NTCDA-TTF First Axial Fusion: Emergent Panchromatic, NIR Optical, Multi-state Redox and High Optical Contrast Photooxidation

Deepak Asthana,^a M. R. Ajayakumar,^a Rajendra Prasad Pant^b and Pritam Mukhopadhyay^{*a}

Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University,New Delhi 110067

	Table of Contents	Pages
1.	General: Experimental details	1
2.	Synthesis and characterization	2
3.	Optimized geometry and theoretical calculations	7
4.	Cyclic Voltametry/DPV Experiments of 3-7	8
5.	EPR Spectra of 3 and 5	8
6.	UV-vis-NIR Absorption Spectra of 3-7	10
7.	500 MHz ¹ H NMR Spectral Analysis of Photooxidation of 5	11
8.	500 MHz ¹ H NMR Spectral Analysis of Photooxidation of 6	12
9.	MALDI-TOF MS of Photooxidation of 5	13
10.	FT-IR Spectra of 3-7	14
11.	MALDI-TOFF Mass Spectra of 3-7	15
12.	¹ H, ¹³ C, DEPT-135 and APT-NMR spectra of Compounds 3-7	16

Experimental Details:

General: All the starting materials were obtained from Sigma Aldrich or Spectrochem India and were used as received. All solvents were made oxygen free prior to use by freeze-thaw-pump cycle. Compound **1** and **2** were prepared as described in literature.¹ Phosphite mediated cross-coupling of NTCDA and PMDA with **2** was carried out following a reported procedure.² Thin layer chromatography (TLC) was carried out on aluminum plates coated with silica gel mixed with fluorescent indicator having particle size of 25 μ m and was sourced from Sigma Aldrich. NMR spectra were recorded in CDCl₃ on a Bruker spectrometer operating at 500 MHz for ¹H and 125 MHz for ¹³C, DEPT-135 and APT with TMS as an internal standard. Coupling constants (*J* values) are given in terms of Hz and chemical shifts are reported in parts per million (ppm). Splitting patterns are designated as s (singlet), d (doublet), t (triplet) and merged triplets. For irradiation, a hand held UV light (365 nm, Spectroline, model ENF-280C/FE) was used. MALDI-TOF mass spectral data were obtained using a Bruker made Autoflex TOF/TOF instrument and α -Cyano-4-hydroxycinnamic acid as the matrix. Infra Red spectra were recorded in KBr pellets using a Varian 7000 FT-IR instrument. The UV-vis absorption spectra were taken using a JASCO V-600 model spectrometer.

Electrochemistry: The electrochemical properties were studied using a computer-controlled potentiostat (CHI 650C) and a standard three electrode arrangement that consisted of both platinum working and auxiliary electrodes and a saturated calomel reference electrode. All electrochemical measurements were carried out in Ar-purged dry DCM with 0.1 M Bu_4NPF_6 as the supporting electrolyte. The scan rate for cyclic voltametry (CV) experiments was typically 200-300 mV/s. Differential Pulse Voltametry (DPV) was carried out keeping peak amplitude 50 mV, peak width 0.01 sec, pulse period 0.05 sec and increment E at 20 mV.

Quantum Yield: Quantum yields were calculated using cresyl violate perchlorate in MeOH (excited at 575 nm) as reference ($\phi = 0.54$) following the relation:

$$\phi = \phi_{R} \left(\frac{A_{R} F}{F_{R} A} \right) \left(\frac{\eta}{\eta_{R}} \right)^{2}$$

where, ϕ_R is the quantum yield of reference compound, A is absorbance at excitation wavelength, F is the area under fluorescence peak, η is refractive index of solvent and subscripts 'R' stand for the reference. [S. J. Isak et al, *J. Phys. Chem.* 1992, **96**, 1738].

EPR: Electron Paramagnetic Resonance (EPR) spectra were recorded using Bruker EMX 1444 EPR spectrometer operating at 9.455 GHz. Diphenylpicrylhydrazyl, DPPH (g = 2.0037), was used for the calibration of EPR spectrometer.

