Supporting information

A Room-Temperature Adenosine-Based Molecular Beacon for Highly Senstivie

Detection of Nucleic Acids

Yen-Hsiu Lin and Wei-Lung Tseng*

Department of Chemistry, National Sun Yat-sen University, Taiwan

Correspondence: Dr. Wei-Lung. Tseng, Department of Chemistry, National Sun Yat-sen University, 70, Lien-hai Road, Kaohsiung, Taiwan 804.

E-mail: tsengwl@mail.nsysu.edu.tw

Fax: 011-886-7-3684046.

Experimental

Chemicals. Coralyne chloride hydrate trisodium citrate, HNO₃, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), AgNO₃, HgCl₂, NaCl, Na₂CO₃, NaNO₃, H₃PO₄, NaH₂PO₄, Na₂HPO₄ and 3-morpholinopropanesulfonic acid (MOPS), glutathione (GSH), and cysteine were obtained from Sigma-Aldrich (St. Louis, MO, USA). All DNA samples were synthesized from Neogene Biomedicals Corporation (Taiwan). Deoxyribonuclease I was purchased from Novagen (Germany). Single-stranded DNA-binding protein (SSB) was ordered from Promega (Wisconsin, USA). Milli-Q ultrapure water (Hamburg, Germany) was used in all of the experiments.

Sample preparation. Table S1 displays four MBs consisting a donor of FAM at the 5'-end and a quencher of DABCYL at the 3'-end. The A₁₆-MB-A₁₆ (20 nM, 200 μ L) probe containing 200 mM HEPES (pH 7.0) and 400 mM NaCl was mixed with 200 μ L of 0–20 μ M coralyne. The T₁₆-MB-T₁₆ probe (20 nM, 200 μ L) containing 10 mM phosphate (pH 7.0) and 40 mM NaCl was added to 200 μ L of 0–20 μ M Hg²⁺. The C₁₆-MB-C₁₆ probe (20 nM, 200 μ L) containing 20 mM MOPS, 200 mM NaNO₃, and 5 mM Mg(NO₃)₂ was incubated with 200 μ L of 0–20 μ M Ag⁺. The as-prepared solutions were all equilibrated at ambient temperature for 0–60 min. Aliquots of tested DNA, including DNA_{pm} (1–400 nM, 100 μ L) and DNA_{mm1} (30–400 nM, 100

 μ L), were added to each hairpin-shaped MB (400 μ L). After 0–60 min, the fluorescence spectra of these solutions were recorded using a Hitachi F-4500 fluorometer (Hitachi, Tokyo, Japan) at an excitation wavelength of 480 nm. The melting point of each probe was measured by varying the temperature from 25 to 100 °C. To study the impact of the stem length, A₁₆-MB-A₁₆ was replaced by A₈-MB-A₈, A₂₄-MB-A₂₄, or A₃₂-MB-A₃₂, once at a time. The base-pairing MB was prepared in a solution containing 10 mM HEPES (pH 7.6) and 300 mM NaCl.¹ The base-pairing MB (20 nM, 200 μ L) was added to a solution (200 μ L) containing tested DNA, including 200 nM DNA_{pm} and DNA_{mm1}. The mixture was incubated at room temperature. After 1 h, we measured the fluorescence spectra of the mixture.

To evaluate the effect of endonuclease DNase I, SSB, and aminothiols on the specificity of MB, DNase I (0.1 units/ μ L, 50 μ L), SSB (500 nM, 50 μ L), and aminothiols (4 mM, 50 μ L) were separately added to each hairpin-shaped MB (400 μ L). We incubated the mixtures at ambient temperature for 0–30 min and recorded their fluorescence spectra. Following the addition of DNA_{pm} (800 nM, 50 μ L), the fluorescence spectra of the resulting solutions were recorded by operating the fluorescence spectrophotometer at an excitation wavelength of 480 nm.

