Supplementary Information

A tubular macrocycle from covalently linked anthracene and *meta*-phenylene spacers

K. Hagiwara, Y. Sei, M. Akita, and M. Yoshizawa*

Contents

- Materials and methods
- Synthesis of MOM-protected 1-bromo-3-(2-methoxyethoxy)phenol
- Synthesis of MOM-protected (2-methoxyethoxy)phenyl boronate
- Synthesis of half-tube 2_{MOM} (¹H and ¹³C NMR, ¹H-¹HCOSY, NOESY, HSQC, and MALDI-TOF MS spectra)
- Synthesis of half-tube 2_{OTF} (¹H and ¹³C NMR, ¹H-¹HCOSY, NOESY, HSQC, and MALDI-TOF MS spectra)
- Synthesis of half-tube 2_{Bpin} (¹H and ¹³C NMR, ¹H-¹HCOSY, NOESY, HSQC, and MALDI-TOF MS spectra)
- Synthesis of nanotube 1 (¹H and ¹³C NMR, ¹H-¹HCOSY, NOESY, HSQC, and MALDI-TOF MS spectra)
- Synthesis of half-tube 2'_{MOM}
- Synthesis of half-tube 2'_{OTf}
- Synthesis of half-tube 2'_{Bpin}
- Synthesis of tube 1' (HRMS spectrum and X-ray crystal data)

Materials and methods

NMR: Bruker AVANCE-400 (400 MHz), GC MS: Shimadzu Parvum2/ULBON HR-1, MALDI-TOF MS: Shimadzu AXIMA-CFR Plus, ESI-TOF MS: Bruker micrOTOF II, FT IR: JASCO FT/IR-4200, UV-vis: JASCO V-670DS, Fluorescence: SHIMADZU RF-5300PC, X-ray single crystal structural analysis: Bruker APEXII ULTRA/CCD diffractometer, Elemental analysis: LECO CHNS-932 VTF-900, Absolute PL quantum yield: Hamamatsu C9920-02G with an integration sphere; recycled GPC: JAI

LC-9225NEXT.

Solvents and reagents: TCI Co., Ltd., WAKO Pure Chemical Industries Ltd., KANTO CHEMICAL CO., INC., Sigma-Aldrich Co., and Cambridge Isotope Laboratories, Inc. 1,5-Di(10-bromoanthracen-9-yl)-2,4-di(2-methoxyethoxyl)benzene (**3**) was synthesized according to previously reported procedures (M. Yoshizawa *et al.*, *J. Am. Chem. Soc.*, **2011**, *133*, 11438–11441).

Synthesis of MOM-protected 1-bromo-3-(2-methoxyethoxy)phenol KH-182

3,5-Dibromophenol (4.012 g, 15.92 mmol), K₂CO₃(8.450 g, 61.14 mmol), and dry CH₃CN (40 mL) were added to a 2-necked 100 mL glass flask containing a magnetic stirring bar and the solution was filled with N₂. After stirring the mixture at 0 °C, 2-bromoethoxyl methyl ether (4.80 mL, 51.1 mmol) was added to the solution. The resultant mixture was further stirred at 0 °C for 10 min and then the solution was warmed to 85 °C for 24 h. The crude product was extracted with CH₂Cl₂ and combined organic phase was dried over MgSO₄, filtrated, and concentrated under reduce pressure to obtain a yellow solution. A 2-necked 100 mL glass flask containing a magnetic stirring bar was flame-dried under vacuum and filled with N₂ after cooling to r.t. The yellow solution and dry THF (50 mL) were added to this flask. A hexane solution (2.69 M) of *n*-butyllithium (6.20 mL, 16.7 mmol) was then added dropwise to this flask at -80 °C under N₂. After stirring the mixture at -80 °C for 1 h, a dry THF solution (20 mL) of B(OMe)₃ (2.00 mL, 18.0 mmol) was added to the solution. The resultant mixture was further stirred at -80 °C for 1 h and then the solution was warmed to r.t. for 1 h. Oxone (10.620 g, 17.274 mmol) was added to the solution and stirred for 8 min at r.t. After stirring the mixture, a aqueous solution of NaHSO₃ was added to the solution and the crude product was extracted with CH₂Cl₂ and the combined organic phase was dried

