Aryl-Aryl Interaction as Directing Motif in the Stereodivergent Iron-catalyzed Hydrosilylation

of Internal Alkynes

Christian Belger, Bernd Plietker*.

Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart Germany.

bernd.plietker@oc.uni-stuttgart.de

1	General remarks	S-1
2	Preparation of starting materials	S-1
3	Iron-catalyzed hydrosilylation	S-6
4	Hydrosilylation-desilylation sequences (HS-DS-sequences)	S-14
5	References	S-25
6	X-ray structures	S-26
7	Spectra	S-27

1 General remarks

All the reactions and manipulations which are sensitive to air or moisture were performed under dry nitrogen using standard Schlenk techniques. All solvents were purified prior to use. All chemicals were purchased from Acros Organics, Sigma Aldrich or Alfa Aesar. The employed alkynes were synthesized according to a slightly modified literature known procedure.¹ The catalyst FeH(CO)(NO)(PPh₃)₂ (1) was prepared according to slightly improved previously published procedures from commercial iron pentacarbonyl in a one-pot procedure.² NMR spectra were recorded on a Bruker AV 300 spectrometer at 300 MHz (¹H-NMR), 75 MHz (¹³C-NMR), a Bruker AV 500 spectrometer at 500 MHz (¹H-NMR), 125.6 MHz (¹³C-NMR) or a Bruker AV 250 spectrometer at 250 MHz (¹H-NMR), 62.5 MHz (¹³C-NMR). Chemical shifts were reported in ppm down field using tetramethylsilane as an internal standard. IR spectra were measured on a Bruker Vector 22 FT-IR spectrometer in an ATR mode. Mass spectra were measured using electrospray ionization on a Bruker Micro-TOF-Q. All microwave manipulations were carried out on a CEM Discovery 300 watt microwave.

2 Preparation of starting materials

2.1 Preparation of alkynes

2.1.1 General procedure for the preparation of alkynes, GP-I¹

The corresponding p-iodo or p-bromo benzene (1 equiv), $PdCl_2(PPh_3)_2$ (1 mol-%), Cul (4 mol-%) and phenylacetylene (1 equiv) were added to a 50 mL Schlenk flask with a stir bar under an atmosphere of nitrogen. To this was added tetrahydrofuran (1 M) and triethylamine (1 M). The reaction mixture was then stirred at room temperature over night. Thereafter 25 mL of water were added and the reaction mixture was extracted with 4×25 mL diethylether. The combined organic fractions were washed with brine and dried over Na₂SO₄. After filtration, the solvent was removed under reduced pressure. The crude product was purified by means of silica gel chromotagraphy using petroleum ether and ethylacetate as the eluent. The yields were not optimized for the synthesis of alkynes.

2.1.2 1-(4-(2-Phenylethynyl)phenyl)ethanone³

The product was obtained according to GP-I starting from p-iodo-acetophenone (2.46 g, 10.0 mmol) and phenylacetylene (1.1 mL, 10.0 mmol) after silica gel chromatography (10:1 petroleum ether / ethyl acetate) as a pale yellow solid (1.70 g, 7.7 mmol, 77%).

R_f = 0.3 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.98-7.91 (m, 2H), 7.64-7.59 (m, 2H), 7.58-7.52 (m, 2H), 7.40-7.34 (m, 3H), 2.62 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 197.3, 136.2, 131.8, 131.7, 128.8, 128.5, 128.3, 128.2, 122.6, 92.8, 88.7, 26.6 ppm; **IR** (film) 3338 (w), 3063 (w), 2998 (w), 2218 (w), 1676 (s), 1601 (m), 1403 (m), 1358 (m), 1261 (s), 1176 (m), 1070 (m), 957 (m), 832 (s), 758 (s), 690 (s), 640 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 220 (52), 205 (100), 176 (48), 151 (16), 88 (5).

2.1.3 (4-(2-Phenylethynyl)phenyl)methanol⁴

The product was obtained according to GP-I starting from (4-iodophenyl)methanol (2.34 g, 10.0 mmol) and phenylacetylene (1.1 mL, 10.0 mmol) heated to 60 °C overnight after silica gel chromatography (3:1 petroleum ether / ethyl acetate) as a pale yellow solid (1.79 g, 8.6 mmol, 86%).