Analysis of DNA_{pm} and DNA_{mm1} in serum. Blood samples were collected from a healthy adult female with the age of 26 years. To obtain serum samples, the collected

whole blood samples were immediately centrifuged at 3000 rpm for 10 min at 4 °C C. Serum samples were diluted to 50-fold with the solution that was used for the A_{16} -MB- A_{16} , T_{16} -MB- T_{16} , and C_{16} -MB- C_{16} probes. The obtained solutions were spiked with 80 nM DNA_{pm} and 80 nM DNA_{mm1}. After that, we incubated each hairpin-shaped MB with the spiked sample for 30 min and recorded the fluorescence spectra.

Reference

1. N. Dave and J. Liu. J Phys. Chem. B 2011, 114, 15694-15699.

Table 1. DNA sequences of MBs and tested DNA

Name	Sequence (5'-3')
A ₁₆ -MB-A ₁₆	FAM-A ₁₆ CCA GAT ACT CAC CGG A ₁₆ -DABCYL
T ₁₆ -MB-T ₁₆	FAM-T ₁₆ CCA GAT ACT CAC CGG T ₁₆ -DABCYL
C ₁₆ -MB-C ₁₆	FAM-C ₁₆ CCA GAT ACT CAC CGG C ₁₆ -DABCYL
Base-pairing MB	FAM-ACTTAGTT CCA GAT ACT CAC CGG AAC TAAGT-DABCYL
DNA _{pm}	5'-CCG GTG AGT ATC TGG-3'
DNA _{mm1}	5'-CCG GTG A <u>A</u> T ATC TGG -3'
DNA _{mm2}	5'-CCG GTG A \underline{T} T ATC TGG -3'
DNA _{mm3}	5'-CCG GTG A <u>C</u> T ATC TGG -3'
DNA _{mm4}	5'-CCG G <u>A</u> G AGT <u>T</u> TC TGG-3'
DNA _{mm5}	5'-CCG <u>C</u> TG A <u>A</u> T AT <u>G</u> TGG-3'
Non-target DNA	5'-ACA CTG GAC TAT GAT-3'

Table 2. Comparison of different types of MBs for detecting nucleic acids

	BP-MB ^a	T ₇ -MB -T ₇	C ₆ -MB -C ₆	T ₁₆ -MB -T ₁₆	C ₁₆ -MB -C ₁₆	A ₁₆ -MB -A ₁₆
Time for forming a hairpin-shaped MB	-	2 h	NR ^a	>1 h	20 min	3 min
Time for detecting DNA _{pm}	NR ^b	2 h	10 min	8 min	3 min	3 min
Linear range (nM)	NR ^b	2-30	1–40	0.8-80	0.4–40	0.2-80
LOD (nM)	1.5	0.5	NR ^b	0.01	0.1	0.04
Resistance to SSB	No	Yes	Yes	Yes	Yes	Yes
Resistance to nuclease	No	Yes	NR ^b	Yes	Yes	Yes
Resistance to aminothiol	NR ^b	NR ^b	NR ^b	No	No	Yes
Reference	21	21	23	This study	This study	This study

^a BP, base pairing. ^b NR, not reported

Fig. S1. Effect of coralyne concentration on the fluorescence intensity (518 nm) of 10 nM A_{16} -MB- A_{16} . A mixture of A_{16} -MB- A_{16} and coralyne was incubated in a solution containing 100 mM HEPES (pH 7.0) and 200 mM NaCl for 3 min. The error bars represent standard deviations based on three independent measurements.

Fig. S2. Effect of coralyne concentration on the melting point of 10 nM A_{16} -MB- A_{16} . A mixture of A_{16} -MB- A_{16} and coralyne was incubated in a solution containing 100 mM HEPES (pH 7.0) and 200 mM NaCl for 3 min. The error bars represent standard deviations based on three independent measurements.

