Electronic Supplementary Information (ESI)

Regioselective opening of proximally sulfato-capped cyclodextrins

Matthieu Jouffroy,^{*a*} Rafael Gramage-Doria,^{*a*} Dominique Armspach,^{*a*} Dominique Matt,^{*a*} and Loïc Toupet^{*b*}

- ^a Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie UMR 7177 CNRS, Université de Strasbourg, 67008 Strasbourg cedex (France) Fax: (+33)3-68-851-637 E-mail: d.armspach@unistra.fr dmatt@unistra.fr
- ^b Institut de Physique de Rennes UMR 6251 CNRS, Université de Rennes 1, Campus de Beaulieu - Bâtiment 11A 35042 Rennes cedex (France)

Content

- General methods
- Synthesis and characterisation of compounds 1, 2, 5-10
- Crystal structure analyses of $5b \cdot 0.5 CH_2 Cl_2 \cdot H_2 O \cdot 1.5 C_5 H_{12}$ and $7a \cdot 3 CH_2 Cl_2 \cdot 1.5 C_5 H_{12}$
- NMR and mass spectra of 1, 2, 5-10
- General procedure for determining the glucose units linked by a given capping unit
- References

General methods

All commercial reagents were used as supplied. All manipulations were performed in Schlenk-type flasks under N2 with degassed solvent. Solvents were dried by conventional methods and distilled immediately prior to use. Column chromatography was performed on silica gel 60 (particle size 40-63 µm, 230-240 mesh). CDCl₃ was passed down a 5-cm-thick alumina column and stored under N_2 over molecular sieves (3 Å). Routine ${}^1H,\;{}^{31}P\{{}^1H\}$ and ¹³C{¹H} NMR spectra were recorded with Bruker FT instruments (AVANCE 300, 400, 500, 600 spectrometers). ¹H NMR spectral data were referenced to residual protiated solvents ($\delta =$ 7.26 ppm for CDCl₃), ¹³C chemical shifts are reported relative to deuterated solvents ($\delta =$ 77.00 ppm for CDCl₃), and the ³¹P NMR data are given relative to external H₃PO₄. Mass spectra were recorded with a Bruker MicroTOF spectrometer (ESI) using CH₂Cl₂, MeCN or MeOH as solvent. Elemental analyses were performed by the Service de Microanalyse, Institut de Chimie UMR 7177, Strasbourg. Melting points were determined with a Büchi 535 capillary melting point apparatus. High pressure liquid chromatography were performed on a Varian Prostar instrument (Prostar 230 solvent delivery module, Prostar 355 differential refractor and Prostar 335 UV detector with reverse-phase column Pursuit C18). 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6^{D} , 6^{E} , 6^{F} -Hexadeca-O-methyl- α -cyclodextrin, ¹ $2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 2^{G}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 3^{G}, 6^{C}, 6^{D}, 6^{E}, 6^{F}, 6^{G}$ -Nonadeca-*O*-methyl- β -cyclodextrin,² and 3^3 were synthesized according to literature procedures. In this publication, the cyclodextrins are depicted as seen from the secondary face, the glucose units being ranged counterclocwise in the following order: A, B, C, D, E, F, G. When not indicated, the letter A refers to a glucose unit bearing a corresponds The numbering of the atoms within a glucose unit is as follows:

Synthesis and characterisation

 $6^{A}, 6^{B}$ -Dideoxy- $6^{A}, 6^{B}$ -sulfato- $2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E},$ $2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 6^{C}, 6^{D}, 6^{E}, 6^{F}$ -hexadeca-*O*-methyl- α -cyclodextrin (1):

A solution of freshly distilled thionyl chloride (0.112 g, 69 µL, 0.94 mmol) in CH₂Cl₂ (10 mL) was added dropwise to a solution of $2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 6^{C}, 6^{D}, 6^{E}, 6^{F}$ -hexade ca-*O*-methyl- α -cyclodextrin (0.500 g, 0.42 mmol) and

NEt₃ (0.106 g, 145 µL, 1.05 mmol) in CH₂Cl₂ (100 mL) at -78°C. The reaction mixture was stirred for 1 h at -78°C whereupon it was allowed to reach room temperature for an additional 1 h, quenched with saturated aqueous NaHCO₃ (80 mL), and extracted with CHCl₃ (3×50 mL). The combined organic extracts were dried (MgSO₄) before being evaporated to dryness to afford a colourless residue, which was dissolved in a mixture of CH₂Cl₂ (6 mL), MeCN (6 mL) and water (12 mL). Ruthenium trichloride (0.005 g, 30×10^{-3} mmol) and sodium periodate (0.225 g, 1.05 mmol) were then added and the reaction mixture was stirred for 12 h at room temperature before adding saturated aqueous NaHCO₃ (200 mL). Subsequent extraction with CHCl₃ (3×50 mL) was followed by drying of the organic extracts (MgSO₄). Removal of the solvent in vacuo gave a colourless residue, which was subjected to column chromatography (SiO₂; CH₂Cl₂/MeOH, 97:3 to 95:5, v/v) to afford 1 (0.498 g, 96%) as a colourless solid. $R_{\rm f}$ (SiO₂, CH₂Cl₂/MeOH, 90:10, v/v) = 0.63; m.p. 147°C; ¹H NMR (400.1 MHz, CDCl₃, 25°C): δ (assignment by COSY) = 3.08 (t, 1 H, ${}^{3}J_{H4-H3} = {}^{3}J_{H4-H2} = 9.3$ Hz, H-4^A ^{or B}), 3.12–3.21 (6 H, H-2), 3.26 (t, 1 H, ${}^{3}J_{H4-H3} = {}^{3}J_{H4-H5} = 9.5$ Hz, H-4^{B or A}), 3.37 (s, 6 H, OMe), 3.38 (s, 3 H, OMe), 3.39 (s, 3 H, OMe), 3.47 (s, 6 H, OMe), 3.49 (s, 6 H, OMe), 3.50 (s, 3 H, OMe), 3.53 (s, 3 H, OMe), 3.61 (s, 3 H, OMe), 3.62 (s, 3 H, OMe), 3.63 (s, 3 H, OMe), 3.64 (s, 3 H, OMe), 3.65 (s, 3 H, OMe), 3.66 (s, 3 H, OMe), 3.45-3.67 (12 H, H-3, H-6), 3.72-3.85 (8 H, H-4, H-5, H-6a or H-6b), 3.89-3.96 (2 H, H-5, H-6a or H-6b), 4.11 (t, 1 H, ${}^{2}J_{H6a-H6b} = {}^{3}J_{H6a-H5} = 11.3$ Hz, H-6a^{A or B}), 4.15 (dd, 1 H, ${}^{3}J_{H5-H6b} = 3.5$ Hz, ${}^{3}J_{H5-H-4} = 9.5$ Hz, H-5^{B or A}), 4.30 (d, 1 H, ${}^{2}J_{H6a-H6b} = 10.0$ Hz, H-6a^{B or A}), 4.43 (ddd, 1 H, ${}^{3}J_{H5-H6a} = 11.3$ Hz, ${}^{$ $_{H4} = 8.2 \text{ Hz}, {}^{3}J_{H5-H6b} = 1.8 \text{ Hz}, \text{ H-5}^{\text{A or B}}, 4.90 \text{ (d, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{ H-1}), 4.91 \text{ (dd, 1 H, } {}^{3}J_{H1-H2} = 2.7 \text{ Hz}, \text{$ ${}^{2}J_{\text{H6b-H6a}} = 10.0 \text{ Hz}, {}^{3}J_{\text{H6b-H5}} = 3.5 \text{ Hz}, \text{ H-6b}^{\text{B or A}}$), 5.03 (d, 1 H, ${}^{3}J_{\text{H1-H2}} = 3.3 \text{ Hz}, \text{ H-1}$), 5.06 (d, 1 H, ${}^{3}J_{H1-H2} = 3.4$ Hz, H-1), 5.07–5.10 (3 H, H-1), 5.11 (dd, 1 H, ${}^{2}J_{H6b-H6a} = 11.3$, ${}^{3}J_{H6b-H5} = 11.3$

1.8, H-6b^{A or B}) ppm; ¹³C{¹H} NMR (100.6 MHz, CDCl₃, 25°C): δ (assignment by HMQC) = 57.85, 58.05, 58.17, 58.28, 58.41, 58.60, 59.06, 59.15, 59.24, 59.32, 61.85, 61.92 [×2], 62.07, 62.14, 62.32 (OMe), 67.57, 70.07 (C-5), 70.44, 70.82 (C-6), 70.90, 71.25, 71.29 (C-5), 71.41 [×2] (C-6), 71.86 (C-5), 73.94 (C-6^{A or B}), 75.76 (C-6^{B or A}), 81.44, 81.54, 81.63, 81.72 [×3], 81.81 [×2], 81.91, 81.96, 82.07 [×2], 82.28, 82.31, 82.35, 82.47 (C-2, C-3, C-4), 83.98 (C-4^{A or B}), 86.63 (C-4^{B or A}), 98.81, 99.89, 100.04, 100.09, 100.26, 101.12 (C-1) ppm; elemental analysis (%) calcd for C₅₂H₉₀O₃₂S·C₇H₈ (1281.50 + 92): C 52.43, H 7.31, found: C 52.25, H 7.53; MS (ESI-TOF): *m/z* (%): 1281.50 (100) [*M* + Na]⁺.

6^A,6^B-Dideoxy-6^A,6^B-sulfato-2^A,2^B,2^C,2^D,2^E,2^F, 2^G,3^A,3^B,3^C,3^D,3^E,3^F,3^G,6^C,6^D,6^E,6^F,6^G-nonadeca-*O*methyl-β-cyclodextrin (2):

This compound was prepared from $2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 2^{G}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 3^{G}, 6^{C}, 6^{D}, 6^{E}, 6^{F}, 6^{G}$ -nonadeca-*O*-methyl- β -cyclodextrin (0.530 g, 0.38 mmol) according to the above procedure (0.420 g, 76 %). R_{f} (SiO₂, CH₂Cl₂/MeOH, 90:10, ν/ν) = 0.56; m.p.