R_f = 0.4 (petroleum ether / ethyl acetate 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.58-7.48 (m, 4H), 7.40-7.30 (m, 5H), 4.70 (s, 2H), 1.8 (bs, 1H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 141.0, 131.8, 131.6, 128.4, 128.3, 126.9, 123.2, 122.5, 89.5, 89.2, 65.0 ppm; **IR** (film) 3341 (bm), 3049 (w), 2924 (w), 1596 (w), 1510 (m), 1487 (m), 1006 (s), 832 (s), 750 (s), 684 (s), 571 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 208 (100), 191 (20), 178 (84), 165 (15), 151 (15), 102 (10), 77 (10), 63 (7), 51 (8).

2.1.4 Methyl 4-(2-phenylethynyl)benzoate⁵

The product was obtained according to GP-I starting from methyl 4-iodobenzoate (2.62 g, 10.0 mmol) and phenylacetylene (1.1 mL, 10.0 mmol) after silica gel chromatography (10:1 petroleum ether / ethyl acetate) as a pale orange solid (1.94 g, 8.2 mmol, 82%).

R_f = 0.7 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 8.10-7.96 (m, 2H), 7.63-7.50 (m, 4H), 7.41-7.32 (m, 3H), 3.92 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 166.7, 131.7, 131.5, 129.5, 129.4, 128.8, 128.4, 128.0, 122.7, 92.4, 88.7, 52.4 ppm; **IR** (film) 2947 (w), 2849 (w), 2216 (w), 1709 (s), 1604 (m), 1436 (m), 1405 (w), 1309 (w), 1275 (s), 1174 (m), 1105 (s), 959 (m), 855 (m), 762 (s), 691 (s), 645 (m), 614 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 236 (86), 205 (100), 176 (57), 151 (23), 126 (5), 102 (5), 88 (13), 75 (6), 51 (4).

2.1.5 4-(2-Phenylethynyl)benzonitrile⁶

The product was obtained according to GP-I starting from 4-iodobenzonitrile (2.29 g, 10.0 mmol) and phenylacetylene (1.1 mL, 10.0 mmol) heated to 60 °C overnight after silica gel chromatography (10:1 petroleum ether / ethyl acetate) as a yellow solid (1.71 g, 8.4 mmol, 84%).

R_f = 0.50 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.72-7.49 (m, 6H), 7.42-7.33 (m, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 132.1, 132.0, 131.8, 129.2, 128.5, 128.3, 122.3, 118.6, 111.5, 93.8, 87.8 ppm; **IR** (film) 3087 (w), 2226 (m), 2213 (m), 1602 (m), 1502 (m), 1442 (m), 1272 (w), 1175 (w), 1070 (w), 841 (s), 759 (s), 690 (s), 651 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 203 (100), 176 (8), 151 (5), 98 (5), 74 (6), 63 (4), 51 (4).

2.1.6 4-(2-Phenylethynyl)benzenamine⁷

The product was obtained according to GP-I starting from 4-iodobenzenamine (2.19 g, 10.0 mmol) and phenylacetylene (1.1 mL, 10.0 mmol) heated to 60 °C overnight after silica gel chromatography (4:1 petroleum ether / ethyl acetate) as a brown solid (1.45 g, 7.5 mmol, 75%).

R_f = 0.15 (petroleum ether / ethyl acetate 4:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.52-7.46 (m, 2H), 7.38-7.27 (m, 5H), 6.66-6.58 (m, 2H), 3.77 (bs, 2H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 146.7, 133.0, 131.4, 128.3, 127.7, 123.9, 114.8, 112.6, 90.2, 87.4 ppm; **IR** (film) 3475 (w), 3379 (m), 3036 (w), 2210 (m), 1614 (m), 1589 (m), 1513 (m), 1289 (m), 1177 (w), 1136 (w), 825 (s), 755 (s), 688 (s), 649 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 193 (100), 165 (18), 139 (5), 89 (4), 63 (4).

2.1.7 N-(4-(2-phenylethynyl)phenyl)acetamide⁸

The product was obtained according to the following literature described procedure.^[9] To a solution of 4-(2-phenylethynyl)benzenamine (773.0 mg, 4.0 mmol) and NEt₃ (1.1 mL, 8.0 mmol) in 25 mL dichloromethane at 0 °C was added dropwise a solution of acetyl chloride (428 μ L, 6.0 mmol) in 10 mL dichloromethane. The reaction mixture was stirred overnight and allowed to warm to room temperature. The solvent was removed under reduced

pressure and the product was obtained after silica gel chromatography (3:1 petroleum ether / ethyl acetate) as a yellow solid (872.3 mg, 3.7 mmol, 93%).

