EtOAc/Hexane) 0.8; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2223; ¹H **NMR** (400 MHz, CDCl₃): δ 7.21 (d, J = 8 Hz, 1H), 7.03 (s, 1H), 6.86 (d, J = 8 Hz, 1H), 6.07 (s, 2H); ¹³C **NMR** (100 MHz, CDCl₃): δ 151.5, 148.0, 128.2, 118.8, 111.3, 109.1, 104.9, 102.2; **HRESI-MS** (*m/z*): Calculated for C₈H₅NO₂ (M+Na): 170.0218, found (M+Na): 170.0218.

4-(Phenyl)benzonitrile (6i):

White solid; Yield = 79 %; *mp*: 82 - 83 °C (lit.¹⁴ 83 - 84 °C); R_f (15% EtOAc/Hexane) 0.7; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2225; ¹H **NMR** (400 MHz, CDCl₃): δ 7.73-7.67 (m, 4H), 7.58 (d, J = 7.6 Hz, 2H), 7.50-7.42 (m, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 145.6, 139.1, 132.5, 129.0, 128.6, 127.7, 127.2, 118.9, 110.8; **HRESI-MS** (*m/z*): Calculated for C₁₃H₉N (M+Na): 202.0633, found (M+Na): 202.0630. 4-chlorobenzonitrile (6j):

White solid; Yield = 98 %; *mp*: 91 – 92 °C (lit.^{15a} 90 - 92 °C); R_f (15% EtOAc/Hexane) 0.7; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2226 ; ¹H **NMR** (400 MHz, CDCl₃): δ 7.60 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H); ¹³C **NMR** (100 MHz, CDCl₃): δ 139.5, 133.3, 129.6, 117.9, 110.7; Anal.Calcd for C₇H₄ClN C, 61.12; H, 2.93; N,10.18; Found: C, 61.26; H, 3.28; N,10.22.

Terephthalonitrile1 (6k):

White solid; Yield = 77 %; *mp*: 225 – 227 °C (lit.⁹ 226 - 228 °C); R_f (15% EtOAc/Hexane) 0.4; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2233 ; ¹**H NMR** (400 MHz, CDCl₃): δ 7.81 (s, 4H); ¹³**C NMR** (100 MHz, CDCl₃): δ 132.7, 116.9, 116.6; **MS** (*m/z*): 128(M⁺).

4-carbomethoxybenzonitrile (6l):

White solid; Yield = 82 %; *mp*: 67 - 68 °C(lit.^{15c} 67 - 69 °C); R_f (15% EtOAc/Hexane) 0.4; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2233; ¹H **NMR** (400 MHz, CDCl₃): δ 8.14 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 3.96 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 166.4, 133.8, 132.2, 130.0, 117.9, 116.3, 52.7; **HRESI-MS** (*m/z*): Calculated for C₉H₇NO₂ (M+H): 162.0555, found (M+H): 162.0552.

(E)-methyl 3-(4-cyanophenyl)acrylate (6m):

White solid; Yield = 99 %; *mp*: 111 - 114 °C (lit.¹⁶ 118 - 121 °C); R_f (25% EtOAc/Hexane) 0.6; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2225; ¹**H NMR** (400 MHz, CDCl₃): δ 7.69 – 7.60 (m, 5H), 6.52 (d, J = 16 Hz, 1H), 3.83 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 166.6, 142.4, 138.6, 132.6, 128.4, 121.3, 118.3, 113.4, 52.0; Anal.Calcd for C₁₁H₉NO₂ C, 70.58; H, 4.85; N, 7.48; Found: C, 71.80; H, 5.58; N, 6.84.

4-cyano-N,N-diethylbenzamide (6n):

White solid; Yield = 73 %; *mp*: 77 - 78 °C (lit.^{15b} 79 - 80 °C); R_f (50 % EtOAc/Hexane) 0.35; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2231; ¹H **NMR** (400 MHz, CDCl₃): δ 7.71 (d, J = 8 Hz, 2H), 7.48 (d, J = 8Hz, 2H), 3.55 (br, 2H), 3.20 (br, 2H), 1.26 (br, 3H), 1.11 (br, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 169.2, 141.4, 132.4, 127.0, 118.1, 113.0, 43.2, 39.4, 14.2, 12.8; **HRESI-MS** (*m/z*): Calculated for C₁₂H₁₄N₂O (M+Na): 225.1004 found (M+Na): 225.1003.

4-Nitrobenzonitrile (60):

White solid; Yield = 76 %; *mp*: 148 - 149 °C (lit.¹¹ 148 - 149 °C); R_f (25% EtOAc/Hexane) 0.5; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2222; ¹H **NMR** (400 MHz, CDCl₃): δ 8.37 (d, J = 8.96 Hz, 2H), 7.90 (d, J = 8.92 Hz, 2H); ¹³C **NMR** (100 MHz, CDCl₃): δ 150.0, 133.4, 124.2, 118.3, 116.8; Anal.Calcd for C₇H₄N₂O₂ C, 56.76; H, 2.72; N, 18.91; Found: C, 56.67; H, 3.26; N, 19.14.