Synthesis of 2:

Synthetic Procedure: In a 250 ml round bottomed (RB) flask containing 110 ml of freshly dried MeCN, **1** (6.3 g, 8.8 mmol) and n-butyl bromide (4.7 ml, 44 mmol) was refluxed for 4 hours under N₂ atmosphere. The reaction mixture was filtered and the filtrate was evaporated using a rotary evaporator. The residue was dissolved in DCM and the organic layer was washed with water (3 x 100 ml) and dried over Na₂SO₄. The solvent was evaporated to give a viscous orange colored liquid which was purified by column chromatography (silica, n-hexane) to yield **2** as a yellow colored liquid. Yield: 87%. R_f = 0.85 (n-hexane/EtOAc, 8:2). ¹H NMR (500 MHz, CDCl₃, 300 K): δ = 2.84 (t [two triplets merged], 4H, *J* = 7.0 Hz; 7.5 Hz, SCH₂), 1.62-1.58 (m, 4H, SCH₂CH₂), 1.39-1.44 (m, 4H, SCH₂CH₂CH₂), 0.89 (t [two triplets merged], 6H, *J* = 7.0 Hz; 7.5 Hz, SCH₃). ¹³C NMR (125 MHz, CDCl₃, 300 K): δ = 136.32, 36.50, 31.70, 21.70, 13.62.

Procedure for Synthesis of 3 and 4:

Synthetic Procedure: In a 250 ml round bottomed (RB) flask containing 120 ml freshly dried toluene, PMDA (1.12 g, 5.15 mmol) and **2** (4.00 g, 12.8 mmol) were added. Freshly distilled $P(OMe)_3$ (18.2 ml) was then added to this solution. The mixture was stirred at 120 °C under N₂ atmosphere. After 5 hours the reaction mixture was gradually brought to room temperature and filtered. Solvent was evaporated using a rotary evaporator. The crude material was purified by column chromatography (silica, n-hexane/DCM) to yield **3** (28%) as a dark brown colored solid and **4** (20%) as a reddish-brown colored solid.

Compound 3: $R_f = 0.84$ (7:3 DCM/n-hexane). Melting Point: 150 °C (decompose). ¹H NMR (500 MHz, CDCl₃, 300 K): δ = 7.94 (s, 2H, ArH), 2.92 (t, 4H, *J* = 7 Hz, SCH₂), 2.90 (t, 4H, *J* = 7.5 Hz, SCH₂), 1.70-1.66 (m, 8H, SCH₂CH₂), 1.51-1.44 (m, 8H, SCH₂CH₂CH₂), 0.95 (t, 6H, *J* = 7.0 Hz, CH₃), 0.94 (t, 6H, *J* = 7.0 Hz, CH₃). ¹³C NMR (125 MHz, CDCl₃, 300 K): δ = 164.36, 132.91, 130.83, 129.88, 127.55, 126.68, 123.00, 118.49, 36.20, 36.03, 31.86, 31.68, 21.69, 13.65. MS (MALDI-TOF, matrix- α-cyano-4-hydroxycinnamic acid): 744 (m/z). FTIR (KBr, cm⁻¹): 3422, 2957, 2928, 2872, 1784, 1601, 1491, 1437, 1360, 1234. Anal. Calcd. for C₃₂H₃₈O₄S₈: C, 51.72; H, 5.15; O, 8.61; S, 34.52. Anal. Found C, 51.47; H, 5.35.

Compound 4: $R_f = 0.2$ (7:3 DCM/n-hexane). ¹H NMR (500 MHz, CDCl₃, 300 K): δ = 8.41 (s, 1H, ArH), 7.23 (s, 1H, ArH), 2.93 (t [two triplets merged], 8H, J = 7.0 Hz, J = 7.5 Hz, SCH₂), 1.75-1.63 (m, 8H, SCH₂CH₂), 1.55-1.40 (m, 8H, SCH₂CH₂CH₂), 0.97-0.89 (t [two triplets merged], 12H, J = 7.0 Hz, J = 7.0Hz, CH₃). ¹³C NMR (125 MHz, CDCl₃, 300 K): δ = 163.92, 139.44, 131.67, 131.08, 125 .59, 125.35, 120.49, 111.66, 36.37, 36.04, 33.84, 31.88, 31.70, 21.70, 13.67. MS (MALDI-TOF, matrix- α-cyano-4hydroxycinnamic acid): 743.9 (m/z). FTIR (KBr, cm⁻¹): 3429, 2957, 2958, 2851, 1784, 1773, 1653, 1616, 1578, 1458, 1305, 1127. Anal. Calcd. for C₃₂H₃₈O₄S₈: C, 51.72; H, 5.15; O, 8.61; S, 34.52. Anal. Found: C, 51.43; H 5.53.