Fig. S3. Fluorescence spectra of a solution containing 10 nM A_{16} -MB- A_{16} and 1 μ M coralyne in the (a) absence and (b, c) presence of (b) 80 nM DNA_{pm} and (c) 80 nM DNA_{mm1}. A mixture of A_{16} -MB- A_{16} and coralyne was incubated in a solution containing 100 mM HEPES (pH 7.0) and 200 mM NaCl for 3 min. The incubation time between the coralyne– A_{16} -MB- A_{16} complex and tested DNA was 3 min.

Fig. S4. Fluorescence intensity (518 nm) of a solution containing 10 nM A_{16} -MB- A_{16} and 1 μ M coralyne as a functional of temperature. A mixture of A_{16} -MB- A_{16} and coralyne was incubated in a solution containing 100 mM HEPES (pH 7.0) and 200 mM NaCl for 3 min. The error bars represent standard deviations based on three independent measurements.

Fig. S5. Fluorescence spectra of a solution containing (A) 10 nM A_{16} -MB- A_{16} and 4 μ M coralyne and (B) 10 nM A_{16} -MB- A_{16} and 1 μ M coralyne in the (a) absence and (b, c) presence of (b) 80 nM DNA_{mm1} and (c) 80 nM DNA_{pm}. A mixture of A_{16} -MB- A_{16} and coralyne was incubated in a solution containing 100 mM HEPES (pH 7.0) and 200 mM NaCl for 3 min. The incubation time between the coralyne– A_{16} -MB- A_{16} complex and tested DNA was 3 min.

Fig. S6. Fluorescence response of a solution containing 10 nM A_{16} -MB- A_{16} and 4 μ M coralyne after the addition of 0.8–10 nM DNA_{pm}. Inset: plot the value of $(F - F_0)/F_0$ against the concentration of DNA_{pm}. F_0 and F correspond to the fluorescence intensity (518 nm) of a solution containing 10 nM A_{16} -MB- A_{16} and 4 μ M coralyne in the absence and presence of DNA_{pm}. A mixture of A_{16} -MB- A_{16} and coralyne was incubated in a solution containing 100 mM HEPES (pH 7.0) and 200 mM NaCl for 3 min. The incubation time between the coralyne– A_{16} -MB- A_{16} complex and tested DNA was 3 min. (A, B) The error bars represent standard deviations based on three independent measurements.

Fig. S7. Fluorescence intensity (518 nm) of a solution containing 10 nM A_{16} -MB- A_{16} and 1 μ M coralyne in the presence of (A) 10 nM DNA_{pm} and (B) 10 nM DNA_{mm1} as a functional of temperature. A mixture of A_{16} -MB- A_{16} and coralyne was incubated in a solution containing 100 mM HEPES (pH 7.0) and 200 mM NaCl for 3 min. The incubation time between the coralyne– A_{16} -MB- A_{16} complex and tested DNA was 3 min. The error bars represent standard deviations based on three independent measurements.

Fig. S8. Fluorescence spectra of a solution containing 10 nM A_{16} -MB- A_{16} and 4 μ M coralyne in the presence of 80 nM DNA_{pm}, DNA_{mm1}, DNA_{mm2}, and DNA_{mm3}. A mixture of A_{16} -MB- A_{16} and coralyne was incubated in a solution containing 100 mM HEPES (pH 7.0) and 200 mM NaCl for 3 min. The incubation time between the coralyne– A_{16} -MB- A_{16} complex and tested DNA was 3 min.