150°C; ¹H NMR (400.1 MHz, CDCl₃, 25°C): δ (assignment by COSY) = 3.04–3.18 (8 H, H-2, H-4^{B or A}), 3.30 (s, 3 H, OMe), 3.31 (s, 9 H, OMe), 3.31 (1 H, H-4^{A or B}), 3.32 (s, 3 H, OMe), 3.41 (s, 3 H, OMe), 3.42 (s, 9 H, OMe), 3.43 (s, 3 H, OMe), 3.45 (s, 3 H, OMe), 3.49 (s, 3 H, OMe), 3.55 (s, 9 H, OMe), 3.56 (s, 3 H, OMe), 3.57 (s, 3 H, OMe), 3.58 (s, 3 H, OMe), 3.59 (s, 3 H, OMe), 3.28-3.68 (16 H, H-3, H-4, H-6), 3.69-3.80 (8 H, H-5, H-6), 3.81-3.87 (2 H, H-5, H-6), 3.90 (m, 1 H, H-5), 4.05 (ddd, 1 H, ${}^{3}J_{\text{H5-H6a}} = 1.2 \text{ Hz}$, ${}^{3}J_{\text{H5-H6b}} = 3.5 \text{ Hz}$, ${}^{3}J_{\text{H5-H-4}} = 9.8$ Hz, H-5^{A or B}), 4.13 (dd, 1 H, ${}^{2}J_{H6a-H6b} = 10.5$ Hz, ${}^{3}J_{H6a-H5} = 12.3$ Hz, H-6a^{B or A}), 4.28 (ddd, 1 H, ${}^{3}J_{H5-H6a} = 12.3$ Hz, ${}^{3}J_{H5-H6b} = 2.4$ Hz, ${}^{3}J_{H5-H-4} = 7.6$ Hz, H-5^{B or A}), 4.33 (dd, 1 H, ${}^{2}J_{H6a-H6b} =$ 10.0 Hz, ${}^{3}J_{\text{H6a-H5}} = 1.2$ Hz, H-6a^{A or B}), 4.60 (dd, 1 H, ${}^{2}J_{\text{H6b-H6a}} = 10.0$ Hz, ${}^{3}J_{\text{H6b-H5}} = 3.5$ Hz, H- $6b^{A \text{ or } B}$), 4.82 (d, 1 H, ${}^{3}J_{H1-H2} = 3.7$ Hz, H-1), 4.96 (dd, 1 H, ${}^{2}J_{H6b-H6a} = 10.5$ Hz, ${}^{3}J_{H6-H5} = 2.4$ Hz, H-6b^{B or A}), 4.98 (d, 1 H, ${}^{3}J_{H1-H2} = 3.6$ Hz, H-1), 5.02 (d, 1 H, ${}^{3}J_{H1-H2} = 3.7$ Hz, H-1), 5.04 (d, 1 H, ${}^{3}J_{H1-H2} = 3.6$ Hz, H-1), 5.05 (d, 1 H, ${}^{3}J_{H1-H2} = 4.3$ Hz, H-1), 5.09 (d, 1 H, ${}^{3}J_{H1-H2} = 3.9$ Hz, H-1), 5.19 (d, 1 H, ${}^{3}J_{\text{H1-H2}} = 4.2$ Hz, H-1) ppm; ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (100.6 MHz, CDCl₃, 25°C): δ (assignment by HMQC) = 57.97, 58.04, 58.17, 58.27, 58.56, 58.76, 58.81[×3], 58.87, 58.96, 59.02, 60.73, 61.13, 61.16, 61.34, 61.40, 61.52 [x2] (OMe), 68.06 (C-5^{B or A}), 68.68 (C-5^{A or B}), 70.23 (C-6), 70.31, 70.62, 70.70 (C-5), 70.85 (C-6), 70.88 (C-5), 71.00 [×2] (C-6), 71.26 (C-5), 71.30 (C-6), 73.93 (C-6^B or ^A), 74.26 (C-6^A or ^B), 77.96, 79.49, 80.01, 80.28, 80.80, 81.25, 81.30, 81.35 [×2], 81.37 [×2], 81.45, 81.55, 81.60, 81.69, 81.77, 81.80, 81.87, 82.06, 82.28, 82.48 (C-2, C-3, C-4), 98.22, 98.41, 98.46, 98.55, 98.63, 99.82, 100.39 (C-1) ppm; elemental analysis (%) calcd for C₆₁H₁₀₆O₃₇S·CH₂Cl₂ (1463.54 + 84.93): C 48.09, H 7.03, found: C 48.22, H 7.22; MS (ESI-TOF): m/z (%): 1485.60 (100) [M + Na]⁺.

P-{ 6^{A} -Deoxy- 6^{A} -diphenylphosphinyl- 2^{A} , 2^{B} , 2^{C} , 2^D,2^E,2^F,3^A,3^B,3^C,3^D,3^E,3^F,6^C,6^D,6^E,6^F-hexadeca -*O*-methyl-α-cyclodextrin} borane (5a):

n-BuLi (1.60 M in hexane, 1.20 mL, 1.94 mmol) was added dropwise at -78° C to a stirred solution of diphenylphosphine (0.347 g, 485 µL of 20.3% *wt/wt* in hexane, 0.37 mmol) in THF (10 mL). After 30 min, the

dark red diphenylphosphide solution was transferred via a cannula to a stirred solution of 1 (0.200 g, 0.16 mmol) in THF (10 mL) kept at -78°C. The solution was further stirred at -78°C for 1 h before being allowed to reach 0°C over 1 h. BH₃·THF (1.00 M in THF, 10 mL, 10 mmol) was then added dropwise at 0°C, and the reaction mixture allowed to reach room temperature before being stirred for an additional 12 h. Once the solvent was removed in vacuo, the solid was taken in THF (8 mL) and H₂SO₄ (0.20 mL, 50% wt/wt solution in water) was added. The reaction mixture was stirred for 1 h at room temperature before adding saturated aqueous NaHCO₃ (50 mL). Subsequent extraction with CHCl₃ (3×50 mL) was followed by drying of the organic extracts (MgSO₄). Removal of the solvent under vacuum gave a colourless residue, which was subjected to column chromatography (SiO₂; CH₂Cl₂/MeOH, 97:3, v/v) to afford 5a (0.215 g, 97%) as a colourless solid. R_f (SiO₂, CH₂Cl₂/MeOH, 90:10, v/v) = 0.43; Retention time (reverse-phase column Pursuit C18, isocratic elution with MeCN:H₂O, 1:1, with a flow rate of 1mL.min^{-1} = 10.79 min; m.p. 210– 212°C; ¹H NMR (400.1 MHz, CDCl₃, 25°C): δ (assignment by combined COSY, TOCSY, HMQC, and ROESY) = 0.86 (br s, 3 H, P-BH₃), 2.39 (d, 1 H, ${}^{2}J_{H-6a H-6b} = 11.8$ Hz, H-6a^B), 2.52 (dd, 1 H, ${}^{2}J_{H-6a,H-6b} = 11.5$ Hz, ${}^{3}J_{H-6a,H-5} = 2.8$ Hz, H-6a^A), 2.54 (d, 1 H, ${}^{2}J_{H-6a,H-6b} = 11.0$ Hz, H-6a^F), 2.76 (s, 3 H, OMe-6^F), 2.82 (d, ${}^{2}J_{H-6b,H-6a}$ =11.4 Hz, H-6b^B), 2.89 (m, 1 H, H-6b^A), 2.99 (dd, 1 H, ${}^{3}J_{H-2,H-3} = 9.5$ Hz, ${}^{3}J_{H-2,H-1} = 3.4$ Hz, H-2^B), 3.03 (dd, 1 H, ${}^{3}J_{H-2,H-3} = 9.9$ Hz, ${}^{3}J_{H-2,H-3} = 9.9$ $_{2,H-1} = 3.4 \text{ Hz}, \text{ H-2}^{\text{F}}$, 3.11 (dd, 1 H, $^{3}J_{\text{H-2,H-3}} = 9.8 \text{ Hz}, ^{3}J_{\text{H-2,H-1}} = 2.9 \text{ Hz}, \text{ H-2}^{\text{A}}$), 3.13 (dd, 1 H, ${}^{3}J_{\text{H-2,H-3}} = 9.3 \text{ Hz}, {}^{3}J_{\text{H-2,H-1}} = 2.9 \text{ Hz}, \text{ H-2}^{\text{C}}$), 3.17 (dd, 1 H, ${}^{3}J_{\text{H-2,H-3}} = 9.5 \text{ Hz}, {}^{3}J_{\text{H-2,H-1}} = 3.1 \text{ Hz}$, H-2^E), 3.18 (dd, 1 H, ${}^{3}J_{H-2,H-3} = 9.5$ Hz, ${}^{3}J_{H-2,H-1} = 2.7$ Hz, H-2^D), 3.20 (dd, 1 H, ${}^{3}J_{H-4,H-3} = {}^{3}J_{H-2,H-3} = {}^{3}J_{H-2,H-3$