over MgSO₄, filtrated, and concentrated under reduce pressure to obtain a yellow solution. The obtained solution, $K_2CO_3(8.133 \text{ g}, 58.84 \text{ mmol})$, and dry CH₃CN (40 mL) were added to a 2-necked 100 mL glass flask containing a magnetic stirring bar and the solution was filled with N₂. After stirring the mixture at 0 °C, chloromethyl methyl ether (3.20 mL, 42.2 mmol) was added to the solution. The resultant mixture was further stirred at 0 °C for 10 min and then the solution was warmed to r.t. for 24 h. The crude product was extracted with CH₂Cl₂ and combined organic phase was dried over MgSO₄, filtrated, and concentrated under reduce pressure. The crude product was purified by silica-gel column chromatography (hexane:ethyl acetate = 10:1) to give MOM-protected 1-bromo-3-(2-methoxyethoxy)phenol as a yellow solution (3.063 g, 10.52 mmol, 66%).

¹H NMR (400 MHz, CDCl₃, r.t.): δ 6.81 (dd, J = 1.0, 0.8 Hz, 1H), 6.73 (dd, J = 1.0, 0.8 Hz, 1H), 6.70 (dd, J = 1.0, 1.0 Hz, 1H), 5.12 (s, 2H), 4.07 (t, J = 4.8 Hz, 2H), 3.73 (t, J = 4.8 Hz, 2H), 3.46 (s, 3H), 3.44 (s, 3H).

GC-MS : *m*/*z* Calcd. for C₁₁H₁₅BrO₄ 290, Found 290 [M]⁺.

Synthesis of MOM-protected (2-methoxyethoxy)phenylboronic acid pinacol ester KH-189

A 2-necked 100 mL glass flask containing a magnetic stirring bar was flame-dried under vacuum and filled with N₂ after cooling to r.t. MOM-protected 1-bromo-3-(2-methoxyethoxy)phenol (1.549 g, 5.320 mmol) and dry THF (50 mL) were added to this flask. A hexane solution (2.69 M) of *n*-butyllithium (2.20 mL, 5.92 mmol) was then added dropwise to this flask at -80 °C under N₂. After stirring the mixture at -80 °C for 1 h, a dry THF solution (20 mL) of B(OMe)₃ (0.70 mL, 6.3 mmol) was added to the solution. The resultant mixture was further stirred at -80 °C for 1 h and then the solution was warmed to r.t. for 1 h. Pinacol (0.729 g, 6.17 mmol) was

added to the solution and stirred at r.t. for 10 min. After stirring the mixture, AcOH was added to the solution and stirred at r.t. for 24h. The crude product was extracted with CH_2Cl_2 and combined organic phase was dried over MgSO₄, filtrated, and purified by silica-gel column chromatography (hexane:ethyl acetate = 10:1) to afford MOM-protected (2-methoxyethoxy)phenylboronic acid pinacol ester as a yellow solution (0.959 g, 2.83 mmol, 53%).

¹H NMR (400 MHz, CDCl₃, r.t.): δ 7.06 (d, *J* = 2.4 Hz, 1H), 7.00 (d, *J* = 2.4 Hz, 1H), 6.75 (dd, *J* = 2.4, 2.4 Hz, 1H), 5.17 (s, 2H), 4.14 (t, *J* = 4.8 Hz, 2H), 3.74 (t, *J* = 4.8 Hz, 2H), 3.46 (s, 3H), 3.44 (s, 3H), 1.33 (s, 12H).

GC-MS : m/z Calcd. for C₁₇H₂₇BO₆ 338, Found 338 [M]⁺.

E.A.: Calcd. for C₁₇H₂₇BO₆•0.25CH₂Cl₂: C, 56.29; H, 7.46. Found: C, 56.00; H, 7.66.