Procedure for Synthesis of 5 and 6:

Synthetic Procedure: To a solution of NTCDA (0.175 g, 0.65 mmol) in 30 ml of freshly dried toluene, compound **2** (0.5 g, 1.6 mmol) was added. Subsequently freshly distilled $P(OMe)_3$ (2.3 ml) was added and mixture was stirred at 120 °C under N₂ atmosphere. After 5 hours, the reaction mixture was gradually brought to room temperature and filtered. The deep blue colored solution was evaporated to dryness using a rotary evaporator. The crude material was purified by column chromatography (silica, n-hexane/DCM) to yield **5** (24%) as a dark blue colored solid and **6** (26%) as a blue colored solid.

5: $R_f = 0.52$ (7:3 DCM/n-hexane). Melting Point: 230 °C (decompose). ¹H NMR (500 MHz, CDCl₃, 300 K): δ = 8.42 (d, 2H, J = 8 Hz, ArH), 7.39 (d, 2H, J = 8Hz, ArH), 2.97 (t, 4H, J = 7.5 Hz, SCH₂), 2.92 (t, 4H, J = 7.5 Hz, SCH₂), 1.71-1.65 (m, 8H, SCH₂CH₂), 1.52-1.45 (m, 8H, SCH₂CH₂CH₂), 0.95 (t [two triplets merged], 12H, J = 7.5 Hz, J = 7.0 Hz, CH₃). ¹³C NMR (125 MHz, CDCl₃, 300 K): δ = 158.91, 133.66, 133.21, 129.41, 127.56, 127.29, 126.79, 124.98, 121.41, 115.25, 36.37, 35.87, 31.86, 31.71, 21.72, 13.65. MS (MALDI-TOF, matrix- α-cyano-4-hydroxycinnamic acid): 794 (m/z). FTIR (KBr, cm⁻¹): 3447, 2955, 2928, 2858, 1767, 1742, 1653, 1527, 1508, 1481, 1331, 1259, 1130. Anal. Calcd. for C₃₆H₄₀O₄S₈: C, 54.51; H, 5.08; O, 8.07; S, 32.34. Anal. Found: C, 54.37; H, 5.25.

6: $R_f = 0.16$ (7:3 DCM/n-hexane). Melting Point: 210 °C (decompose). ¹H NMR (500 MHz, CDCl₃, 300 K): δ = 8.71 (d, 1H, *J* = 7.5 Hz, ArH), 8.63 (d, 1H, *J* = 8.5 Hz, ArH), 8.53 (d, 1H, *J* = 7.5 Hz, ArH), 7.44 (d, 1H, *J* = 8.5 Hz, ArH), 3.02 (t, 2H, *J* = 7.5 Hz, SCH₂), 2.97 (t, 2H, *J* = 7.0 Hz, SCH₂) 1.75-1.68 (m, 4H, SCH₂CH₂), 1.55-1.48 (m, 4H, SCH₂CH₂CH₂), 0.97 and 0.98 (t [two triplets merged], 6H, *J* = 7.5 Hz, *J* = 7.0 Hz, CH₃). ¹³C NMR (125 MHz, CDCl₃, 300 K): δ = 159.77, 159.43, 159.26, 157.14, 134.56, 134.10, 133.93, 133.17, 132.96, 132.80, 130.60, 127.80, 127.65, 126.65, 126.48, 125.55, 122.41, 122.25, 120.40, 112.96, 36.60, 36.15, 31.80, 31.69, 21.68, 13.59, 13.40. MS (MALDI-TOF, matrix-α-cyano-4-hydroxycinnamic acid): 531 (m/z). FTIR (KBr, cm⁻¹): 3447, 2959, 2930, 2872, 1767, 1742, 1595, 1510, 1477, 1381, 1344, 1253. Anal. Calcd. for C₂₅H₂₂O₅S₄: C, 56.58; H, 4.18; O, 15.07; S, 24.17. Anal. Found: C, 56.73; H 4.25.

Procedure for Synthesis of 7:

Synthetic Procedure: To a solution of compound **6** in DMF was added hexyl amine. Mixture was heated at 110 $^{\circ}$ C under N₂ atmosphere for 5 hours. Solvent was removed under high vacuum. Crude solid was purified by column chromatography (silica, n-hexane/DCM) to yield **7**.