 $_{4 \text{ H}-5} = 9.0 \text{ Hz}, \text{H}-4^{\text{A}}$), 3.39 (s, 3 H, OMe-2), 3.42 (s, 3 H, OMe-6^D), 3.43 (s, 6 H, OMe-2), 3.44 (s, 3 H, OMe-2), 3.45 (s, 6 H, OMe-6^{C,E}), 3.46 (1 H, H-6a^C), 3.47 (s, 6 H, OMe-2), 3.53 (1 H, H-3^A), 3.54 (1 H, H-3^C), 3.55 (1 H, H-6a^D), 3.56 (1 H, H-3^D), 3.58 (s, 3 H, OMe-3), 3.58 (1 H, H-3^E), 3.59 (1 H, H-5^B), 3.60 (s, 3 H, OMe-3), 3.61 (s, 3 H, OMe-3), 3.61 (1 H, H-3^F), 3.62 (1 H, H-3^B), 3.63 (s, 3 H, OMe-3), 3.63 (1 H, H-4^B), 3.67 (s, 3 H, OMe-3), 3.67 (1 H, H-4^E), 3.68 (s, 3 H, OMe-3), 3.68 (2 H, H-4^C, H-6b^B), 3.69 (1 H, H-4^D), 3.70 (2 H, H-4^F, H- $6b^{D}$), 3.75 (d, 1 H, ${}^{2}J_{H-6a,H-6b} = 10.3$ Hz, H- $6a^{E}$), 3.85 (d, 2 H, ${}^{3}J_{H-5,H-4} = 9.7$ Hz, H- $5^{C,F}$), 3.93 (d, 1 H, ${}^{3}J_{\text{H-5,H-4}} = 13.8$ Hz, H-5^D), 3.94 (d, 1 H, ${}^{3}J_{\text{H-5,H-4}} = 12.4$ Hz, H-5^E), 3.99 (dd, 1 H, ${}^{2}J_{\text{H-5,H-4}} = 12.4$ Hz, H-5^E), 3.99 (dd, 1 H, {}^{2}J_{\text{H-5,H-4}} = 12.4 Hz, H-5^E), 3.99 (dd, 1 H, {}^{2}J_{\text{H-5,H-4}} = 12.4 Hz, H-5^E), 3.99 (dd, 1 H, {}^{2}J_{\text{H-5,H-4}} = 12.4 Hz, H-5^E), 3.99 (dd, 1 H, {}^{2}J_{\text{H-5,H-4}} = 12.4 Hz, H-5^E), 3.99 (dd, 1 H, {}^{2}J_{\text{H-5,H-4}} = 12.4 Hz, H-5^E), 3.99 (dd, 1 H, {}^{2}J_{\text{H-5,H-4}} = 12.4 Hz, H-5^E), 3.99 (dd, 1 H, {}^{2}J_{\text{H-5,H-4}} = 12.4 Hz, H-5^E), 3.99 (dd, 1 H, {}^{2}J_{\text{H-5,H-4}} = 12.4 Hz, H-5^E), 3.99 (dd, 1 H, {}^{2}J_{\text{H-5,H-4}} = 12.4 Hz, H-5^E), 3.99 (dd, 1 H, {}^{2}J_{\text{H-5,H-4}} = 12.4 Hz, H-5^E), 3.99 (dd, 1 H, {}^{2}J_{\text{H-5,H-4}} = 12.4 Hz, H-5^E), 3.99 (dd, 1 H, {}^{2}J_{\text{H-5,H-4}} = 12.4 Hz, H-5^E), 3.99 (dd, 1 H, {}^{2}J_{\text{H-5,H-4} $_{6b,H-6a} = 10.6 \text{ Hz}, {}^{3}J_{H-6b,H-5} = 2.8 \text{ Hz}, H-6b^{\text{E}}), 4.05 \text{ (dd, } 1 \text{ H}, {}^{2}J_{H-6b,H-6a} = 10.3 \text{ Hz}, {}^{3}J_{H-6b,H-5} = 2.1$ Hz, H-6b^C), 4.45 (td, 1 H, ${}^{3}J_{\text{H-5,H-6a}} = {}^{3}J_{\text{H-5,P}} = 9.6$ Hz, ${}^{3}J_{\text{H-5,H-4}} = 9.0$ Hz, H-5^A), 4.63 (d, 1 H, ${}^{3}J_{\text{H-1}\text{H-2}} = 2.9 \text{ Hz}, \text{H-1}^{\text{A}}$, 4.96 (d, 1 H, ${}^{3}J_{\text{H-1}\text{H-2}} = 2.9 \text{ Hz}, \text{H-1}^{\text{C}}$), 4.99 (d, 1 H, ${}^{3}J_{\text{H-1}\text{H-2}} = 3.4 \text{ Hz}$, H-1^B), 5.01 (d, 1 H, ${}^{3}J_{H-1,H-2} = 3.4$ Hz, H-1^F), 5.09 (d, 1 H, ${}^{3}J_{H-1,H-2} = 2.7$ Hz, H-1^D), 5.10 (d, 1 H, ${}^{3}J_{H-1,H-2} = 3.1$ Hz, H-1^E), 7.36–7.45 (6 H, m-H, p-H), 7.64 (td, 2 H, ${}^{3}J_{o-H,m-H} = {}^{3}J_{o-H,P} = 8.8$, ${}^{4}J_{o-H,p-H} = 2.1 \text{ Hz}, o-H$, 7.83–7.86 (2 H, o-H) ppm, OH^B not assigned; ${}^{13}C{}^{1}H$ NMR (100.6 MHz, CDCl₃, 25°C): δ (assignment by HMQC) = 27.53 (d, ${}^{1}J_{CP}$ = 41.3 Hz, C-6^A), 57.63 [×2], 57.70, 58.25, 58.26, 58.88, 58.90, 59.14, 59.25 [x2] (OMe), 60.43 (C-6), 61.34, 61.52, 61.86, 61.90, 61.93, 62.01 (OMe), 68.02 (C-6), 68.68 (C-5), 69.79 (C-6^B), 70.74 [×2] (C-5), 70.98 (C-6), 71.15 [×2] (C-5), 71.28, 71.34 (C-6), 72.00 (C-5), 79.85, 80.74, 80.82, 81.11, 81.23, 81.28, 81.35, 81.40, 81.56, 81.72, 81.82, 81.92, 82.08, 82.27, 82.37, 82.79, 82.82 (C-2, C-3, C-4), 87.75 (d, ${}^{3}J_{C,P} = 41.3$ Hz, C-4^A), 97.16, 99.40, 100.14, 100.37, 100.46, 100.84 (C-1), 128.92 (d, ${}^{3}J_{C,P} = 10.0$, C_{meta}), 128.99 (d, ${}^{3}J_{C,P} = 10.0$, C_{meta}), 130.51 (d, ${}^{1}J_{C,P} = 53.4$, C_{ipso}), 131.27 (d, ²*J*_{C,P} = 8.3 Hz, C_{ortho}), 131.29 (s, C_{para}), 131.41 (s, C_{para}), 131.69 (d, ²*J*_{C,P} = 9.9 Hz, Cortho), 132.24 (d, ${}^{1}J_{C,P} = 56.7$, Cipso) ppm; ${}^{31}P{}^{1}H$ NMR (121.5 MHz, CDCl₃, 25°C): $\delta =$ 12.1 (br s) ppm; elemental analysis (%) calcd for $C_{64}H_{104}BO_{29}P \cdot 2MeOH$ (1401.63 + 64): C 54.62, H 8.11, found: C 54.92, H 7.83; MS (ESI-TOF): *m/z* (%): 1401.63 (100) [*M* + Na]⁺.

$$6^{A}$$
-Deoxy- 6^{A} -(1,3-dioxoisoindolin-2-yl)-
 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6^{D} , 6^{E} , 6^{F} -
hexadeca-*O*-methyl- α -cyclodextrin (5b) and
 6^{B} -deoxy- 6^{B} -(1,3-dioxoisoindolin-2-yl)-
 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6^{D} , 6^{E} , 6^{F} -
hexadeca-*O*-methyl- α -cyclodextrin (6b):

Powdered potassium phthalimide (0.135 g, 0.64 mmol) was added to a stirred solution of **1** at 0°C (0.200 g, 0.16 mmol) in DMF (0.80 mL). After 1 h, the reaction mixture was allowed to reach room temperature and then kept at this temperature for 12 h under stirring. It was then evaporated to dryness and the residue was retaken in THF (8 mL). H₂SO₄ (0.20 mL, 50% *wt/wt* solution in water) was added and the reaction mixture was stirred for 1 h at room temperature before adding saturated aqueous

NaHCO₃ (50 mL). Subsequent extraction with CHCl₃ (3×50 mL) was followed by drying of the organic extracts (MgSO₄). Removal of the solvent in vacuo gave a colourless residue, which was subjected to column chromatography (SiO₂; CH₂Cl₂/MeOH, 97:3, v/v) to afford 2 colourless solids, **5b** (0.180 g, 87%) and **6b** (0.006 g, 5%). **5b** R_f (SiO₂, CH₂Cl₂/MeOH, 90:10, v/v) = 0.58; m.p. 228–230°C; ¹H NMR (400.1 MHz, CDCl₃, 25°C): δ (assignment by combined COSY, TOCSY, HMQC, and ROESY) = 2.24 (br s, 1 H, OH), 2.70 (dd, 1 H, ${}^{2}J_{H}$. $_{6a,H-6b} = 10.3 \text{ Hz}, {}^{3}J_{H-6a,H-5} = 1.5 \text{ Hz}, H-6a), 2.99 (s, 3 \text{ H}, OMe), 3.06 (dd, 1 \text{ H}, {}^{3}J_{H-2,H-3} = 9.8$ Hz, ${}^{3}J_{H-2 H-1} = 3.5$ Hz, H-2), 3.16 (m, 1 H, H-2^A), 3.17 (m, 1 H, H-2^B), 3.18 (s, 3 H, OMe), 3.12–3.21 (3 H, H-2), 3.31 (t, 1 H, ${}^{3}J_{H-4,H-3} = {}^{3}J_{H-4,H-5} = 9.3$ Hz, H-4^A), 3.37 (s, 3 H, OMe), 3.34-3.38 (m, 1 H, H-5), 3.43 (s, 3 H, OMe), 3.44 (s, 3 H, OMe), 3.46 (s, 3 H, OMe), 3.47 (s, 3 H, OMe), 3.48 (s, 3 H, OMe), 3.49 (s, 3 H, OMe), 3.51 (s, 3 H, OMe), 3.52 (m, 1 H, H-3^A), 3.59 (s, 3 H, OMe), 3.60 (s, 3 H, OMe), 3.61 (s, 3 H, OMe), 3.61 (m, 1 H, H-4^B), 3.62 (s, 3 H, OMe), 3.64 (m, 1 H, H-3^B), 3.65 (s, 3 H, OMe), 3.67 (s, 3 H, OMe), 3.41-3.70 (12 H, H-3, H-4, H-6), 3.73-3.76 (m, 1 H, H-5), 3.79-3.86 (2 H, H-6a), 3.86-3.91 (2 H, H-6a or H-6b, H- $6a^{B}$), 3.92–4.03 (4 H, H-5, H- $6a^{A}$, H- $6b^{B}$), 4.12 (ddd, 1 H, ${}^{3}J_{H-5,H-6a} = {}^{3}J_{H-5,H-4} = 9.0$ Hz, ${}^{3}J_{H-5,H-6a} = {}^{3}J_{H-5,H-6a} = {}^{3}J_{H-5,H-6a} = {}^{3}J_{H-5,H-6a} = {}^{3}J_{H-5,H-6a} = {}^{3}J_{H-6a} = {}^{3}J_{H-6a$ $_{6b} = 2.6$ Hz, H-5^A), 4.15–4.19 (m, 1 H, H-5^B), 4.34 (dd, 1 H, $^{2}J_{H-6b,H-6a} = 14.2$, Hz, $^{3}J_{H-6b,H-5} = 14.2$ 2.5 Hz, H-6b^A), 4.91 (d, 1 H, ${}^{3}J_{H1-H2} = 2.8$ Hz, H-1^A), 4.95 (d, 1 H, ${}^{3}J_{H1-H2} = 3.1$ Hz, H-1), 5.03 (d, 1 H, ${}^{3}J_{H1-H2} = 3.1$ Hz, H-1), 5.07 (d, 1 H, ${}^{3}J_{H1-H2} = 3.1$ Hz, H-1), 5.09 (d, 1 H, ${}^{3}J_{H1-H2}$

= 3.4 Hz, H-1), 5.18 (d, 1 H, ${}^{3}J_{H1-H2}$ = 3.3 Hz, H-1^B), 7.73–7.75 (2 H, m-H), 7.81–7.83 (2 H, *o*-H) ppm; ${}^{13}C{}^{1}H$ NMR (100.6 MHz, CDCl₃, 25°C): δ (assignment by HMQC) = 39.78 (C-6^A), 57.83 [×3], 58.02 [×2], 58.13, 58.65, 58.96, 59.00, 59.14, 61.65, 61.80 [×3], 61.88, 61.98 (OMe), 62.14 (C-6^B), 69.44 (C-5), 69.68 (C-6), 70.92 (C-6), 70.94 (C-5), 70.98 (C-6), 71.23, 71.27, 71.34 (C-5), 71.66 (C-6), 72.25 (C-5), 80.92, 81.06, 81.17, 81.29, 81.30, 81.47, 81.60, 81.78, 81.87, 81.97, 82.19 [×2], 82.23 [×3], 82.37, 82.60, 85.43 (C-2, C-3, C-4), 99.15, 99.83, 99.88, 100.06, 100.11, 100.47 (C-1), 123.11 (C_{meta}), 132.17 (C_{ipso}), 134.06 (C_{ortho}), 168.08 (CO) ppm; elemental analysis (%) calcd for $C_{60}H_{95}NO_{31}$ ·CH₂Cl₂ (1326.38 + 84.93): C 51.91, H 6.93, N 0.99, found: C 51.83, H 6.92, N 0.98; MS (ESI-TOF): *m/z* (%): 1348.58 (100) [*M* + Na]⁺. **6b** $R_{\rm f}$ (SiO₂, CH₂Cl₂/MeOH, 90:10, v/v) = 0.54; m.p. 228–230°C; ¹H NMR (400.1 MHz, $CDCl_3$, 25°C): δ = 3.24 (s, 3 H, OMe), 3.32 (s, 3 H, OMe), 3.41 (s, 3 H, OMe), 3.45 (s, 3 H, OMe), 3.46 (s, 3 H, OMe), 3.47 (s, 3 H, OMe), 3.49 (s, 3 H, OMe), 3.50 (s, 3 H, OMe), 3.51 (s, 3 H, OMe), 3.53 (s, 3 H, OMe), 3.62 (s, 3 H, OMe), 3.63 (s, 3 H, OMe), 3.64 (s, 3 H, OMe), 3.65 (s, 3 H, OMe), 3.66 (s, 3 H, OMe), 3.68 (s, 3 H, OMe), 3.05-4.22 (36 H, H-2, H-3, H-4, H-5, H-6), 4.98 (d, 1 H, ${}^{3}J_{H1-H2}$ = 3.2 Hz, H-1), 4.99 (d, 1 H, ${}^{3}J_{H1-H2}$ = 3.3 Hz, H-1), 5.06 (d, 1 H, ${}^{3}J_{H1-H2} = 2.9$ Hz, H-1), 5.09 (d, 1 H, ${}^{3}J_{H1-H2} = 3.3$ Hz, H-1), 5.11 (d, 1 H, ${}^{3}J_{H1-H2}$ = 3.5 Hz, H-1), 5.37 (d, 1 H, ${}^{3}J_{H1-H2}$ = 3.6 Hz, H-1), 7.73–7.75 (2 H, *m*-H), 7.83–7.87 (2 H, *o*-H) ppm; elemental analysis (%) calcd for $C_{60}H_{95}NO_{31}H_2O$ (1326.38 + 18.02): C 53.60, H 7.27, N 1.04, found: C 53.67, H 7.26, N 0.98; MS (ESI-TOF): m/z (%): 1348.58 (100) [M + $Na]^+$.