KH-167-2

3 (0.686 0.932 mmol), Bromoanthracene dimer g. MOM-protected (2-methoxyethoxy)phenylboronic acid pinacol ester (1.826 g, 5.399 mmol), K₃PO₄ (1.159 g, 5.459 mmol), and dry DMF (30 mL) were added to a 2-necked 100 mL glass flask containing a magnetic stirring bar and the solution was stirred under N₂. PdCl₂(PhCN)₂ (0.041 g, 0.11 mmol) and dry DMF (10 mL) were added to a 2-necked 50 mL glass flask containing a magnetic stirring bar and the flask was filled with N₂. A hexane solution (0.95 M) of tri-tert-buthylphosphine (0.20 mL, 0.19 mmol) was added to this flask. After stirring the mixture for 30 min at r.t., the mixture was added to the 100 mL flask and then the resulted solution was further stirred at 80 °C for 24 h. The mixture was concentrated under reduce pressure. The crude product was extracted with CHCl₃. The resultant solid was purified by silica-gel column chromatography (hexane:ethyl acetate = 10:1) to afford half tube 2_{MOM} as a yellow solid (0.632 g, 0.633 mmol, 68%).

¹H NMR (400 MHz, CDCl₃, r.t.): δ 7.97 (d, J = 8.8 Hz, 4H), 7.73 (d, J = 8.8 Hz, 4H), 7.42-7.38 (m, 4H), 7.34-7.30 (m, 5H), 7.13 (s, 1H), 6.84-6.83 (m, 2H), 6.78 (br, 1H), 6.72 (br, 1H), 6.69 (br, 1H), 6.63 (br, 1H), 5.23 (s, 2H), 5.17 (s, 2H), 4.18-4.09 (m, 8H), 3.78 (t, J = 4.8 Hz, 2H), 3.71 (t, J = 4.8 Hz, 2H), 3.53 (s, 3H), 3.48 (s, 3H), 3.47 (s, 3H), 3.42 (s, 3H), 3.37 (t, J = 5.2 Hz, 4H), 2.95 (s, 3H), 2.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, r.t.): δ 160.0 (C_q), 158.5 (C_q), 141.5 (C_q), 137.3 (CH), 136.7 (C_q), 133.6 (C_q), 130.5 (C_q), 129.9 (C_q), 127.2 (CH), 125.1 (CH), 120.9 (C_q), 112.5 (CH), 111.3 (CH), 111.0 (C_q), 102.7 (CH), 102.5 (CH), 100.6 (CH), 94.9 (CH₂), 71.1 (CH₂), 71.0 (CH₂), 69.3 (CH₂), 67.6 (CH₂), 59.4 (CH₃), 59.1 (CH₃), 56.3 (CH₃). FT-IR (KBr, cm⁻¹): 3435, 3062, 2926, 2888, 2823, 1593, 1441, 1382, 1266, 1196, 1151, 1127, 1067, 1032, 771.

MALDI-TOF MS (dithranol): *m*/*z* Calcd. for C₆₂H₆₂O₁₂ [M]⁺ 998.42, Found 998.33. 73.54; H, 6.32. Found: C, 73.70; H, 6.17.

E.A.: Calcd for C₆₂H₆₂O₁₂•0.5H₂O: C, 73.86; H, 6.30. Found: C, 73.70; H, 6.17.

Fig. S1. ¹H NMR (400 MHz, CDCl₃, r.t.) spectrum of 2_{MOM} .

Fig. S3. HH COSY (400 MHz, CDCl₃, r.t.) spectrum of 2_{MOM} (aliphatic region).

Fig. S5. NOESY (400 MHz, CDCl₃, r.t.) spectrum of 2_{MOM} (aliphatic region).

KH-167-1

Fig. S10. MALDI-TOF MS (dithranol) spectrum of half tube 2_{MOM} .