7: $R_f = 0.36$ (9:1 n-hexane/EtOAc). Yield = 74%. ¹H NMR (500 MHz, CDCl₃, 300 K): δ = 8.74 (d, 1H, *J* = 7.5 Hz, ArH), 8.68 (d, 1H, *J* = 8.0 Hz, 1H, ArH), 8.55 (d, 1H, *J* = 7.5 Hz, ArH), 7.48 (d, 1H, *J* = 8.0 Hz, ArH), 4.19 (t, 2H, *J* = 7.0 Hz, NCH₂), 2.99 (t, 2H, *J* = 7.5 Hz, SCH₂), 2.94 (t, 2H, *J* = 7.0 Hz, SCH₂), 1.74-1.66 (m, 6H, SCH₂CH₂ and NCH₂CH₂), 1.51-1.44 (m, 6H, SCH₂CH₂CH₂ and NCH₂CH₂), 1.40-1.30 (m, 4H, NCH₂CH₂CH₂CH₂CH₂), 0.97-0.94 (t [three triplets merged] 9H, CH₃). ¹³C NMR (125 MHz, CDCl₃, 300 K): δ = 163.11, 163.03, 157.95, 133.87, 133.29, 131.97, 130.99, 130.89, 127.82, 127.77, 126.51, 126.29, 126.15, 125.65, 124.03, 120.61, 117.58. MS (MALDI-TOF, matrix- α-cyano-4-hydroxycinnamic acid): 614 (m/z). Anal. Calcd. For C₃₁H₃₅NO₄S₄: C, 60.65; H, 5.75; N, 2.28; O, 10.43; S, 20.89. Anal. Found: C, 60.80; H 5.95.

Optimized geometry, theoretically calculated HOMO-LUMO energy levels, dihedral angles of 3-7:

Figure S1: Theoretical HOMO-LUMO orbital and energy levels.

	HOMO ^{calc} / HOMO ^{exp} (eV)	LUMO ^{calc} / LUMO ^{exp} (eV)	∠1-2-3-4 (θ)	∠5-6-7-8 (θ)	S-H (A°)	$\mu ^{calc}\left(D\right)$	$\begin{array}{c} \beta_0^{\ calc} \ (x10^{-30} \\ esu) \end{array}$
3	-5.44/-5.23	-2.74/-3.07	0.455	0.870	S(11)-H(10) = 2.81	-	-
					S(8)-H(9) = 2.81		
4	-5.75/-5.38	-2.70/-3.17	0.143	0.604	S(1)-H(9) = 2.75	11.41	24
					S(10)-H(9) = 2.75		
5	-5.29/-5.12	-2.91/-3.18	0.043	0.839	S(8)-H(9) = 2.42	-	-
					S(11)-H(10) = 2.41		
6	-5.98/-5.33	-3.55/-3.59	0.246	-	S(6)-H(5) = 2.41	9.91	57
7	-5.75/-5.35	-3.28/-3.49	0.246	-	S(6)-H(5) = 2.41	6.30	55

Table 1: This table shows the theoretical HOMO-LUMO energy levels and their agreement with experimental data, dihedral angle formed by dithiafulvenyl groups, the S-H distances, dipole moment and static fist hyperpolarizability values.

Theoretical HOMO-LUMO levels and dipole moments (μ) were obtained by performing DFT calculations using B3LYP/dgdzvp basis set on pre-geometry optimized (HF/6-31g*) structures using G09 program.³ The first hyperpolarizability (β) of **4**, **6** and **7** was calculated by HF/6-31g* level calculation on geometry optimized structures. The experimental HOMO-LUMO levels were obtained from CV experiments performed in DCM following equations: $E_{HOMO/LUMO} = -(4.4 + E_{ox/red}^1)$.⁴

Cyclic Voltammetry Experiments:

Cyclic voltammetry experiments were performed in degassed DCM solutions of 3-7 (0.5 mM).

Figure S2: Cyclic Voltammogram and DPV results of 3-7 in DCM.

EPR:

Figure S3: a) EPR spectrum of **3** with 2.0 eqv. (black) and with 4.0 eqv. (red) of Cu^{2+} and b) EPR spectrum of **5** with 2.0 eqv. of Cu^{2+} .

a) b) 0.08 3 3 + 3 eqv FeCl, 0.5 4 3 + 0.5 eqv FeCl₃ 3 + 3.5 eqv FeČl, 0.07 4 + 6 eqv FeCl 3 + 1.5 eqv FeCl₃ 3 + 4.5 eqv FeCl 4 + 30 eqv FeCl 3 + 2 eqv FeCl₃ 0.06 3 + 5.5 eqv FeCl 0.4 3 + 6.5 eqv FeCl 0.05 3 + 7.5 eqv FeCl SdA 0.04 0.3 3 + 8.5 eqv FeCl Abs. 3 + 9.5 eqv FeCl 3 + 15 eqv FeCl 0.03 0.2 3 + 30 eqv FeCl 0.02 0.1 0.01 0.00 0.0 400 600 800 1000 1200 1400 1600 500 600 700 900 1000 1100 300 400 800 Wavelength (nm) Wavelength (nm)

Figure S4: UV-vis-NIR titration of 3 (1 x 10-5 M) and 4 (1 x 10-5 M) against FeCl₃ in DCM.