Powdered sodium azide (0.042 g, 0.64 mmol) was added to a stirred solution of **1** (0.200 g, 0.16 mmol) in DMF (0.80 mL) at 0°C. The same procedure as that used for **5b/6b** was then applied. The crude product consisted in an inseparable mixture of regioisomers **5c** and **6c** (0.180 g, 94 %). $R_f(SiO_2,$ CH₂Cl₂/MeOH, 90:10, v/v) = 0.70; Retention time (reverse-phase column Pursuit C18, isocratic elution with MeCN:H₂O, 1:1, with a flow rate of 1mL.min⁻¹) = 17.49 and 18.16 min; elemental analysis (%) calcd for C₅₂H₉₁N₃O₂₉·H₂O (1221.55 + 18.02): C 50.36, H 7.56, N 3.39, found: C 50.33, H 7.50, N 3.18; MS (ESI-TOF): m/z (%): 1244.55 (100) [M + Na]⁺.

 6^{A} -Deoxy- 6^{A} -(S-thioacetylmethyl)- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6^{D} , 6^{E} , 6^{F} hexadeca-*O*-methyl- α -cyclodextrin (5d) and 6^{B} -deoxy- 6^{B} -(S-thioacetylmethyl)- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6^{D} , 6^{E} , 6^{F} hexadeca-*O*-methyl- α -cyclodextrin (6d):

Powdered potassium thioacetate (0.073 g, 0.64 mmol) was added to a stirred solution of **1** (0.200 g, 0.16 mmol) in DMF (0.80 mL) at 0°C. The same procedure as that for **5b/6b** was then applied. The crude product consisted in an inseparable mixture of regioisomers **5d** and **6d** (0.180 g, 91 %). $R_{\rm f}$ (SiO₂, CH₂Cl₂/MeOH, 90:10, v/v) = 0.55; Retention time

(reverse-phase column Pursuit C18, elution with MeCN:H₂O 1:1 over 40 min with a flow rate of 1mL.min⁻¹) = 14.82 and 16.32 min; Selected ¹H NMR signals (400.1 MHz, CDCl₃, 25°C): $\delta = 2.30$ (s, 0.87 H, CH₃C(O)S) and 2.33 (s, 3 H, CH₃C(O)S) ppm; elemental analysis (%) calcd for C₅₄H₉₄O₃₀S·0.5H₂O (1255.37 + 9.01): C 51.30, H 7.57, found: C 51.37, H 7.69; MS (ESI-TOF): *m/z* (%): 1277.54 (100) [*M* + Na]⁺.

P-{6^A-Deoxy-6^A-diphenylphosphinyl-2^A,2^B,2^C,2^D, 2^E,2^F,2^G,3^A,3^B,3^C,3^D,3^E,3^F,3^G,6^C,6^D,6^E,6^F,6^G**nonadeca-***O***-methyl**-*β***-cyclodextrin**} borane (5e) and *P*-{6^B-deoxy-6^B-diphenylphosphinyl-2^A,2^B,2^C, 2^D,2^E,2^F,2^G,3^A,3^B,3^C,3^D,3^E,3^F,3^G,6^C,6^D,6^E,6^F,6^G**nonadeca-***O***-methyl**-*β***-cyclodextrin**} borane (6e): **5e** and **6e** were prepared from **2** (0.200 g, 0.14 mmol) according to the procedure used for the synthesis of 5a. The crude product consisted in an inseparable mixture of regioisomers 5e and 6e (0.204 g, 96 %). $R_{\rm f}$ $(SiO_2, CH_2Cl_2/MeOH, 90:10, v/v) = 0.51$; Selected ³¹P{¹H} NMR signals (121.5 MHz, CDCl₃, 25°C): $\delta =$ 13.43 and 14.25 ppm; elemental analysis (%) calcd for $C_{73}H_{120}BO_{34}P \cdot 2CH_2Cl_2$ (1583.50 + 169.87): C 51.38, H 7.13, found: C 51.45, H 7.10; MS (ESI-TOF): m/z (%): 1605.74 (100) $[M + Na]^+$.

OMe

OMe

MeO

MeO

6f

ОМе

MeO

MeC

OMe

OMe MeO

OMe

6^A-Deoxy-6^A-(1,3-dioxoisoindolin-2-yl)-2^A,2^B,2^C,2^D,2^E,2^F,2^G,3^A,3^B,3^C,3^D,3^E,3^F,3^G, 6^C,6^D,6^E,6^F,6^G-nonadeca-*O*-methyl-β-cyclodextrin (5f) and 6^B-deoxy-6^B-(1,3-dioxoisoindolin-2-yl)-2^A,2^B,2^C,2^D,2^E,2^F,2^G,3^A,3^B,3^C,3^D,3^E,3^F,3^G,6^C,6^D,6^E, 6^F,6^G-nonadeca-*O*-methyl-β-cyclodextrin (6f): 5f and 6f were prepared from 2 (0.200 g, 0.14 mmol) according to the procedure used for the synthesis of 5b. The crude product consisted in an inseparable mixture of regioisomers 5f and 6f (0.160 g, 76 %). $R_{\rm f}$ $(SiO_2, CH_2Cl_2/MeOH, 90:10, v/v) = 0.46$; elemental analysis (%) calcd for $C_{69}H_{111}NO_{36}CH_3C(O)OC_2H_5$ (1530.60 + 88.11): C 54.17, H 7.41, N 0.87 found: C 54.23, H 7.39, N 0.89; MS (ESI-TOF): m/z (%): $1552.68 (100) [M + Na]^+$.

n-BuLi (1.60 M in hexane, 1.83 mL, 2.87 mmol) was added dropwise at -78°C to a stirred solution of diphenylphosphine (0.520 g, 725 µL of a 20.3% wt/wt solution in hexane, 0.57 mmol) in THF (10

mL). After 30 min, the dark red diphenylphosphide solution was transferred via a cannula to a stirred solution of 3 (0.200 g, 0.16 mmol) in THF (10 mL) kept at -78°C. The solution was further stirred at -78°C for 1 h before being allowed to reach 0°C over 1 h. BH₃·THF (1.00 M in THF, 10 mL, 10 mmol) was then added dropwise at 0°C, and the reaction mixture allowed to reach room temperature before being stirred for an additional 12 h. Once the solvent was removed in vacuo, the solid was taken in THF (8 mL) and H₂SO₄ (0.20 mL, 50% wt/wt solution in water) was added. The reaction mixture was stirred for 1 h at room temperature

before adding saturated aqueous NaHCO₃ (50 mL). Subsequent extraction with CHCl₃ (3 \times 50 mL) was followed by drying of the organic extracts (MgSO₄). Removal of the solvent in vacuo gave a colourless residue, which was subjected to column chromatography (SiO₂; CH₂Cl₂/MeOH, 97:3, v/v) to afford 7a (0.140 g, 59%) as a colourless solid. $R_{\rm f}$ (SiO₂, CH₂Cl₂/MeOH, 92:8, v/v) = 0.38; Retention time (reverse-phase column Pursuit C18, isocratic elution with MeCN:H₂O, 1:1, with a flow rate of 1mL.min^{-1} = 18.27 min; m.p. 142-145 °C.: ¹H NMR (300.1 MHz, CDCl₃, 25°C): δ (assignment by COSY) = 1.10 (br s, 6 H, P-BH₃), 2.77 (s, 6 H, OMe-6), 2.85 (d, 2 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, ${}^{2}J_{H-6a,H-6b} = 11.2$ Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6a,H-6b} = 11.2 Hz, H-6a^{C,F}), 3.02 (d, 4 H, {}^{2}J_{H-6 $_{6b} = {}^{2}J_{\text{H-6b,H-6a}} = 11.9 \text{ Hz}, \text{H-6}^{\text{B,E}}$, 3.07–3.13 (8 H, H-2^{B,C,E,F}, H-6^{A,D}), 3.18 (d, 2 H, ${}^{1}J_{\text{H-6b,H-6a}} =$ 11.2 Hz, H-6b^{C,F}), 3.23 (dd, 2 H, ${}^{3}J_{H-2,H-3} = 9.9$ Hz, ${}^{3}J_{H-2,H-1} = 2.8$ Hz, H-2^{A,D}), 3.46 (s, 6 H, OMe), 3.47 (s, 6 H, OMe), 3.49 (s, 6 H, OMe), 3.59 (s, 6 H, OMe), 3.64 (s, 6 H, OMe), 3.69 (s, 6 H, OMe), 3.43–3.85 (18 H, H-3, H-4, H-5^{B,C,E,F}, OH), 4.39 (m, 2 H, H-5^{A,D}), 4.67 (d, 2 H, ${}^{3}J_{H-1,H-2} = 2.8$ Hz, H-1^{A,D}), 5.01 (d, 2 H, ${}^{3}J_{H-1,H-2} = 3.1$ Hz, H-1^{C,F}), 5.17 (d, 2 H, ${}^{3}J_{H-1,H-2} =$ 2.9 Hz, H-1^{B,E}), 7.36–7.50 (12 H, *m*-H, *p*-H), 7.73–7.86 (8 H, *o*-H) ppm; ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25°C): δ (assignment by HMQC) = 26.91 (d, ${}^{1}J_{CP}$ = 37 Hz, C-6^{A,D}), 58.09 [×2], 58.76, 61.29, 61.38, 61.47, 61.76 (OMe), 61.29 (C-6^{B,E}), 69.23, 71.22, 71.49 (C-5), 69.93 (C- $6^{C,F}$), 79.63, 80.76, 80.84, 81.15, 81.28, 81.41, 82.03, 82.55 (C-2, C-3, C-4), 86.26 (d, ${}^{1}J_{C,P}$ = 5.7 Hz, C-4^{A,D}), 97.60, 100.00, 100.23 (C-1), 128.66 (d, ${}^{3}J_{C,P} = 10.5$, C_{meta}), 128.80 (d, ${}^{3}J_{C,P} =$ 10.5, C_{meta}), 130.94 (s, C_{para}), 131.03 (s, C_{para}), 130.83 (d, ${}^{1}J_{C,P}$ = 16.0 Hz, C_{ipso}), 131.32 (d, ${}^{1}J_{C,P} = 21.0 \text{ Hz}, C_{ipso}$, 131.78 (d, ${}^{2}J_{C,P} = 9.0 \text{ Hz}, C_{ortho}$), 131.87 (d, ${}^{2}J_{C,P} = 9.0 \text{ Hz}, C_{ortho}$) ppm; ³¹P{¹H} NMR (121.5 MHz, CDCl₃, 25°C): $\delta = 12.5$ (br s) ppm; elemental analysis (%) calcd for C₇₄H₁₁₂B₂O₂₈P₂·0.5MeOH (1532.70 + 16): C 57.76, H 7.42, found: C 57.97, H 7.36; MS (ESI-TOF): m/z (%): 1555.70 (100) $[M + Na]^+$.