Synthesis of half tube 2_{OTf} KH-167-3

To a 100 mL glass flask containing a magnetic stirring bar, half tube 2_{MOM} (0.598 g, 0.599 mmol), THF (10 mL), and methanol (5 mL) were added. Concentrated hydrochloric acid (1.0 mL) was added dropwise to this flask and stirred at r.t. for 24 h. The crude product was extracted with ethyl acetate and combined organic phase was dried over MgSO₄, filtrated, and concentrated under reduce pressure. The resultant solid and pyridine (10 mL) were added to a 2-necked 100 mL glass flask containing a magnetic stirring bar. Triflic anhydride (0.40 mL, 0.40 mmol) was added dropwise to this flask at 0 °C. The solution was stirred at 0 °C for 30 min and at r.t. for 24 h. The crude product was extracted with ethyl acetate and combined organic phase was dried

over MgSO₄, filtrated, and concentrated under reduce pressure. The resultant solid was purified by silica-gel column chromatography (hexane:ethyl acetate = 10:1) to afford half tube 2_{orf} as a yellow solid (0.674 g, 0.574 mmol, 96%).

¹H NMR (400 MHz, CDCl₃, r.t.): δ 8.00 (d, J = 8.4 Hz, 4H), 7.60 (d, J = 8.8 Hz, 4H), 7.44 (dd, J = 8.4, 7.6 Hz, 4H), 7.37 (dd, J = 8.8, 7.6 Hz, 5H), 7.30-7.28 (m, 1H), 7.16 (m, 1H), 7.11 (br, 1H), 7.06 (br, 3H), 7.01 (br, 1H), 6.95 (br, 1H), 4.22 (t, J = 4.4, 2H), 4.16 (m, 6H), 3.80 (t, J = 4.4, 2H), 3.74 (t, J = 4.4, 2H), 3.48 (s, 3H), 3.43 (s, 3H), 3.40 (s, 4H), 2.98-2.96 (m, 5H).

¹³C NMR (100 MHz, CDCl₃, r.t.): δ 160.1 (C_q), 158.5 (C_q), 150.3 (C_q), 142.6 (C_q), 137.1 (CH), 134.6 (C_q), 134.2 (C_q), 130.5 (C_q), 129.8 (C_q), 127.4 (CH), 126.4 (CH), 125.7 (CH), 125.2 (C_q), 120.5 (C_q), 117.8 (CH), 117.6 (C_q), 116.8 (CH), 107.7, (CH), 100.3 (CH), 71.0 (CH₂), 70.9 (CH₂), 69.2 (CH₂), 68.2 (CH₂), 59.4 (CH₃), 59.1 (CH₃).

FT-IR (KBr, cm⁻¹): 3437, 3065, 2929, 2884, 2821, 1609, 1577, 1424, 1385, 1265, 1242, 1212, 1140, 1062, 983, 858, 835, 770, 607.

MALDI-TOF MS (dithranol): m/z Calcd. for $C_{60}H_{52}F_6O_{12}S_2$ [M]⁺ 1174.27, Found 1174.22.

E.A.: Calcd. for $C_{60}H_{52}F_6O_{14}S_2$: C, 61.32; H, 4.46; F, 9.72; S, 5.46. Found: C, 61.19; H, 4.37; F, 9.72; S, 5.25.

Fig. S12. ¹³C NMR (100 MHz, CDCl₃, r.t.) spectrum of 2_{OTf} .

Fig. S13. HH COSY (400 MHz, CDCl₃, r.t.) spectrum of 2_{OTf}.

Fig. S14. NOESY (400 MHz, CDCl₃, r.t.) spectrum of 2_{OTf} (aliphatic region).

Fig. S15. NOESY (400 MHz, CDCl₃, r.t.) spectrum of 2_{OTf} (aromatic region).

Fig. S18. HSQC (400 MHz, CDCl₃, r.t.) spectrum of half tube 2_{OTf} (aromatic region).

kh167-2

Fig. S19. MALDI-TOF MS (dithranol) spectrum of 2_{OTf}.