Fig. S9. Fluorescence spectra of a solution containing 10 nM A_{16} -MB- A_{16} and 4 μ M coralyne in the absence (white bar) and presence of (A) 80 nM DNA_{mm1} (black bar) and a mixture of 80 nM DNA_{pm} and 80 nM DNA_{mm1} (gray bar), (B) 80 nM DNA_{mm4} (black bar) and a mixture of 80 nM DNA_{pm} and 80 nM DNA_{mm4} (gray bar), (C) 80 nM DNA_{mm5} (black bar) and a mixture of 80 nM DNA_{pm} and 80 nM DNA_{pm} and 80 nM DNA_{mm4} (gray bar), (C) 80 nM DNA_{mm5} (black bar) and a mixture of 80 nM DNA_{pm} and 80 nM DNA_{mm5} (gray bar), and (D) 800 nM non-target DNA (black bar) and a mixture of 80 nM DNA_{pm} and 80 nM DNA_{pm} and 80 nM DNA_{mm5}, and non-target DNA (gray bar). The DNA sequence of DNA_{mm4}, DNA_{mm5}, and non-target DNA was shown in Table S1. A mixture of A₁₆-MB-A₁₆ and coralyne was incubated in a solution containing 100 mM HEPES (pH 7.0) and 200 mM NaCl for 3 min. The incubation time between the coralyne–A₁₆-MB-A₁₆ complex and tested DNA was 3 min.

Fig. S10. Fluorescence response of a solution containing 10 nM C_{16} -MB- C_{16} and 6 μ M Ag⁺ after the addition of (A) 0.01 units/ μ L DNase I (5th min) and 80 nM DNA_{pm} (20th min) and (B) 50 nM SSB (5th min) and 80 nM DNA_{pm} (20th min). A mixture of C_{16} -MB- C_{16} and Ag⁺ was incubated in a solution containing 10 mM MOPS (pH 7.0), 100 mM NaNO₃, and 2.5 mM Mg(NO₃)₂ for 20 min. The incubation time between the Ag⁺- C_{16} -MB- C_{16} complex and tested DNA was 3 min. The error bars represent standard deviations based on three independent measurements.

Fig. S11 Fluorescence response of a solution containing 10 nM T_{16} -MB- T_{16} and 1 μ M Hg^{2+} after the addition of (A) 0.01 units/ μ L DNase I (5th min) and 80 nM DNA_{pm} (20th min) and (B) 50 nM SSB (5th min) and 80 nM DNA_{pm} (20th min). A mixture of T_{16} -MB- T_{16} and Hg^{2+} was incubated in a solution containing 5 mM phosphate (pH 7.0) and 20 mM NaCl for 60 min. The incubation time between the $Hg^{2+}-T_{16}$ -MB- T_{16} complex and tested DNA was 8 min. The error bars represent standard deviations based on three independent measurements.

Fig. S12. Effect of Hg^{2+} concentration on the fluorescence intensity (518 nm) of 10 nM T₁₆-MB-T₁₆. A mixture of T₁₆-MB-T₁₆ and Hg^{2+} was incubated in a solution containing 5 mM phosphate (pH 7.0) and 20 mM NaCl for 60 min. The incubation time between the $Hg^{2+}-T_{16}$ -MB-T₁₆ complex and tested DNA was 8 min. The error bars represent standard deviations based on three independent measurements.

Fig. S13. Effect of Ag^+ concentration on the fluorescence intensity (518 nm) of 10 nM C_{16} -MB- C_{16} . A mixture of C_{16} -MB- C_{16} and Ag^+ was incubated in a solution containing 10 mM MOPS (pH 7.0), 100 mM NaNO₃, and 2.5 mM Mg(NO₃)₂ for 20 min. The incubation time between the Ag^+ - C_{16} -MB- C_{16} complex and tested DNA was 3 min. The error bars represent standard deviations based on three independent measurements.

Fig. S14. Temporal change in the fluorescence intensity (518 nm) of a solution containing (A) 10 nM C_{16} -MB- C_{16} and 6 μ M Ag⁺ and (B) 10 nM T_{16} -MB- T_{16} and 1 μ M Hg²⁺. The error bars represent standard deviations based on three independent measurements.