$$6^{A}, 6^{D}$$
-Dideoxy- $6^{A}, 6^{D}$ -di(1,3-dioxoisoindolin-2-yl)-
 $2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 6^{C}, 6^{F}$ -tetradeca-
O-methyl- α -cyclodextrin (7b) and
 $6^{A}, 6^{E}$ -dideoxy- $6^{A}, 6^{E}$ -di(1,3-dioxoisoindolin-2-yl)-
 $2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 6^{B}, 6^{E}$ -tetradeca-
O-methyl- α -cyclodextrin (8b):

Powdered potassium phthalimide (0.230 g, 1.24 mmol) was added to a stirred solution of **3** at 0°C (0.200 g, 0.16 mmol) in DMF (1.60 mL). The reaction mixture was allowed to reach room temperature in an ice bath for 12 h under stirring. It was then evaporated to dryness and the residue was retaken in THF (8 mL). H₂SO₄ (0.20 mL, 50% *wt/wt* solution in water) was added and the reaction mixture was stirred for 1 h at room temperature before adding saturated aqueous NaHCO₃ (50 mL). Subsequent extraction with CHCl₃ (3 × 50 mL) was followed by drying of the organic

extracts (MgSO₄). Removal of the solvent in vacuo gave a colourless residue, which was subjected to column chromatography (SiO₂; CH₂Cl₂/MeOH, 97:3, v/v) to afford 2 colourless solids, **7b** (0.110 g, 50%) and **8b** (0.071 g, 28%). **7b** $R_{\rm f}$ (SiO₂, CH₂Cl₂/MeOH, 90:10, v/v) = 0.50; m.p. 164°C; ¹H NMR (400.1 MHz, CDCl₃, 25°C): δ (assignment by combined COSY, TOCSY, HMQC, and ROESY) = 2.71 (d, 2 H, ${}^{2}J_{H-6a,H-6b}$ = 11.1 Hz, H-6a^{C,F}), 2.72 (s, 3 H, OMe-6^{C,F}), 3.08 (dd, 2 H, ${}^{3}J_{H-2,H-3} = 9.7$ Hz, ${}^{3}J_{H-2,H-1} = 3.8$ Hz, H-2^{C,F}), 3.20 (dd, 2 H, ${}^{3}J_{H-2,H-3} = 9.7$ Hz, ${}^{3}J_{H-2,H-3} = 9.7$ = 9.9 Hz, ${}^{3}J_{H-2,H-1}$ = 2.7 Hz, H-2^{A,D}), 3.23 (dd, 2 H, ${}^{3}J_{H-2,H-3}$ = 5.1, ${}^{3}J_{H-2,H-1}$ = 3.3 Hz, H-2^{B,E}), 3.25 (t, 2 H, ${}^{3}J_{H-4,H-3} = {}^{3}J_{H-4,H-5} = 10.1$ Hz, H-4^{B,E}), 3.35 (t, 2 H, ${}^{3}J_{H-4,H-3} = {}^{3}J_{H-4,H-5} = 9.0$ Hz, H-4^{A,D}), 3.46 (s, 6 H, OMe-2), 3.50 (s, 6 H, OMe-2), 3.51 (s, 6 H, OMe-2), 3.52 (m, 2 H, H-6b^{C,F}), 3.58 (m, 2 H, H-3^{C,F}), 3.59 (m, 2 H, H-3^{A,D}), 3.60 (m, 2 H, H-6a^{B,E}), 3.61 (m, 2 H, H-3^{B,E}), 3.62 (s, 6 H, OMe-3), 3.63 (s, 6 H, OMe-3), 3.66 (m, 4 H, H-4^{C,F}, H-5^{C,F}), 3.67 (m, 2 H, H-3^{C,F}), 3.70 (s, 6 H, OMe-3), 3.99 (t, 2 H, ${}^{2}J_{\text{H-6b,H-6a}} = {}^{3}J_{\text{H-6b,H-5}} = 12.8$ Hz, H-6b^{B,E}), 4.03 (d, 2 H, ${}^{2}J_{H-6a,H-6b} = 13.9$ Hz, H-6a^{A,D}), 4.30 (dd, 2 H, ${}^{3}J_{H-5,H-6b} = 12.8$ Hz, ${}^{3}J_{H-5,H-4} = 10.1$ Hz, H- $5^{B,E}$), 4.45 (ddd, 2 H, ${}^{3}J_{H-5,H-6a} = 3.2$ Hz, ${}^{3}J_{H-5,H-6b} = 17.4$ Hz, ${}^{3}J_{H-5,H-4} = 9.0$ Hz, H-5^{A,D}), 4.87 $(dd, 2 H, {}^{2}J_{H-6b,H-6a} = 13.9 Hz, {}^{3}J_{H-6b,H-5} = 3.2 Hz, H-6b^{A,D}), 4.88 (d, 2 H, {}^{3}J_{H-1,H-2} = 2.7 Hz, H-6b^{A,D})$ $1^{A,D}$), 5.03 (d, 2 H, ${}^{3}J_{H-1,H-2} = 3.8$ Hz, H- $1^{C,F}$), 5.15 (d, 2 H, ${}^{3}J_{H-1,H-2} = 3.3$ Hz, H- $1^{B,E}$), 7.62–

7.65 (4 H, *m*-H), 7.93–7.96 (4 H, *o*-H) ppm; ${}^{13}C{}^{1}H$ NMR (100.6 MHz, CDCl₃, 25°C): δ (assignment by HMQC) = 40.11 (C- $6^{A,D}$), 57.49, 57.83, 58.45, 59.19, 61.33, 62.03, 62.18 (OMe), 62.69 (C-6^{B,E}), 68.05 (C-5), 70.03 (C-6^{C,F}), 71.18, 72.54 (C-5), 81.34, 81.39, 81.45, 81.52, 81.71, 81.78, 81.84, 82.90, 86.99 (C-2, C-3, C-4), 98.61, 99.42, 100.72 (C-1), 123.70 (C_{meta}^{A,D}), 132.19 (C_{ipso}^{A,D}), 134.21 (C_{ortho}^{A,D}), 168.93 (CO) ppm; elemental analysis (%) calcd for C₆₆H₉₄N₂O₃₂·0.5CHCl₃ (1427.45 + 58.96): C 53.71, H 6.40, N 1.58, found: C 53.71, H 6.68, N 1.58; MS (ESI-TOF): m/z (%): 1449.57 (100) $[M + Na]^+$. 8b R_f (SiO₂, CH₂Cl₂/MeOH, 90:10, v/v) = 0.53; m.p. 164°C; ¹H NMR (400.1 MHz, CDCl₃, 25°C): δ (assignment by COSY) = 2.98 (s, 3 H, OMe), 3.28 (s, 3 H, OMe), 3.43 (s, 3 H, OMe), 3.45 (s, 3 H, OMe), 3.47 (s, 3 H, OMe), 3.51 (s, 3 H, OMe), 3.52 (s, 3 H, OMe), 3.55 (s, 3 H, OMe), 3.60 (s, 3 H, OMe), 3.63 (s, 3 H, OMe), 3.65 (s, 3 H, OMe), 3.68 (s, 9 H, OMe), 3.05-4.40 $(36 \text{ H}, \text{H-2}, \text{H-3}, \text{H-4}, \text{H-5}, \text{H-6}), 4.94 (d, 1 \text{ H}, {}^{3}J_{\text{H-1,H-2}} = 2.7 \text{ Hz}, \text{H-1}), 4.98 (d, 1 \text{ H}, {}^{3}J_{\text{H-1,H-2}} =$ 3.1 Hz, H-1), 5.00 (d, 1 H, ${}^{3}J_{H-1,H-2} = 3.2$ Hz, H-1), 5.13 (d, 1 H, ${}^{3}J_{H-1,H-2} = 3.1$ Hz, H-1), 5.31 (d, 1 H, ${}^{3}J_{H-1,H-2} = 2.9$ Hz, H-1), 5.42 (d, 1 H, ${}^{3}J_{H-1,H-2} = 3.3$ Hz, H-1), 7.64–7.91 (8 H, aromatic-H); ${}^{13}C{}^{1}H$ NMR (100.6 MHz, CDCl3, 25°C): δ (assignment by HMQC) = 37.72 (C-6^{A or D}), 38.82 (C-6^{D or A}), 57.78 [×2], 58.03 [×2], 58.31, 58.38, 58.61, 59.09, 61.61, 61.66, 61.76, 61.82, 61.86, 62.05 (OMe), 61.35, 62.31, 71.31, 71.54 (C-6), 69.31, 69.40, 71.17, 71.46, 72.19, 72.24 (C-5), 81.08, 81.25 [×2], 81.43, 81.50, 81.59 [×2], 81.68, 81.70 [×2], 81.80, 81.88 [×2], 82.09 [×2], 82.43, 84.73, 85.21 (C-2, C-3, C-4), 98.97, 99.15, 99.33, 99.55, 99.91 [×2] (C-1), 123.17, 123.47 (C_{meta}), 132.11 [×2] (C_{ipso}), 134.09 [×2] (C_{ortho}), 168.51, 168.70 (CO) ppm; elemental analysis (%) calcd for $C_{66}H_{94}N_2O_{32}$ ·CH₂Cl₂ (1427.45 + 84.93): C 53.21, H 6.40, N 1.85, found: C 53.01, H 6.64, N 1.61; MS (ESI-TOF): m/z (%): 1449.57 $(100) [M + Na]^+$.