A 2-necked 200 mL glass flask containing a magnetic stirring bar was flame-dried under vacuum and filled with N₂ after cooling to r.t. Half tube 2_{orr} (0.249 g, 0.212 mmol), bis(pinacolato)diboron (0.140 g, 0.551 mmol), NaOAc (0.094 g, 1.1 mmol), PdCl₂(PPh₃)₂ (0.016 g, 0.023 mmol), and dry DMF (15 mL) were added to this flask, and the solution was stirred at 80 °C for 24 h. The mixture was concentrated under reduce pressure. The crude product was extracted with ethyl acetate and washed with methanol. The resultant solid was purified by silica-gel column chromatography (hexane:ethyl acetate = 10:1) to afford half tube 2_{Bpin} as a yellow solid (0.092 g, 0.081 mmol, 38%).

¹H NMR (400 MHz, CDCl₃, r.t.): δ 8.00 (m, 4H), 7.60 (d, *J* = 8.4 Hz, 4H), 7.53-7.51 (m, 3H), 7.46-7.45 (m, 1H), 7.41-7.40 (m, 4H), 7.34-7.28 (m, 6H), 7.18 (m, 1H), 7.13-7.10 (m, 2H), 4.26 (t, *J* = 4.4, 2H), 4.20 (t, *J* = 4.4, 2H), 4.12-4.11 (m, 4H), 3.80 (t, *J* = 4.4, 2H), 3.75 (t, *J* = 4.4, 2H), 3.47 (s, 3H), 3.43 (s, 3H), 3.38-3.36 (m, 4H), 3.00 (s, 3H), 2.90 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, r.t.): δ 158.5 (C_q), 158.4 (C_q), 140.3 (C_q), 137.2 (CH), 136.7 (CH), 133.4 (C_q), 130.7 (C_q), 130.5 (CH), 130.1 (C_q), 127.4 (CH), 127.1 (CH), 125.0 (CH), 124.9 (CH), 121.5 (CH), 121.2 (C_q), 121.0 (CH), 119.0 (CH), 118.6 (C_q), 100.6 (CH), 84.0 (C_q), 71.3 (CH₂), 71.0 (CH₂), 69.3 (CH₂), 67.6 (CH₂), 59.4 (CH₃), 59.2 (CH₃).

FT-IR (KBr, cm⁻¹): 3445, 3062, 2979, 2928, 2881, 2819, 1603, 1583, 1504, 1454, 1411, 1350, 1263, 1143, 1064, 852, 770.

MALDI-TOF MS (dithranol): *m*/*z* Calcd. for C₇₀H₇₆B₂O₁₂ [M]⁺ 1130.55, Found 1130.54. E.A.: Calcd for C₇₀H₇₆B₂O₁₂•0.5H₂O: C, 73.75; H, 6.81. Found: C, 73.62; H, 6.66.

Fig. S20. ¹H NMR (400 MHz, CDCl₃, r.t.) spectrum of half tube 2_{Bpin}.

Fig. S21. ¹³C NMR (100 MHz, CDCl₃, rt) spectrum of half tube 2_{Bpin} .

Fig. S22. HH COSY (400 MHz, CDCl₃, rt) spectrum of half tube 2_{Bpin} (aliphatic region).

Fig. S23. HH COSY (400 MHz, CDCl₃, rt) spectrum of half tube 2_{Bpin} (aromatic region).

Fig. S24. NOESY (400 MHz, $CDCl_3$, r.t.) spectrum of half tube 2_{Bpin} (aliphatic region).

Fig. S26. HSQC (400 MHz, $CDCl_3$, r.t.) spectrum of half tube 2_{Bpin} (aliphatic region).

Fig. S28. MALDI-TOF MS (dithranol) spectrum of half tube 2_{Bpin}.

Half tubes 2_{OTf} (0.053 g, 0.045 mmol) and 2_{Bpin} (0.050 g, 0.045 mmol), K₃PO₄ (0.056 g, 0.26 mmol), Pd(PPh₃)₄ (0.014 g, 0.012 mmol), and dry DMF (60 mL) were added to a 2-necked 100 mL glass flask containing a magnetic stirring bar and the solution was stirred at 90 °C for 24 h under N₂. The mixture was concentrated under reduce pressure. The crude product was extracted with CHCl₃. The resultant solid was purified by silica-gel column chromatography (hexane:ethyl acetate = 10:1) and GPC to afford anthracene tube **1** as a white solid (3.3 mg, 1.9 µmol, 4%).