R_f = 0.10 (petroleum ether / ethyl acetate 3:1); ¹**H-NMR** (300 MHz, DMSO-d6) δ 10.10 (bs, 1H), 7.68-7.55 (m, 2H), 7.53-7.29 (m, 7H), 2.03 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, DMSO-d6) δ 168.6, 139.8, 132.0, 131.2, 128.7, 128.5, 122.5, 118.8, 116.3, 89.5, 88.4, 24.1 ppm; **IR** (film) 3301 (m), 3183 (w), 3114 (w), 1664 (m), 1591 (s), 1526 (s), 1509 (s), 1369 (m), 1322 (s), 1257 (m), 1011 (m), 832 (s), 745 (s), 688 (s), 605 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 235 (40), 207 (46), 193 (100), 165 (12).

2.1.8 1-Chloro-4-(2-phenylethynyl)benzene¹⁰

The product was obtained according to GP-I starting from 1-chloro-4-iodobenzene (2.38 g, 10.0 mmol) and phenylacetylene (1.1 mL, 10.0 mmol) after silica gel chromatography (petroleum ether) as a white solid (1.85 g, 8.7 mmol, 87%).

R_f = 0.45 (petroleum); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.56-7.42 (m, 4H), 7.40-7.28 (m, 5H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 134.3, 132.8, 131.6, 128.7, 128.5, 128.4, 122.9, 121.8, 90.4, 88.3 ppm; **IR** (film) 3048 (w), 2215 (w), 1911 (w), 1586 (m), 1493 (s), 1480 (m), 1398 (m), 1088 (s), 1009 (m), 829 (s), 750 (s), 730 (m), 684 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 212 (100), 176 (35), 151 (17), 106 (8), 88 (11), 75 (9), 51 (4).

2.1.9 1-(2-(4-Methoxyphenyl)ethynyl)benzene¹¹

The product was obtained according to GP-I starting from 1-iodo-4-methoxybenzene (2.34 g, 10.0 mmol) and phenylacetylene (1.1 mL, 10.0 mmol) after silica gel chromatography (10:1 petroleum ether / ethyl acetate) as a pale yellow solid (1.92 g, 9.2 mmol, 92%).

R_f = 0.5 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.57-7.46 (m, 4H), 7.40-7.28 (m, 3H), 6.93-6.86 (m, 2H), 3.83 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 159.7, 133.1, 131.5, 128.4, 128.0, 123.6, 115.4, 114.0, 89.4, 88.1, 55.3 ppm; **IR** (film) 3011 (w), 2838 (w), 2213 (w), 1604 (m), 1592 (m), 1507 (s), 1457 (m), 1439 (m), 1246 (s), 1173 (m), 1025 (s), 835 (s), 752 (s), 688 (s), 519 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 208 (100), 193 (52), 165 (45), 139 (17), 115 (6), 88 (5), 63 (5).

2.1.10 2-Methoxy-5-(2-(3,4,5-trimethoxyphenyl)ethynyl)phenol (26)¹²

The product was obtained according to a literature described procedure¹² starting from 5iodo-2-methoxyphenol (1.25 g, 5.0 mmol) and 3,4,5-Trimethoxyphenylethyne (0.96 g, 5.0 mmol) after silica gel chromatography (3:1 petroleum ether / ethyl acetate) as an pale orange oil (0.91 g, 2.9 mmol, 58%).

R_f = 0.20 (petroleum ether / ethyl acetate 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.09 (d, J = 2.0 Hz, 1H), 7.06 (dd, J = 8.3, 2.0 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 6.75 (s, 2H), 5.62 (s, 1H), 3.92 (s, 3H), 3.88 (s, 6H), 3.87 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 153.1, 147.0, 145.3, 138.6, 124.2, 118.5, 117.5, 116.0, 110.5, 108.7, 88.4, 87.9, 61.0, 56.1, 55.9 ppm; **IR** (film) 3421 (w), 2939 (w), 2252 (w), 1576 (m), 1510 (m), 1356 (m), 1247 (m), 1128 (m), 903 (s), 725 (s), 649 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 314 (100), 299 (63), 271 (16), 241 (16), 157 (22), 142 (15), 99 (16), 69 (11).