6^A,6^D-Dideoxy-6^A,6^D-di(diphenyloxophosphinyl)-2^A,2^B,2^C,2^D,2^E,2^F,3^A,3^B,3^C,3^D,3^E,3^F,6^C,6^F-tetradeca-*O*-methyl-α-cyclodextrin (10):

n-BuLi (1.60 M solution in hexane, 1.20 mL, 1.94 mmol) was added dropwise at -78° C to a stirred solution of diphenylphosphine (0.520 g, 725 μ L of a 20.3% *wt/wt* solution in hexane, 0.57 mmol) in THF (10 mL). After 30 min, the dark red diphenylphosphide

solution was transferred via a cannula to a stirred solution of 3 (0.200 g, 0.16 mmol) in THF

(10 mL) kept at -78°C. The solution was stirred at -78°C for a further 1h. The reaction mixture was quenched at -78°C with distilled water (0.50 mL) and the colourless precipitate was filtered over Celite and the filtrate was evaporated to dryness. The dried filtrate was taken in THF (8 mL) and H₂SO₄ (0.20 mL, 50% wt/wt solution in water) was added. The reaction mixture was stirred for 1 h at room temperature before adding saturated aqueous NaHCO₃ (50 mL). Subsequent extraction with $CHCl_3$ (3 × 50 mL) was followed by drying of the organic extracts (MgSO₄). Removal of the solvent in vacuo gave a colourless residue which was dissolved in CH₂Cl₂ (20 mL) and then aqueous H₂O₂ (58 µL, 35% wt/wt solution in water, 0.56 mmol) was added. The mixture was stirred for 2 h at room temperature whereupon it was quenched with saturated aqueous NaHCO₃ (50 mL) then extracted with CHCl₃ (3×30 mL) and dried (MgSO₄). Evaporation of the solvents gave a colourless powder, which was subjected to column chromatography (SiO₂; CH₂Cl₂/MeOH, 97:3, v/v) to afford 10 (0.120 g, 50%) as a colourless solid. $R_{\rm f}$ (SiO₂, CH₂Cl₂/MeOH, 92:8, v/v) = 0.42; m.p. 135-137 °C; ¹H NMR (400.1 MHz, CDCl₃, 25°C): δ (assignment by combined COSY, TOCSY, HMQC, and ROESY) = 2.53 (ddd, 2 H, ${}^{2}J_{H-6a,P}$ = 15.3 Hz, ${}^{2}J_{H-6a,H-6b}$ = 11.1 Hz, ${}^{2}J_{H-6a,H-5}$ = 3.2 Hz, H- $6a^{A,D}$), 2.63 (s, 6 H, OMe- $6^{C,F}$), 3.13 (dd, 2 H, ${}^{3}J_{H-2,H-3} = 9.8$ Hz, ${}^{3}J_{H-2,H-1} = 2.7$ Hz, H- $2^{A,D}$), 3.16 (dd, 2 H, ${}^{3}J_{\text{H-2,H-3}} = 10.1$ Hz, ${}^{3}J_{\text{H-2,H-1}} = 3.8$ Hz, H-2^{C,F}), 3.17 (m, 2 H, H-6a^{C,F}), 3.29 (dd, 2 H, ${}^{3}J_{\text{H-2,H-3}} = 9.5$ Hz, ${}^{3}J_{\text{H-2,H-1}} = 3.9$ Hz, H-2^{B,E}), 3.39 (s, 6 H, OMe-3), 3.43–3.48 (4 H, H-6b^{C,F}, H-4^{A,D}), 3.51 (s, 6 H, OMe-2), 3.54 (s, 6 H, OMe-2), 3.57 (s, 6 H, OMe-2), 3.64 (m, 2 H, H-6b^{A,D}), 3.66 (m, 2 H, H-3^{A,D}), 3.68 (s, 6 H, OMe-3), 3.72 (dd, 2 H, ${}^{3}J_{H-3,H-2} = 10.1$ Hz, ${}^{3}J_{\text{H-3,H-4}} = 18.1 \text{ Hz}, \text{ H-3}^{\text{C,F}}$), 3.73 (dd, 2 H, ${}^{3}J_{\text{H-3,H-2}} = 9.5 \text{ Hz}, {}^{3}J_{\text{H-3,H-4}} = 18.1 \text{ Hz}, \text{ H-3}^{\text{B,E}}$), 3.82 (dd, 2 H, ${}^{3}J_{\text{H-4,H-3}} = 18.0$ Hz, ${}^{3}J_{\text{H-4,H-5}} = 8.8$ Hz, H-4^{C,F}), 3.85 (s, 6 H, OMe-3), 3.89 (d, 2 H, ${}^{3}J_{\text{H-5,H-4}} = 8.8 \text{ Hz}, \text{ H-5}^{\text{C,F}}$), 3.95–4.03 (4 H, H-5^{B,E}, H-6a^{B,E}), 4.02 (dd, 2 H, ${}^{3}J_{\text{H-4,H-3}} = 18.1 \text{ Hz}$, ${}^{3}J_{\text{H-4,H-5}} = 10.3 \text{ Hz}, \text{H-4}^{\text{B,E}}$), 4.42 (d, 2 H, ${}^{2}J_{\text{H-6b,H-6a}} = 11.1 \text{ Hz}, \text{H-6b}^{\text{B,E}}$), 4.48 (ddd, 2 H, ${}^{3}J_{\text{H-5,H-1}}$ $_{6a} = 3.2 \text{ Hz}, {}^{3}J_{\text{H-5,H-6b}} = 17.4 \text{ Hz}, {}^{3}J_{\text{H-5,H-4}} = 8.8 \text{ Hz}, \text{H-5}^{\text{A,D}}$, 4.69 (d, 2 H, ${}^{3}J_{\text{H-1,H-2}} = 2.7 \text{ Hz}, \text{H-}$ $1^{A,D}$, 4.94 (d, 2 H, ${}^{3}J_{H-1 H-2} = 3.9 \text{ Hz}$, H- $1^{B,E}$), 5.58 (d, 2 H, ${}^{3}J_{H-1 H-2} = 3.8 \text{ Hz}$, H- $1^{C,F}$), 6.03 (br s, 2 H, OH^{B,E}), 7.12 (td, 4 H, ${}^{3}J_{o-H,m-H} = {}^{3}J_{o-H,P} = 7.6$, ${}^{4}J_{o-H,p-H} = 3.0$ Hz, o-H), 7.23 (td, 2 H, ${}^{3}J_{m-H,o-H} = {}^{3}J_{m-H,p-H} = 7.6, {}^{4}J_{m-H,P} = 1.3$ Hz, m-H), 7.47–7.57 (10H, o-H, m-H, p-H), 7.78–7.84 (4H, *m*-H) ppm; ${}^{13}C{}^{1}H$ NMR (100.6 MHz, CDCl₃, 25°C): δ (assignment by HMQC) = 32.26 (d, ${}^{1}J_{C,P} = 73.4 \text{ Hz}, \text{ C-6}^{A,D}$), 56.98, 58.18, 58.32, 59.60, 59.65 (OMe), 60.08 (C-6^{B,E}), 61.82, 62.14 (OMe), 68.23 (d, ${}^{2}J_{CP} = 7.3$ Hz, C-5^{A,D}), 70.43 (C-5), 70.88 [×2] (C-4, C-5), 71.54 (C-6^{C,F}), 80.40, 80.98, 81.16, 81.78 [×2], 81.88, 84.15, 88.08 (C-2, C-3, C-4), 96.81, 96.95, 97.01(C-1), 128.46 (d, ${}^{3}J_{CP} = 11.7$, C_{meta}), 128.53 (d, ${}^{3}J_{CP} = 11.7$, C_{meta}), 130.34 (s, C_{para}), 130.44 (s, C_{para}), 131.28 (d, ${}^{2}J_{C,P}$ = 18.6 Hz, C_{ortho}), 131.41 (d, ${}^{2}J_{C,P}$ = 26.1 Hz, C_{ortho}),

(ESI-TOF): m/z (%): 1559.62 (100) $[M + Na]^+$.

18

Crystal structure analyses

X-ray crystallographic data of 5b: Single crystals of 5b were obtained by slow diffusion of pentane into a dichloromethane solution of the compound. Crystal data for $C_{60}H_{95}NO_{31} \cdot 0.5CH_2Cl_2 \cdot H_2O \cdot 1.5C_5H_{12}$ (**5b** $\cdot 0.5CH_2Cl_2 \cdot H_2O \cdot 1.5C_5H_{12}$), $M_r =$ 1495.07, monoclinic, space group P2₁, a = 15.2970(10), b = 15.7262(8), c = 16.6710(10) Å, $\beta =$ 90.778(6)°, V = 4010.1(4) Å³, Z = 2, $\rho_{calcd} = 1.238$ g cm⁻³, $\lambda(Mo_{Ka}) = 0.71073$ Å, $\mu = 0.129$ mm⁻¹, F(000) = 1608, T = 120 K. The sample $(0.26 \times 0.16 \times 0.08 \text{ mm})$ was studied with an Oxford Diffraction Xcalibur Saphir 3 CCD with graphite monochromatised Mo Ka radiation. The structure was solved with SIR-97,⁴ which revealed the non-hydrogen atoms of the molecule. After anisotropic refinement, many hydrogen atoms were found with a Fourier difference analysis. The whole structure was refined with SHELX-97⁵ and full-matrix leastsquare techniques. Use of F^2 magnitude; x, y, z, β_{ij} for C, O, S atoms, x, y, z, in riding mode for H atoms, 917 variables and 7789 observations with $[I > 2.0\sigma(I)]$, calcd $w = 1/[\sigma^2(F_o^2) +$ $(0.1186 P)^2$ where $P = (F_0^2 + 2 F_0^2)/3$ with the resulting R = 0.0680, $R_w = 0.1911$, and $S_w = 0.1911$ 0.830, $\Delta \rho < 0.929$ e Å⁻³. The compound was rather poorly diffracting. It crystallized with half a molecule of pentane inside the cavity and one molecule of pentane, half a molecule of CH₂Cl₂ and one water molecule lying outside the CD. It must be emphasised that the O46-C49 O-methyl and C62....C67 aromatic groups are disordered. The disordered aromatic group was refined in the isotropical mode because of correlations in the anisotropical mode. The Alevel alerts are mainly due to the external pentane molecule, which was difficult to refine. CCDC 826891.

X-ray crystallographic data of 7a: Single crystals of **7a** were obtained by slow diffusion of pentane into a dichloromethane solution of the compound. Crystal data for $C_{74}H_{112}B_2O_{28}P_2$ ·3CH₂Cl₂·1.5C₅H₁₂ (**7a**·3CH₂Cl₂·1.5C₅H₁₂), $M_r = 1896.19$, orthorhombic, space group $P2_12_12_1$, a = 16.0969(4), b = 22.4367(5), c = 27.7517(7) Å, V = 10022.8(4) Å³, Z = 4, $\rho_{calcd} = 1.257$ g cm⁻³, λ (Mo K α) = 0.71073 Å, $\mu = 0.274$ mm⁻¹, F(000) = 4036, T = 120 K. The sample ($0.22 \times 0.12 \times 0.10$ mm) was studied with an Oxford Diffraction Xcalibur Saphir 3 CCD with graphite monochromatised Mo _{K α} radiation. The structure was solved with SIR-97,⁴ which revealed the non-hydrogen atoms of the molecule. After anisotropic refinement, many hydrogen atoms were found with a Fourier difference analysis. The whole structure was refined with SHELX-97⁵ and full-matrix least-square techniques. Use of F^2

magnitude; x, y, z, β_{ij} for C, O, S atoms, x, y, z, in riding mode for H atoms, 1029 variables and 8413 observations with $[I > 2.0\sigma(I)]$, calcd $w = 1/[\sigma^2(F_0^2) + (0.1186 P)^2]$ where $P = (F_0^2 + 2 F_0^2)/3$ with the resulting R = 0.0935, $R_w = 0.2645$, and $S_w = 0.932$, $\Delta \rho < 0.658$ e Å⁻³. CCDC 822184.

CCDC-822184 (**7a**) and CCDC-826891 (**5b**) contain the supplementary crystallographic data for this report. These data can be obtained free of charge from The Cambridge Christallographic Data Centre via www.ccdc.cam. ac.uk/data_request/cif.

NMR and mass spectra

NMR spectra of all compounds were recorded in CDCl₃ at 25 °C.