¹H NMR (400 MHz, CDCl₃, r.t.): δ 8.80 (d, J = 8.8 Hz, 8H), 8.58-8.56 (m, 12H), 7.24-7.16 (m, 20H), 7.07 (s, 2H), 7.03-7.02 (m, 6H), 4.30 (t, J = 4.4 Hz, 8H), 4.08 (t, J = 5.2 Hz, 8H), 3.85 (t, J = 4.4 Hz, 8H), 3.52 (s, 12H), 3.34 (t, J = 5.2 Hz, 8H), 2.93 (s, 12H).

¹³C NMR (100 MHz, CDCl₃, r.t.): δ 159.5 (C_q), 158.2 (C_q), 141.7 (C_q), 141.5 (C_q), 137.5 (CH), 136.4 (C_q), 133.4 (C_q), 130.2 (C_q), 129.9 (C_q), 127.1 (CH), 127.1 (CH), 125.0 (CH), 122.9 (CH), 120.8 (C_q), 116.5 (CH), 112.6 (CH), 100.6 (CH), 71.3 (CH₂), 71.0 (CH₂), 69.2 (CH₂), 67.8 (CH₂), 59.5 (CH₃), 59.1 (CH₃).

FT-IR (KBr, cm⁻¹): 3446, 3062, 2979, 2926, 2877, 2817, 1585, 1504, 1442, 1429, 1389, 1366, 1312, 1263, 1239, 1192, 1151, 1127, 1104, 1064, 1029, 853, 798, 770.

MALDI-TOF MS (dithranol): m/z Calcd. for $C_{116}H_{104}O_{16}$ [M]⁺ 1753.74, Found 1753.45. HRMS (ESI): m/z Calcd. for $C_{116}H_{104}O_{16}$ [M+Cs]⁺: 1886.6407, Found 1886.6444.

Fig. S32. NOESY (400 MHz, CDCl₃, r.t.) spectrum of nanotube 1 (aliphatic region).

Fig. S34. NOESY (400 MHz, CDCl₃, r.t.) spectrum of nanotube 1 (aromatic region).

Fig. S35. HSQC (400 MHz, CDCl₃, r.t.) spectrum of nanotube 1 (aliphatic region).

Fig. S36. HSQC (400 MHz, CDCl₃, r.t.) spectrum of nanotube 1 (aromatic region).

kh184-2

Fig. S37. MALDI-TOF MS (dithranol) spectrum of nanotube 1.

Synthesis of half tube 2'_{MOM} KH146-1

A 2-necked 200 mL glass flask containing a magnetic stirring bar was flame-dried under vacuum and filled with N₂ after cooling to r.t. 1-Bromo-3-methoxy -5-(methoxymethoxy)benzene (1.138 g, 4.604 mmol) and dry THF (20 mL) were added to this flask. A hexane solution (2.66 M) of *n*-butyllithium (1.90 mL, 5.05 mmol) was then added dropwise to this flask at -80 °C under N₂. After stirring the mixture at -80 °C for 2 h, a dry THF solution (20 mL) of ZnCl₂ (0.772 g, 11.80 mmol) was added to the solution. The resultant mixture was further stirred at -80 °C for 1 h and then the solution was warmed to r.t. for 3 h to obtain (3methoxy-5-(methoxymethoxy)phenyl)

zinc chloride. Bromoanthracene dimer **3** (0.870 g, 1.18 mmol), $PdCl_2(PhCN)_2$ (0.050 g, 0.13 mmol), and dry THF (45 mL) were added to a 2-necked 50 mL glass flask containing a magnetic stirring bar and the flask was filled with N₂. A hexane solution (0.95 M) of tri-*tert*-buthylphosphine (0.25 mL, 0.24 mmol) was added to this flask. After stirring the mixture for 30 min at r.t., the mixture was added to the 200 mL flask and then the resulted solution was further stirred at 80 °C for 4 h. The mixture was concentrated under reduce pressure. The crude product was extracted with ethyl acetate and combined organic phase was dried over MgSO₄, filtrated, and concentrated under reduce pressure. The crude purified by silica-gel column chromatography (hexane:ethyl acetate = 10:1) to afford half tube **2'**_{MOM} as a yellow solid (0.458 g, 0.503 mmol, 43%).