Fig. S15. Effect of (A) 6 μ M Ag⁺ and (B) 1 μ M Hg²⁺concentration on the melting point of 10 nM (A) C₁₆-MB-C₁₆ and (B) T₁₆-MB-T₁₆. The error bars represent standard deviations based on three independent measurements.

Fig. S16. Fluorescence spectra of a solution containing (A) 10 nM C_{16} -MB- C_{16} and 6 μ M Ag⁺ and (B) 10 nM T_{16} -MB- T_{16} and 1 μ M Hg²⁺ in the (a) absence and (b, c) presence of (b) 80 nM DNA_{pm} and (c) 80 nM DNA_{mm1}. (A) A mixture of C_{16} -MB- C_{16} and Ag⁺ was incubated in a solution containing 10 mM MOPS (pH 7.0), 100 mM NaNO₃, and 2.5 mM Mg(NO₃)₂ for 20 min. The incubation time between the Ag⁺- C_{16} -MB- C_{16} complex and tested DNA was 3 min. (B) A mixture of T_{16} -MB- T_{16} and Hg²⁺ was incubated in a solution containing 5 mM phosphate (pH 7.0) and 20 mM NaCl for 60 min. The incubation time between the Hg²⁺- T_{16} -MB- T_{16} complex and tested DNA was 8 min.

Fig. S17. Time course measurement of fluorescence intensity (518 nm) of a solution containing (A) 10 nM C_{16} -MB- C_{16} and 6 μ M Ag⁺ and (B) 10 nM T_{16} -MB- T_{16} and 1 μ M Hg²⁺ upon the addition of 80 nM DNA_{pm}. (A) A mixture of C_{16} -MB- C_{16} and Ag⁺ was incubated in a solution containing 10 mM MOPS (pH 7.0), 100 mM NaNO₃, and 2.5 mM Mg(NO₃)₂ for 20 min. (B) A mixture of T_{16} -MB- T_{16} and Hg²⁺ was incubated in a solution containing 5 mM phosphate (pH 7.0) and 20 mM NaCl for 60 min. The error bars represent standard deviations based on three independent measurements.

Fig. S18. Fluorescence spectra of a solution containing 10 nM base-pairing MB in the (a) absence and (b, c) presence of (b) 100 nM DNA_{pm} and (c) 100 nM DNA_{mm1}.

Fig. S19. Fluorescence intensity (518 nm) of three MBs in the (a) absence and (b, c) presence of (b) GSH and (c) GSH and DNA_{pm}. The incubation times between 10 nM A₁₆-MB-A₁₆ and 4 μ M coralyne, 10 nM C₁₆-MB-C₁₆ and 6 μ M Ag⁺, and 10 nM T₁₆-MB-T₁₆ and 1 μ M Hg²⁺ were 3 , 20, and 60 min, respectively. Three MBs were equilibrated with 4 mM GSH at ambient temperature for 30 min. The coralyne–A₁₆-MB-A₁₆, Ag⁺–C₁₆-MB-C₁₆, and Hg²⁺–T₁₆-MB-T₁₆ complexes were incubated with 80 nM DNA_{pm} for 3, 3, and 8 min, respectively.

Fig. S20. Fluorescence intensity (518 nm) of three MBs obtained after the addition of (a) a diluted serum, (b) a mixture of diluted serum and 80 nM DNA_{mm1}, and (c) a mixture of diluted serum and 80 nM DNA_{pm}. Serum samples were diluted to 50-fold with the solutions, which were used in the preparation of three MBs. Diluted serum samples were spiked with DNA_{mm1} and DNA_{pm}. The resulting solutions were incubated with three MBs at ambient temperature for 30 min. The incubation times between 10 nM A₁₆-MB-A₁₆ and 4 μ M coralyne, 10 nM C₁₆-MB-C₁₆ and 6 μ M Ag⁺, and 10 nM T₁₆-MB-T₁₆ and 1 μ M Hg²⁺ were 3, 20, and 60 min, respectively.