6^{A} , 6^{B} -Dideoxy- 6^{A} , 6^{B} -sulfato- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6^{D} , 6^{E} , 6^{F} -hexadeca-*O*-methyl- α -cyclodextrin (1):

¹ H NMR spectrum	
¹ H/ ¹ H COSY spectrum	
¹³ C{ ¹ H} NMR spectrum	
DEPT 135 spectrum	
¹ H/ ¹³ C HMQC spectrum	
Mass spectrum	

6^A,6^B-Dideoxy-6^A,6^B-sulfato-2^A,2^B,2^C,2^D,2^E,2^F,2^G,3^A,3^B,3^C,3^D,3^E,3^F,3^G,6^C,6^D,6^E,6^F,6^G-nonadeca-*O*-methyl-β-cyclodextrin (2):

¹ H NMR spectrum	
¹ H/ ¹ H COSY spectrum	
¹³ C{ ¹ H} NMR spectrum	
DEPT 135 spectrum	
¹ H/ ¹³ C HMOC spectrum	
Mass spectrum	

P-{ 6^{A} -Deoxy- 6^{A} -diphenylphosphinyl- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6^{D} , 6^{E} , 6^{F} -hexadeca-*O*-methyl- α -cyclodextrin} borane (5a):

¹ H NMR spectrum	
$^{1}\text{H}/^{1}\text{H}$ COSY spectrum	
¹ H/ ¹ H TOCSY spectrum	
¹ H/ ¹ H ROESY spectrum	
¹³ C{ ¹ H} NMR spectrum	
DEPT 135 spectrum	40
¹ H/ ¹³ C HMQC spectrum	
$^{31}P{^{1}H} NMR$ spectrum	
Mass spectrum	

6^{A} -Deoxy- 6^{A} -(1,3-dioxoisoindolin-2-yl)- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6^{D} , 6^{E} , 6^{F} -hexadeca-*O*-methyl- α -cyclodextrin (5b):

44
45
46
47
48
49
50
51

6^{B} -Deoxy- 6^{B} -(1,3-dioxoisoindolin-2-yl)- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6^{D} , 6^{E} , 6^{F} -hexadeca- O -methyl- α -cyclodextrin (6b):
¹ H NMR spectrum
Mass spectrum
6^{A} -Deoxy- 6^{A} -azido- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6^{D} , 6^{E} , 6^{F} -hexadeca- O -methyl- α -cyclodextrin (5c) and 6^{B} -deoxy- 6^{B} -azido- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6^{D} , 6^{E} , 6^{F} -hexadeca- O -methyl- α -cyclodextrin (6c):
¹ H NMR spectrum
6^{A} -Deoxy- 6^{A} -(S-thioacetylmethyl)- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6^{D} , 6^{E} , 6^{F} -hexadeca- O -methyl- α -cyclodextrin (5d) and 6^{B} -deoxy- 6^{B} -(S-thioacetylmethyl)- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6^{D} , 6^{E} , 6^{F} -hexadeca- O -methyl- α -cyclodextrin (6d):
¹ H NMR spectrum
Mass spectrum
<i>P</i> -{ 6^{A} -Deoxy- 6^{A} -diphenylphosphinyl- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 2^{G} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 3^{G} , 6^{C} , 6^{D} , 6^{E} , 6^{F} , 6^{G} -nonadeca- <i>O</i> -methyl- β -cyclodextrin} borane (5e) and <i>P</i> -{ 6^{B} -deoxy- 6^{B} - diphenylphosphinyl- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 2^{G} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 3^{G} , 6^{C} , 6^{D} , 6^{E} , 6^{F} , 6^{G} -nonadeca- <i>O</i> - methyl- β -cyclodextrin} borane (6e):
¹ H NMR spectrum
Part of the ¹ H NMR spectrum showing the anomeric signals (mixture of $5e/6e$)
Mass spectrum
6^{A} -Deoxy- 6^{A} -(1,3-dioxoisoindolin-2-yl)- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 2^{G} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 3^{G} , 6^{C} , 6^{D} , 6^{E} , 6^{F} , 6^{G} -nonadeca- <i>O</i> -methyl-β-cyclodextrin (5f) and 6^{B} -deoxy- 6^{B} -(1,3-dioxoisoindolin-2-yl)- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 2^{G} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 3^{G} , 6^{C} , 6^{D} , 6^{E} , 6^{F} , 6^{G} -nonadeca- <i>O</i> -methyl-β-cyclodextrin (6f):
¹ H NMR spectrum
Mass spectrum
<i>P,P'</i> -{ 6^{A} , 6^{D} -Dideoxy- 6^{A} , 6^{D} -di(diphenylphosphinyl)- 2^{A} , 2^{B} , 2^{C} , 2^{D} , 2^{E} , 2^{F} , 3^{A} , 3^{B} , 3^{C} , 3^{D} , 3^{E} , 3^{F} , 6^{C} , 6 ^F -tetradeca- <i>O</i> -methyl- α -cyclodextrin} diborane (7a):
¹ H NMK spectrum
$^{13}C{^{1}H}$ NMR spectrum
DEPT 135 spectrum
$^{1}H/^{1}C$ HMQC spectrum
Mass spectrum
•

6^A,6^D-Dideoxy-6^A,6^D-di(1,3-dioxoisoindolin-2-yl)-2^A,2^B,2^C,2^D,2^E,2^F,3^A,3^B,3^C,3^D,3^E,3^F,6^C,6^F-tetradeca-*O*-methyl-α-cyclodextrin (7b):

¹ H NMR spectrum	. 72
¹ H/ ¹ H COSY spectrum	. 73
¹ H/ ¹ H TOCSY spectrum	. 74
¹ H/ ¹ H ROESY spectrum	. 75
¹³ C{ ¹ H} NMR spectrum	. 76
DEPT 135 spectrum	. 77
¹ H/ ¹³ C HMQC spectrum	. 78
Mass spectrum	. 79

$6^{A}, 6^{E}$ -Dideoxy- $6^{A}, 6^{E}$ -di(1,3-dioxoisoindolin-2-yl)- $2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 6^{C}, 6^{F}$ -tetradeca-O-methyl- α -cyclodextrin (8b):

¹ H NMR spectrum	
¹ H/ ¹ H COSY spectrum	
¹³ C{ ¹ H} NMR spectrum	
DEPT 135 spectrum	
¹ H/ ¹³ C HMOC spectrum	
Mass spectrum	
r	

6^A,6^D-Dideoxy-6^A,6^D-di(diphenyloxophosphinyl)-2^A,2^B,2^C,2^D,2^E,2^F,3^A,3^B,3^C,3^D,3^E,3^F,6^C,6^F-tetradeca-*O*-methyl-α-cyclodextrin (10):

¹ H NMR spectrum	
¹ H/ ¹ H COSY spectrum	
¹ H/ ¹ H TOCSY spectrum	
¹ H/ ¹ H ROESY spectrum.	
¹³ C{ ¹ H} NMR spectrum	
DEPT 135 spectrum	
¹ H/ ¹³ C HMQC spectrum	
³¹ P{ ¹ H} NMR spectrum.	
Mass spectrum	

¹H NMR spectrum of 1

¹H-¹H COSY NMR spectrum of 1

¹³C NMR spectrum of 1

DEPT 135 NMR spectrum of 1

¹H-¹³C HMQC NMR spectrum of 1

¹H NMR spectrum of 2

¹H-¹H COSY NMR spectrum of 2

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

¹³C NMR spectrum of 2

DEPT 135 NMR spectrum of 2

¹H-¹³C HMQC NMR spectrum of 2

Servic	e de spect	romet	rie de mas	se - Ins	titut de C	himie - S	trasbourg - UM	R 7177 CNR	S / ULP
Analysis Info Analysis Name Method Sample Name Comment	015806M esi wide p MJ89	L.d os.m					Acquisition Date Operator Instrument	11/10/2011 3:50 Administrator micrOTOF	:15 PM
Acquisition Parar Source Type Ion Polarity Scan Range	neter ESI Positive n/a	0,0,0	Capillary Set Capillary Exit Set Skimmer 1	4500 V 150.0 V 50.0 V	200	Vebulizer Dry Gas Dry Heater	0.4 Bar 4.0 I/min 180 °C	Corona Set Hexapole RF APCI Heater	219 nA 300.0 V 517 °C
Intens. ×10 ⁴									+MS, 0.0-0.1min #(2-5
.					1480.00				
4									
2									
		754.29				1639.64 ,			
-	500 -	750	1000 -	. 1250	. 1500	. 1750	2000 -	2250 250) · · · 2750 · m/z
Bruker Daltonic	s DataAnalysis 3.	-			printed:	11/10/2011	4:04:55 PM	L	Page 1 of 1

¹H NMR spectrum of 5a

¹H-¹H COSY NMR spectrum of 5a

¹H-¹H TOCSY NMR spectrum of 5a

¹H-¹H ROESY NMR spectrum of 5a

¹³C NMR spectrum of 5a

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

DEPT 135 NMR spectrum of 5a

¹H-¹³C NMR spectrum of 5a

³¹P {¹H} NMR spectrum of 5a

Ser	vice de spectrom	etrie de mas	se - Inst	itut de C	himie - S	trasbourg - UM	R 7177 CNR	S / ULP
Analysis Inf Analysis Nar Method Sample Nam Comment	o me O14276hn.d esi wide pos.m te MJ66					Acquisition Date Operator Instrument	5/3/2011 9:42:27 Administrator micrOTOF	AM
Acquisition Source Type lon Polarity Scan Range	Parameter ESI Positive n/a	Capillary Set Capillary Exit Set Skimmer 1	4500 V 150.0 V 50.0 V	200	lebulizer Dry Gas Dry Heater	0.4 Bar 4.0 I/min 180 °C	Corona Set Hexapole RF APCI Heater	219 nA 200.0 V 517 °C
Intens								+MS, 0.3-0.4min #(19-25)
6000-				1401.63				
5000-								
4000-								
3000-								
2000								
1000-								
· · · c	304.30	-	1259.6 		-			
-		1000	-	1500	-	. 2000 ·	. ' 2500 '	z/m
Bruker Da	altonics DataAnalysis 3.1			printed:	5/3/2011	9:59:02 AM	H	bage 1 of 1

Mass spectrum of 5a

¹H NMR spectrum of 5b

¹H-¹H COSY NMR spectrum of 5b

¹H-¹H TOCSY NMR spectrum of 5b

¹H-¹H ROESY NMR spectrum of 5b

¹³C NMR spectrum of 5b

DEPT 135 NMR spectrum of 5b

¹H-¹³C HMQC NMR spectrum of 5b

Servi	ce de spectro	metrie de mas	se - Institut	de Chimie .	- Strasbourg - U	MR 7177 CNF	S / ULP
Analysis Info Analysis Name Method Sample Name Comment	O14277hn.d esi wide pos.n MJ67	F			Acquisition Date Operator Instrument	5/3/2011 9:45:3: Administrator micrOTOF	3 AM
Acquisition Par Source Type Ion Polarity Scan Range	ameter ESI Positive n/a	Capillary Set Capillary Set Skimmer 1	4500 V 150.0 V 50.0 V	Nebulizer Dry Gas Dry Heater	0.4 Bar 4.0 <i>l/</i> min 180 °C	Corona Set Hexapole RF APCI Heater	219 nA 200.0 V 517 °C
Intens. x10 ⁴							+MS, 0.0-0.1min #(1-6)
1.0-			1348.57				
0.8							
9:0							
-+-0							
0.2							
	304.31	681.41		_			
-	200	1000	-	1500			z/m
Bruker Daltor	ics DataAnalysis 3.1		printe	d: 5/3/2011	10:02:10 AM		Page 1 of 1