2.2 Preparation FeH(CO)(NO)(PPh₃)₂ $(1)^{2,3}$

In a 500 mL two necked flask NaNO₂ (2.6 g, 37.7 mmol) and NaOMe (4.7 g, 87.0) were suspended in 200 mL methanol. $Fe(CO)_5$ (5.03 mL, 37.2 mmol) was added and the reaction mixture refluxed for 3 hours. The solvent was removed under reduced pressure at room temperature while the mixture was protected from direct light. The remaining solid was dissolved in 500 mL of non-dried diethylether and filtered. (1st)

In a 1000 mL three necked flask the diethylether solution obtained in (1st) was placed and PPh₃ (39.0 g, 148.8 mmol) was added. After cooling to 0 °C TFA (4.3 mL, 55.8 mmol) was added dropwise and the reaction mixture stirred for 2 hours at room temperature. The orange precipitate was filtered over a syntered funnel under nitrogen, washed with 50 mL diethylether and dried while the filtrate was discarded. Subsequently the precipitate was washed with non-dried xylene until the filtrate remained colourless, the filtrate was then concentrated under reduced pressure and dried. Finally the orange solid is washed with 125 mL petroleum ether/ethyl acetate 40:1 and dried in vacuo to yield $FeH(CO)(NO)(PPh_3)_2$ (1) (6.66 g, 10.4 mmol, 28%) as an orange solid.

Crystals of $FeH(CO)(NO)(PPh_3)_2$ (1) were obtained by solubilizing the orange solid in xylene, addition of half the volume of pentane and slow evaporation of the solvents under nitrogen at room temperature affording dark orange crystals.

¹**H-NMR** (300 MHz, C₆D₆) δ 7.84-7.66 (m, 12H), 7.08-6.93 (m, 18H), -4.61 (t, J = 78.1 Hz, 1H) ppm; ¹³**C-NMR** (125 MHz, THF-d8) δ 221.3 (t, J = 21.7 Hz), 138.0 (t, J = 23.8 Hz), 133.1 (t, J = 5.8 Hz), 129.5, 128.1, 127.9 (t, J = 5.1 Hz); ³¹**P-NMR** (125 MHz, THF-d8) δ 91.3 (d, J = 77.4 Hz); **IR** (film) 1894 (s), 1682 (s), 1432 (m), 1090 (m), 743 (m), 690 (s); **MS** (EI, 70 eV):

m/z (%) 662 (1; M+Na), 608 (4), 580 (28), 318 (21), 262 (100), 183 (49), 108 (15); **HRMS** (El⁺HR): calcl. for C₃₇H₃₁FeNO₂P₂+Na: calcl. 662.1072, found: 662.1061.

3 Iron-catalyzed hydrosilylation

3.1 Optimization of the iron catalyzed hydrosilylation

3.1.1 Solvent screening

3.1.2 Additive screening

Ph +	PhSiH.	FeH(CO(NO(PPh ₃) ₂ [2.5 m additive [10 mol%]	nol%]	SiPhH ₂	Ph
Ph	1 1101113	THF 1M, 40 °C, 1 h	P	h Ph	Ph SiPhH ₂
5 1 eq.	2 1.1 eq.			<i>E-</i> 6	Z-6
		Additive	GC-yield [%	5]	
		DMAP	70		
		Cul	XXX		
		Me ₃ NO	<10		
		NEt ₃	100		
		N-methyl-morpholine	78		
		Pyridine	100		
		Piperidine	39		

3.1.3 Amount of additive screening

3.2 General Procedure for the Iron-catalyzed hydrosilylation (GP-II):

A 10 mL-Schlenk tube was charged with alkyne (if solid) (1.0 mmol), FeH(CO)(NO)(PPh₃)₂ (1) (0.01-0.05 mmol) and THF (1 mL). Subsequently alkyne (if liquid) (1.0 mmol), triethylamine (0.5 mmol, 138.8 μ L) and the silane (1.1-2.1 mmol) were added and the reaction mixture was stirred for 12 hours at 40-60 °C. Unpolar products were isolated by filtration over a silica plug using pentane. All other products were purified by column chromatography on silica gel.