¹H NMR (400 MHz, CDCl₃, r.t.): δ 7.98 (d, *J* = 8.8 Hz, 4H), 7.75 (d, *J* = 8.8 Hz, 4H), 7.42-7.39 (m, 4H), 7.35-7.31 (m, 5H), 7.14 (s, 1H), 6.79-6.78 (m, 3H), 6.71-6.70 (m, 2H), 6.62 (br, 1H), 5.24 (s, 2H), 5.18 (s, 2H), 4.13 (t, *J* = 5.2 Hz, 4H), 3.86 (s, 3H), 3.79 (s, 3H), 3.54 (s, 3H), 3.48 (s, 3H), 3.38 (t, *J* = 5.2 Hz, 4H), 2.95 (s, 3H).

MALDI-TOF MS (dithranol): *m*/*z* Calcd. for C₅₈H₅₄O₁₀ 910.37, Found 910.40 [M]⁺. E.A.: Calcd. for C₅₈H₅₄O₁₀•0.2H₂O: C, 76.21; H, 5.99. Found: C, 76.04; H, 6.02.

Half tube $2'_{MOM}$ (0.458 g, 0.503 mmol), THF (15 mL), and methanol (7.5 mL) were added to a 100 mL glass flask. Concentrated hydrochloric acid (1.0 mL) was added dropwise to this flask and the mixture was stirred at r.t. for 24 h. The crude product was extracted with ethyl acetate and combined organic phase was dried over MgSO₄, filtrated, and concentrated under reduce pressure. Triflic anhydride (0.40 mL, 0.40 mmol) was added dropwise to this flask at 0 °C. The solution was stirred at 0 °C for

30 min and at r.t. for 24 h. The crude product was extracted with ethyl acetate and combined organic phase was dried over MgSO₄, filtrated, and concentrated under reduce pressure. Purification by silica-gel column chromatography (hexane:ethyl acetate = 10:1) gave **2'**_{OTF} (0.272 g, 0.250 mmol, 50%) as a yellow solid.

¹H NMR (400 MHz, CDCl₃, r.t.): δ 8.00 (d, J = 8.4 Hz, 4H), 7.60 (d, J = 8.8 Hz, 4H), 7.45-7.41 (m, 4H), 7.39-7.35 (m, 4H), 7.30-7.28 (m, 1H), 7.16 (s, 1H), 7.08 (br, 1H), 7.04 (br, 1H), 7.00 (br, 3H), 6.98 (br, 1H), 6.94 (br, 1H), 4.16 (t, J = 4.8, 4H), 3.91 (s, 3H), 3.84 (s, 3H), 3.40 (t, J = 4.8, 4H), 2.98 (s, 4H).

MALDI-TOF MS (dithranol): m/z Calcd. for $C_{56}H_{44}F_6O_{12}S_2$ 1086.22, Found 1086.88 [M]⁺.

Half tube **2'**_{OTf} (0.101 g, 0.0926 mmol), bis(pinacolato) diboron (0.063 g, 0.25 mmol), NaOAc (0.047 g, 0.58 mmol), PdCl₂(PPh₃)₂ (0.010 g, 0.014 mmol), and dry DMF (10 mL) were added to a 2-necked 100 mL glass flask containing a magnetic stirring bar. The mixture solution was stirred at 80 °C for 24 h and then concentrated under reduce pressure. The crude product was extracted with ethyl acetate and washed with methanol. The resultant solid was purified by silica-gel column chromatography (hexane:ethyl acetate = 10:1) to afford half tube **2'**_{Bpin} (0.061 g, 0.058 mmol, 63%) as a yellow solid.