4-((tert-butyldiphenylsilyl)oxy)benzonitrile (6p):

White solid; Yield = 98 %; *mp*: 100 – 103 °C (lit.^{13b} 106 -108 °C); R_f (15% EtOAc/Hexane) 0.55; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2226; ¹H **NMR** (400 MHz, CDCl₃): δ 7.68 – 7.66 (m, 4H), 7.47 - 7.37 (m, 8H), 6.80 – 6.78 (m, 2H), 1.10 (s, 9H); ¹³C **NMR** (100 MHz, CDCl₃): δ 159.4, 135.3, 133.8, 131.6, 130.3, 128.0, 120.6, 119.1, 104.4, 26.3, 19.4; **HRESI-MS** (*m/z*): Calculated for C₂₃H₂₃NOSi (M+Na): 380.1447, found (M+Na): 380.1446.

4-((tert-butyldimethylsilyl)oxy)benzonitrile (6q):

White solid; Yield = 90 %; *mp*: 56 - 58 °C; R_f (10% EtOAc/Hexane) 0.8; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2227; ¹**H NMR** (400 MHz, CDCl₃): δ 7.54 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 0.98 (s, 9H), 0.23 (s, 6H); ¹³C **NMR** (100 MHz, CDCl₃): δ 159.6, 133.9, 120.8, 119.2, 104.5, 25.4, 18.1, -04.5; **HRESI-MS** (*m/z*): Calculated for C₁₃H₁₉NOSi (M+Na): 256.1134, found (M+Na): 256.1130.

3-Cyanophenyl(phenyl) ether (6r):

Light yellow oil; Yield = 95 %; R_f (15 % EtOAc/Hexane) 0.75; Prepared as shown in general experimental procedure. **IR** (Neat, cm⁻¹): 2233 ; ¹**H NMR** (400 MHz, CDCl₃): δ 7.43 - 7.34 (m, 4H), 7.25 - 7.18 (m, 3h), 7.03 (d, J = 8 Hz, 2H); ¹³C **NMR** (100 MHz, CDCl₃): δ 158.1, 155.4, 130.6, 130.1, 126.3, 124.7, 122.7, 121.0, 119.7, 118.2, 113.5; **HRESI-MS** (*m/z*): Calculated for C₁₃H₉NO (M+Na): 218.0582, found (M+Na): 218.0586.

3-Cyanoindole (6s):

White solid; Yield = 72 %; *mp*: 174 - 176 °C (lit.¹⁷ 175 - 177 °C); R_f (20 % EtOAc/Hexane) 0.4; Prepared as shown in general experimental procedure. **IR** (KBr, cm⁻¹): 2222; ¹**H NMR** (400 MHz, CDCl₃): δ 8.8 (br, 1H), 7.79 - 7.74 (m, 2H), 7.48 (d, J = 7.6 Hz, 1H), 7.36 - 7.28 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 134.8, 131.8, 126.9, 124.3, 122.4, 119.7, 115.8, 112.0, 87.5; **HRESI-MS** (*m/z*): Calculated for C₉H₆N₂ (M+Na): 165.0429, found (M+Na): 165.0428.

References:

- 1. Zhou, W.; Xu, J.; Zhang, L.; Jiao, N. Org. Lett. 2010, 12, 2888.
- 2. Nishiyama, K.; Oba, M.; Watanabe, A. Tetrahedron 1987, 43, 693.
- 3. L. Wang, H. Li, P. Li, Tetrahedron, 2009, 65, 364.
- 4. Gokel et al Tetrahedron Lett., 1976, 3495.
- 5. J. Zheng, Y. Yu, Y. Shen, Synth. Commun., 1990, 20, 3277.
- 6. T. Fumagalli, G. Sello, F. Orsini, Synth. Commun., 2009, 39, 2178.
- 7. K. Masuda, Y. Ito, M. Horiguchi, H. Fujita, Tetrahedron, 2005, 61, 213.
- 8. R. Reitz, Chemische Berichte, 1956, 89, 2570.
- 9. Z. Zhang, L.S. Liebeskind, Org. Lett., 2006, 8, 4331.
- (a) S. Ushijima, K. Moriyama, H. Togo, *Tetrahedron*, 2011, **67**, 958. (b) G. Ishii, K. Moriyama, H. Togo, *Tetrahedron Lett.*, 2011, **52**, 2404.
- 11. X. L. Wang, K. Wan, C.H. Zhou, Eur. J. Med. Chem., 2010, 45, 4631.
- 12. T. Harfenist, J. Org. Chem., 1972, 37, 841.
- (a) H. Wagner, *Pharmazie*, 1975, **30**, 353. (b) W. Zhou, L. Zhang, N. Jiao, *Angew. Chem. Int. Ed.*, 2009, **48**, 7094.
- 14. X. -H. Fan, L. -M. Yang, Euro. J. Org. Chem., 2011, 8, 1467.
- 15. (a) M. E. Moon, *Tetrahedron Lett.*, 2010, **51**, 6769. (b) G. Ecanow, J. Am. Pharm. Asso., 1957, **46**, 315. (c) Y. Yamamoto, Adv. Synth. Catal., 2010, **352**, 478.
- 16. A. R. Hajipour, K. Karami, G. Tavakoli, Appl. Organomet. Chem., 2010, 24, 798.
- 17. B. V. Subba Reddy, Z. Begum, Y. Jayasudhan Reddy, J. S. Yadav, *Tetrahedron Lett.*, 2010, **51**, 3334.