Mass spectrum of 5b

¹H NMR spectrum of 6b

Mass spectrum of 6b

¹H NMR spectrum of 5c and 6c (mixture)

Servic	e de spectrom	etrie de mass	se - Institut de	e Chimie -	 Strasbourg - UN 	AR 7177 CNF	RS / ULP
Analysis Info Analysis Name Method Sample Name Comment	O14278hn.d esi wide pos.m MJ69				Acquisition Date Operator Instrument	5/3/2011 9:48:37 Administrator micrOTOF	A M
Acquisition Parar Source Type Ion Polarity Scan Range	meter ESI Positive n/a	Capillary Set Capillary Exit Set Skimmer 1	4500 V 150.0 V 50.0 V	Nebulizer Dry Gas Dry Heater	0.4 Bar 4.0 I/min 180 °C	Corona Set Hexapole RF APCI Heater	219 nA 200.0 V 517 °C
Intens. x10 ⁴							+MS, 0.0-0.1min #(1-4)
¢			1244.55				
4							
'n							
	200	1000	-	500 -		. 2500 -	
Bruker Daltonic	ss DataAnalysis 3.1		printed:	5/3/2011	10:04:41 AM		Page 1 of 1

Mass spectrum of 5c and 6c (mixture)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

¹H NMR spectrum of 5d and 6d (mixture)

Mass spectrum of 5d and 6d (mixture)

¹H NMR spectrum of 5e and 6e (mixture)

Part of the ¹H NMR spectrum showing the anomeric signals of both major (black dot) and minor (circle) isomers of the 5e/6e mixture.

³¹P{¹H} NMR spectrum of 5e and 6e (mixture)

Mass spectrum of 5e and 6e (mixture)

¹H NMR spectrum of 5f and 6f (mixture)

Part of the ¹H NMR spectrum showing the anomeric signals of both major (black dot) and minor (circle) isomers of the 5f/6f mixture. The peak marked with an asterisk corresponds to CH₂Cl₂.

Servic	se de spectrom	etrie de mas	sse - Institut c	e Chimie -	Strasbourg - UN	AR 7177 CN	IRS / ULP
Analysis Info Analysis Name Method Sample Name Comment	015825ML.d esi wide pos.m MJ93				Acquisition Date Operator Instrument	11/14/2011 12 Administrator micrOTOF	Md 76:80:2
Acquisition Para Source Type Ion Polarity Scan Range	i meter ESI Positive n/a	Capillary Set Capillary Set Skimmer 1	4500 V 150.0 V 50.0 V	Nebulizer Dry Gas Dry Heater	0.4 Bar 4.0 I/min 180 °C	Corona Set Hexapole RF APCI Heater	219 nA 300.0 V 517 °C
Intens. x105.							+MS; 0.0-0.1min #(2-4)
				155	2.68		
,		787.83					
0+ 250	200	750 1 1	000 ⁻ 1250	1500	1750		2250 - m/z
Bruker Daltoni	ics DataAnalysis 3.1		printed	11/14/201	1 12:27:49 PM		Page 1 of 1

Mass spectrum of 5f and 6f (mixture)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

¹H NMR spectrum of 7a

¹H-¹H COSY NMR spectrum of 7a

¹³C NMR spectrum of 7a

DEPT 135 NMR spectrum of 7a

¹H-¹³C HMQC NMR spectrum of 7a

³¹P{¹H} NMR spectrum of 7a

Servic	be de spec	strometrie de ma	sul - assi	titut de Ch	iimie - Stra	asbourg - UMI	R 7177 CNR	S / ULP
Analysis Info Analysis Name Method Sample Name Comment	O14099 esi low.n MJ48	RC.d n				Acquisition Date Operator Instrument	4/6/2011 5:46:36 Administrator micrOTOF	We
Acquisition Para Source Type Ion Polarity Scan Range	imeter ESI Positive n/a	Capillary Set Capillary Set Skimmer 1	4500 V 100.0 V 50.0 V	ΝCΩ	bulizer C y Gas 4 y Heater 1	.4 Bar .0 I/min 80 °C	Corona Set Hexapole RF APCI Heater	219 nA 300.0 V 517 °C
Intens x104. 6-				(j)	155.697			+MS, 0.0-0.3min #(3-22)
-	681,420 789,343			1414.682				
1000 1000	- 800	1000	1200	1400	1600	1800 . 21	100 · 2200	- 2400 m/2
Bruker Dalton	ics DataAnalysis (3.1		printed:	4/7/2011	3:18:29 PM	ď	age 1 of 1

¹H NMR spectrum of 7b

¹H-¹H COSY NMR spectrum of 7b

¹H-¹H TOCSY NMR spectrum of 7b

¹H-¹H ROESY NMR spectrum of 7b

¹³C NMR spectrum of 7b

DEPT 135 NMR spectrum of 7b

¹H-¹³C HMQC NMR spectrum of 7b

Sei	vice de sp	ectrome	strie de mas	se - Ins	titut de Chim	iie - Str	asbourg - UM	R 7177 CN	RS / ULP	
Analysis Im Analysis Naı Method Sample Nan Comment	o me O15; esi w J8	536ML.d vide pos.m 4-F1-C2					Acquisition Date Operator Instrument	10/5/2011 2:50 Administrator micrOTOF	0:10 PM	
Acquisition Source Type Ion Polarity Scan Range	Parameter ESI Positive n/a		Capillary Set Capillary Exit Set Skimmer 1	4500 V 150.0 V 50.0 V	Nebuliz Dry Gar Dry Her	s ater	0.4 Bar 4.0 <i>Ilm</i> in 180 °C	Corona Set Hexapole RF APCI Heater	219 nA 300.0 V 517 °C	
Intens. ×104						440 59			+MS, 0.0-0.2m	in #(2-10)
						0000				
-8.0										
9.0										
0.4-										
0.2-										
c					-					
-	· · 250	200 -		1000	1250 1	1500 '	. 1750 .	2000 :	2250 ' ' '	2500 m/z
Bruker Dá	altonics DataAnaly	sis 3.1			printed: 10/5	5/2011	2:55:53 PM		Page 1 of 1	

Mass spectrum of 7b

¹H NMR spectrum of 8b

¹H-¹H COSY NMR spectrum of 8b

¹³C NMR spectrum of 8b

DEPT 135 NMR spectrum of 8b

¹H-¹³C HMQC NMR spectrum of 8b

Servic	ce de spectrom	etrie de mas	sse - Inst	itut de Cł	nimie - S	strasbourg - UN	MR 7177 CNF	3S / ULP
Analysis Info Analysis Name Method Sample Name Comment	015538ML.d esi wide pos.m MJ84-F3C1					Acquisition Date Operator Instrument	10/5/2011 3:02: Administrator micrOTOF	20 PM
Acquisition Para Source Type Ion Polarity Scan Range	ameter ESI Positive n/a	Capillary Set Capillary Exit Set Skimmer 1	4500 V 150.0 V 50.0 V	ŻŌŌ	ebulizer ry Gas ry Heater	0.4 Bar 4.0 //min 180 °C	Corona Set Hexapole RF APCI Heater	219 nA 300.0 V 517 °C
Intens.					1449.5			+MS, 0.0-0.1min #(2-10)
4000-								
3000								
2000-								
1000-								
					1338.52			
. 	260 500		1000	. 1250		500 · 1750 ·	2000	2250 ' ' ' ' ' ' ' ' ' ' ' '
Bruker Dalton	iics DataAnalvsis 3.1			printed:	10/5/2011	3:30:49 PM		Page 1 of 1

Mass spectrum of 8b

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

¹H NMR spectrum of 10

9 Alphadiphosdiol 11 (1D 1H)

2

%

t

z

Ė

4

9

00

6

000 08

ż

ģ

Ś

¹H-¹H COSY NMR spectrum of 10

¹H-¹H TOCSY NMR spectrum of 10

¹H-¹H ROESY NMR spectrum of 10

¹³C NMR spectrum of 10

DEPT 135 NMR spectrum of 10

¹H-¹³C HMQC NMR spectrum of 10

³¹P NMR spectrum of 10

Servic	be de spectron	netrie de ma	sse - Ins	stitut de Chimie -	- Strasbourg - UN	AR 7177 CNF	S / ULP
Analysis Info Analysis Name Method Sample Name Comment	O13507RC.d esi medium.m MJ-46				Acquisition Date Operator Instrument	127/2010 11:50 Administrator micrOTOF	MA 72:
Acquisition Para Source Type Ion Polarity Scan Range	tmeter ESI Positive n/a	Capillary Set Capillary Exit Set Skimmer 1	4500 V 250.0 V 50.0 V	Nebulizer Dry Gas Dry Heater	0.4 Bar 4.0 <i>l/m</i> in 180 °C	Corona Set Hexapole RF APCI Heater	195 nA 400.0 V 517 °C
Intens. x104							+MS, 0.0-0.1min #(1-5)
0.8-				1559.615			
c							
- a .							
0.4							
0.2							
: - -		768.518 10	051.708			:	
	200			1500	2000	2500	z/ш
Bruker Dalton	ics DataAnalysis 3.1			printed: 12/7/201	0 11:53:45 AM		Page 1 of 1

Mass spectrum of 10

General procedure for determining the glucose units linked by a given capping unit.⁶

Our strategy for full structural assignment began with the differentiation between capped and non-capped C-6 carbon atoms by DEPT 135. These appear as two distinct sets of signals. The H-6 protons could then be identified using 1H-13C HMQC (Heteronuclear Multiple Qantum Coherence spectroscopy). By using TOCSY (TOtal Correlation SpectroscopY) and COSY (COrrelated SpectroscopY), each H-6 proton was correlated to the set of protons belonging to the same glucose residue. The connectivity between individual glucose units was then established via a ROESY (Rotating frame Overhause Effect SpectroscopY) experiment showing the proximity between H-4N and H-1N+1 protons (N and N+1 standing for neighbouring glucose moieties labeled in the alphabetical order).

References

- Z. Chen, J. S. Bradshaw, Y.-F. Shen, Y. Habata and M. L. Lee, *J. Org. Chem.*, 1997, 62, 8529-8534.
- 2. D. Armspach, L. Poorters, D. Matt, B. Benmerad, F. Balegroune and L. Toupet, *Org. Biomol. Chem.*, 2005, **3**, 2588-2592.
- 3. R. Gramage-Doria, D. Rodriguez-Lucena, D. Armspach, C. Egloff, M. Jouffroy, D. Matt and L. Toupet, *Chem. Eur. J.*, 2011, **17**, 3911-3921.
- 4. A. Altomare, J. Foadi, C. Giacovazzo, A. G. G. Moliterni, M. C. Burla and G. Polidori, *J. Appl. Crystallogr.*, 1998, **31**, 74-77.
- 5. G. M. Sheldrick, SHELXL-97, *Program for Crystal Structure Refinement*, 1997, University of Göttingen, Göttingen (Germany).
- 6. H.-J. Schneider, F. Hacket and V. Rüdiger, Chem. Rev., 1998, 98, 1755-1785.