3.2.1 Hydrosilylation of diphenylacetylene (5) with phenylsilane (2)

The product was obtained according to GP-II starting from diphenylacetylene (**5**) (178.2 mg, 1.0 mmol) and phenylsilane (**2**) (135.6 μ L, 1.1 mmol) using 1 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (6.4 mg, 0.01 mmol) at 40 °C as a mixture of isomers 20:1. The isomers were isolated by filtration over a silica plug (petroleum ether) as a colorless oil (280.7 mg, 0.98 mmol, 98%).

major isomer: phenyl((Z)-1,2-diphenylvinyl)silane (Z-6)

R_f = 0.3 (petroleum ether); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.61 (s, 1H), 7.54-7.48 (m, 2H), 7.43-7.19 (m, 13H), 4.81 (s, 2H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 147.7, 145.5, 138.7, 137.5, 135.5, 131.7, 129.7, 128.9, 128.5, 128.1, 128.0, 127.9, 127.5, 126.8 ppm; **IR** (film) 3053 (w), 3020 (w), 2143 (m), 1588 (w), 1490 (w), 1112 (w), 953 (w), 938 (w), 835 (w), 694 (w) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 286 (100) [M⁻⁺], 208 (58), 182 (73), 165 (11), 130 (28), 105 (23), 77(3), 53 (4); **HRMS** (EI⁺HR): calcl. for C₂₀H₁₈Si: 286.1178, found: 286.1182.

3.2.2 Hydrosilylation of diphenylacetylene (5) with *n*-hexylsilane

The product was obtained according to GP-II starting from diphenylacetylene (**5**) (178.2 mg, 1.0 mmol) and *n*-hexylsilane (161.7 μ L, 1.1 mmol) using 1 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (6.4 mg, 0.01 mmol) at 40 °C as a mixture of isomers 5:1. The isomers were isolated by filtration over a silica plug (petroleum ether) as a colorless oil (276.8 mg, 0.94 mmol, 94%) and separated by semipreparative HPLC.

Major isomer: hexyl((Z)-1,2-diphenylvinyl)silane (Z-7)

R_f = 0.75 (petroleum ether); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.44-7.25 (m, 11H), 4.22 (t, *J* = 3.9 Hz, 2H), 1.28-1.07 (m, 8H), 0.83 (t, *J* = 6.8 Hz, 3H), 0.70-0.60 (m, 2H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 146.3, 145.9, 139.4, 139.0, 128.8, 128.4, 128.0, 127.6, 127.3, 126.5, 32.3, 31.4, 25.2, 22.5, 14.1, 9.8 ppm; **IR** (film) 2955 (w), 2922 (m), 2853 (w), 2135 (m), 1595 (w), 1490 (w), 1443 (w), 955 (m), 937 (m), 834 (s), 763 (s), 694 (s) cm⁻¹; **MS** (EI, 70 eV): *m/z* (%) 294 (100), 210 (82), 180 (39), 165 (16), 132 (87), 105 (47), 97 (7), 84 (14), 77 (7), 43 (5); **HRMS** (EI⁺HR): calcl. for C₂₀H₂₆Si: 294.1804, found: 294.1811.

Minor isomer: hexyl((E)-1,2-diphenylvinyl)silane (E-7)

Could not be separated from hexyl((Z)-1,2-diphenylvinyl)silane (Z-7)

R_f = 0.75 (petroleum ether); ¹**H-NMR** (300 MHz, CDCl₃) δ 4.18 (t, *J* = 3.6 Hz, 2H) ppm;¹³**C-NMR** (125 MHz, CDCl₃) δ 142.0, 140.8, 139.8, 137.0, 129.5, 128.8, 128.0, 127.6, 127.4, 126.2, 32.4, 31.5, 24.9, 22.5, 14.1, 9.3 ppm; **IR** (film) 3023 (w), 2956 (w), 2923 (w), 2853 (w), 2133 (m), 1491 (w), 957 (m), 937 (m), 835 (s), 764 (m), 696 (s) cm⁻¹; **MS** (EI, 70 eV): *m/z* (%) 294 (100), 210 (79), 178 (23), 132 (80), 105 (30), 97 (5), 84 (14); **HRMS** (EI⁺HR): calcl. for $C_{20}H_{26}Sii$: 294.1804, found: 294.1813.