ESI - 27 000.0------

479.8 ~

992.7 -224.7 -494.7 -

99**9**'L -788.7 -

070.7 ~

۲69.7 -⁄

910.9>

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 **6. 1.00** – **1** 6.5 7.0 2.06 2.06 2.06 2.01 8.0 CDCI₃¹H NMR 400 MHz 8.5 Ń 2g 9.0 9.5 ပို့ 10.0

mdd 0.0

0 ppm

9

50

30

ESI - 29

826.8 -

- 2.969 - 7.245 - 7.462

- ۲.53.۲ -184.۲ -184.۲ -

879.7 J

£69.7 -

019.7

6£9.7

788.7 -

£78.7 -

£68.7 -

7.922

249.7

210.8 8.012

-8.190 -8.190

ESI - 31

000'0- ——

ESI - 32

mqq

0

9

ESI - 34 يتعيلون فأطلح كبير اللقلاك ومقمطة وأطمعا المحطمة لفراقت قريبن وأناكم بالغام يرارأه كالمترافين وماودا فإرغال تنابي بمرأحكم بعرلته فسائنيل حفيله بفللحظ 289.97 -715.77 999.97 للمعللية ويتعاليها فنزها المنشاه أعل الأحسانة وأنار 802.86 -S 2Z,4E(minor) ~ 118.343 CDCI₃¹³C NMR 100 MHz 125.394 127.379 878.721 -128.903 129.634 and 136.224 Ŋ 141.362

Ś

- 120.325

2E,4E(major)

mdd 0

9

20

30

6

50

09

2

80

6

100

110

120

130

140

150

160

170

180

190

200

وقد وأورد ومرادعهما فالمقدمة ومالك أوليته كالور والمورية ومنهما ومنازعها ومنازعها وملازاتك ومنازع التلاية ساله والمتعرفة والمترافية

mdd

0

9

20
ESI - 37 — 0.000

ESI - 40

			- mdd
			- o
			- 6
			2 2
			30
			6
100:00			20
roa aa			- 09
~ J9'92			20
818.77			8
			06
206:20L			100
			110
761.011 —			120
C+6'601			130
	_		140
			150
867.291 ——			160
	A		170
	CN 6d 8d		180
			190
	G ³ 13C →		200
	Ć Ż		210
		4	Ē

mdd 0.0 000.0-----0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 2.06 - 4.5 985.4-865.4-5.322 5.0 **5.348** 5.400 **1.02** <u>1.02</u> <u>1.02</u> <u>1.02</u> 6.443 **5.984** 266.8 110.9-**9**. <u>86.0</u> **6.024** 6:039 **790.9** 6.5 290.9 080**.**9 -0.2.03 196.9 £76.ð ~ 792.7 -7.5 2.00 _ 7.5 078.7 -269.7 ~ 8.0 CDCI₃¹H NMR 400 MHz <u>6</u> Ś 8.5 9.0 Ò 9.5 10.0

mdq

0

ESI - 51

000.0------

115.541 113.541 113.541 113.543 113.512 113

S

£89 [.] 91 ~	70 60 50 40 30 20
818.77 – 100.77 –	 80
	06
	100
827.011 ——	110
26.711	120
999'671 —	130
919:661	40
	6
	15
	160
	170
	180
	190
	200
	210

mdd

0

9

608[.]7 —

ESI - 56 mdd 000.77 -28**3.**37 -715.77~ 999.911 279.811 279.811 132.752 —— CDCI₃¹³C NMR 100 MHz K S NO

97<u>2</u>.7 —

898.7 ~ 898.7 ~

mdd £89.97 -100.77 -615.77~ 672.811 <u>-</u> - 124.244 - 133.444 886.941 — CDCI₃¹³C NMR 100 MHz S 0²N