UV-vis-NIR absorption spectra of chemical oxidation of 5, 6 and 7 by FeCl₃:

Figure S5: UV-vis-NIR titration of **5** (1 x 10^{-5} M), **6** (1 x 10^{-5} M) and **7** (1 x 10^{-5} M) against FeCl₃ in DCM.

Figure S6: 500 MHz ¹H NMR spectra of light irradiated sample of 5 in CDCl₃.

¹H NMR spectra of **5** at different time of illumination with 365 nm light (a-m) and its comparison with NTCDA (n): a) 0 sec; b) 30 sec; c) 1 min; d) 1 min 30 sec; e) 2 min; f) 2 min 30 sec; g) 3 min; h) 4 min; i) 5 min; j) 9 min; k) 21 min; l) 30 min; m) 60 min.

Study of photooxidation of dyad 6 by 500 MHz ¹H NMR Spectroscopy in CDCl₃:

Figure S7: 500 MHz ¹H NMR spectra of light irradiated sample of 6 in CDCl₃.

¹H NMR spectra of **6** at different time of illumination with 365 nm light (a-h) and its comparison with NTCDA (i): a) 0 sec; b) 30 sec; c) 1 min; d) 2 min; e) 5 min; f) 10 min; g) 20 min; h) 60 min.

Study of photooxidation of 5 into 6 by MALDI-TOF Mass Spectroscopy in CDCl₃:

Figure S8: MALDI-TOF mass spectra of light irradiated sample of 5 in CDCl₃.

IR Spectra of 3-7:

Figure S9: FT-IR spectrum of 3-7.

MALDI-TOFF mass spectrum (α-Cyano-4-hydroxycinnamic acid) of compounds 3-7:

Figure S10: MALDI-TOF mass spectrum of 3-7.

500 MHZ ¹H NMR Spectrum of 3 (CDCl₃, 300K):

Figure S11: 500 MHz ¹H NMR spectrum of **3** in CDCl₃ at room temperature.

125 MHZ ¹³C, DEPT 135 and APT NMR Spectrum of 3 (CDCl₃, 300K):

Figure S12: 125 MHz ¹³C NMR, DEPT-135 and APT spectrum of **3** in CDCl₃ at room temperature.

500 MHZ ¹H NMR Spectrum of 4 (CDCl₃, 300K):

Figure S13: 500 MHz ¹H NMR spectrum of **4** in CDCl₃ at room temperature.

125 MHZ ¹³C, DEPT 135 and APT NMR Spectrum of 4 (CDCl₃, 300K):

Figure S14: 125 MHz ¹³C NMR, DEPT-135 and APT spectrum of 4 in CDCl₃ at room temperature.

500 MHZ ¹H NMR Spectrum of 5 (CDCl₃, 300K):

Figure S15: 500 MHz ¹H NMR spectrum of **5** in CDCl₃ at room temperature.

Figure S16: 125 MHz ¹³C NMR, DEPT-135 and APT spectrum of **5** in CDCl₃ at room temperature.

500 MHZ ¹H NMR Spectrum of 6 (CDCl₃, 300K):

Figure S17: 500 MHz ¹H NMR spectrum of **6** in CDCl₃ at room temperature.

Figure S18: 125 MHz ¹³C NMR spectrum of 6 in CDCl₃ at room temperature.

500 MHZ ¹H NMR Spectrum of 7 (CDCl₃, 300K):

Figure S19: 500 MHz ¹H NMR spectrum of **7** in CDCl₃ at room temperature.

125 MHZ ¹³C, DEPT 135 and APT NMR Spectrum of 7 (CDCl₃, 300K):

Figure S20: 125 MHz ¹³C NMR, DEPT-135 and APT spectrum of 7 in CDCl₃ at room temperature.

References:

- 1) N. Svenstrup and J. Becher *Synthesis*, **1994**, 215-235.
- 2) K. Takahashi, T. Ise, T. Mori and H. Mori Tanaka, S. Chem. Lett. 1998, 1147-1148.
- 3) M. J. Frisch et al., Gaussian 09, revision, A.02, Gaussian Inc., Wallingford CT, 2009.
- A. J. Bard and L. R. Faulkner: In Electrochemical Methods. Fundamental and Applications; Wiley: New York, **1980**, pp ch 14, 634.