¹H NMR (400 MHz, CDCl₃, r.t.): δ 7.99-7.96 (m, 4H), 7.68-7.66 (m, 4H), 7.52-7.46 (m, 4H), 7.44-7.39 (m, 4H), 7.34-7.28 (m, 5H), 7.14-7.13 (m, 2H), 7.08-7.07 (m, 2H), 4.12-4.10 (m, 2H), 3.92 (s, 3H), 3.86 (s, 3H), 3.36 (t, *J* = 5.2, 4H), 3.00 (s, 3H), 2.92 (s, 3H), 1.36 (s, 12H), 1.30 (s, 12H).

MALDI-TOF MS (dithranol): *m*/*z* Calcd. for C₆₆H₆₈B₂O₁₀ 1042.50, Found 1042.23 [M]⁺.

Synthesis of nanotube 1' KH-150

Half tubes **2'**_{OTf} (0.223 g, 0.213 mmol) and **2'**_{Bpin} (0.202 g, 0.186 mmol), K₃PO₄ (0.206 g, 0.972 mmol), Pd(PPh₃)₄ (0.029 g, 0.025 mmol), and dry DMF (70 mL) were added to a 2-necked 100 mL glass flask containing a magnetic stirring bar and the solution was stirred at 90 °C for 24 h under N₂. The mixture was concentrated under reduce pressure. The crude product was extracted with CHCl₃. The resultant solid was purified by silica-gel column chromatography (hexane:ethyl acetate = 10:1) to afford nanotube **1'** (0.035 g, 0.022 mmol, 12%) as a white solid.

¹H NMR (400 MHz, CDCl₃, r.t.): δ 7.80 (d, J = 8.8 Hz, 8H), 7.59 (d, J = 8.8 Hz, 8H), 7.52 (br, 4H), 7.24-7.17 (m, 20H), 7.08 (s, 2H), 7.02 (br, 6H), 4.08 (t, J = 5.2 Hz, 8H), 3.97 (s, 12H), 3.35 (t, J = 5.2Hz, 8H), 2.95 (s, 12H).

MALDI-TOF MS (dithranol): *m*/*z* Calcd. for C₁₀₈H₈₈O₁₂ 1577.63, Found 1577.44 [M]⁺. HRMS (ESI): *m*/*z* Calcd. for C₁₀₈H₈₈O₁₂ [M]⁺: 1577.6304, Found 1577.6300.

Fig. S38. HRMS (ESI) spectrum of nanotube 1'.

Fig. S39. ORTEP drawing of nanotube 1'.

Fig. S40. Crystal packing of nanotube 1'.

Identification code	kh150_4_003	
Empirical formula	C112 H92 C112 O12	
Formula weight	2055.26	
Temperature	90(2) K	
Wavelength	0.71073 Å	
Crystal system	triclinic	
Space group	p-1	
Unit cell dimensions	a = 9.2507(13) Å	$\alpha = 95.404(2)^{\circ}$
	b = 15.609(2) Å	$\beta = 102.159(2)^{\circ}$
	c = 17.265(2) Å	$\gamma = 90.147(2)^{\circ}$
Volume	2425.7(6) Å ³	
Ζ	1	
Density (calculated)	1.407 Mg/m ³	
Absorption coefficient	0.407 mm ⁻¹	
F(000)	1064	
Crystal size	0.20 x 0.07 x 0.04 mm ³	
Theta range for data collection	1.70 to 25.03°.	
Index ranges	-11<=h<=10, -15<=k<=18, -20<=l<=15	
Reflections collected	11489	
Independent reflections	8368 [R(int) = 0.0152]	
Completeness to theta = 25.03°	97.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9839 and 0.9230	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	8368 / 1142 / 738	
Goodness-of-fit on F ²	1.057	
Final R indices [I>2sigma(I)]	$R_1 = 0.0881, wR_2 = 0.2378$	
R indices (all data)	$R_1 = 0.1120, wR_2 = 0.2598$	
Largest diff. peak and hole	1.610 and -1.027 e.Å ⁻³	

Table. S1. Crystal data and structure refinement for 1'