3.2.3 Hydrosilylation of diphenylacetylene (5) with diphenylsilane

The product was obtained according to GP-II starting from diphenylacetylene (**5**) (178.2 mg, 1.0 mmol) and diphenylsilane (185.6 μ L, 1.1 mmol) using 2.5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (16.0 mg, 0.025 mmol) at 60 °C as a mixture of isomers 2:1. The isomers were isolated by filtration over a silica plug (petroleum ether) as a colorless oil (333.5 mg, 0.92 mmol, 92%) and separated by semipreparative HPLC.

Major isomer: diphenyl((Z)-1,2-diphenylvinyl)silane (Z-8)

R_f = 0.75 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.63 (s, 1H), 7.51-7.45 (m, 4H), 7.39-7.27 (m, 8H), 7.25-7.20 (m, 3H), 7.19-7.12 (m, 5H), 5.32 (s, 1H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 148.4, 145.3, 139.4, 138.3, 135.9, 133.5, 129.6, 129.0, 128.0, 127.9, 127.6, 126.3 ppm; **IR** (film) 3052 (w), 3021 (w), 2148 (m), 1587 (w), 1489 (w), 1428 (m), 1114 (m), 789 (m), 731 (m), 696 (s), 557 (w) cm⁻¹; **MS** (EI, 70 eV): *m/z* (%) 362 (100), 284 (90), 259 (22), 207 (27), 181 (65), 155 (5), 105 (24); **HRMS** (EI⁺HR): calcl. for $C_{26}H_{22}Si: 362.1491$, found: 362.1489.

Minor isomer: diphenyl((E)-1,2-diphenylvinyl)silane (E-8)¹³

R_f = 0.75 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.61-7.53 (m, 4H), 7.45-7.31 (m, 6H), 7.23-7.06 (m, 6H), 7.04-6.96 (m, 5H), 5.28 (s, 1H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 142.9, 141.6, 140.2, 136.9, 135.9, 133.0, 129.8, 129.7, 128.6, 128.2, 128.0, 127.9, 127.5, 126.2 ppm; **IR** (film) 3055 (w), 3016 (w), 2122 (m), 1597 (w), 1487 (m), 1427 (m), 1117 (m), 1106 (m), 955 (m), 920 (w), 791 (s), 730 (s), 690 (s), 593 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 362 (32) [M⁺], 284 (57), 259 (19), 207 (33), 181 (100), 105 (63), 79 (9), 53 (10).

3.2.4 Hydrosilylation of diphenylacetylene (5) with dimethylphenylsilane

The product was obtained according to GP-II starting from diphenylacetylene (**5**) (178.2 mg, 1.0 mmol) and dimethylphenylsilane (153.3 μ L, 1.1 mmol) using 2.5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (16.0 mg, 0.025 mmol) at 60 °C as a mixture of isomers 20:1. The isomers were isolated by filtration over a silica plug (petroleum ether) as a colorless oil (305.1 mg, 0.97 mmol, 97%).

Major isomer: dimethyl(phenyl)((E)-1,2-diphenylvinyl)silane (E-10)¹⁴

 $\begin{array}{l} \textbf{R}_{f} = 0.4 \ (\text{petroleum ether}); \ ^{1}\textbf{H-NMR} \ (300 \ \text{MHz}, \ \text{CDCl}_{3}) \ \delta \ 7.58\text{-}7.51 \ (m, \ 2\text{H}), \ 7.39\text{-}7.31 \ (m, \ 3\text{H}), \ 7.27\text{-}7.16 \ (m, \ 3\text{H}), \ 7.10\text{-}7.04 \ (m, \ 3\text{H}), \ 6.97\text{-}6.86 \ (m, \ 4\text{H}), \ 6.82 \ (s, \ 1\text{H}), \ 0.39 \ (s, \ 6\text{H}) \ \text{ppm}; \\ \ ^{13}\textbf{C-NMR} \ (125 \ \text{MHz}, \ \text{CDCl}_{3}) \ \delta \ 144.0, \ 141.3, \ 138.1, \ 136.7, \ 136.2, \ 133.3, \ 128.5, \ 128.1, \ 127.5, \\ \ 126.9, \ 126.7, \ 126.6, \ 126.1, \ 124.7, \ -4.1 \ \text{ppm}; \ \textbf{IR} \ (\text{film}) \ 3052 \ (w), \ 3021 \ (w), \ 2956 \ (w), \ 1597 \ (w), \end{array}$

1489 (m), 1247 (m), 1111 (m), 952 (m), 821 (s), 774 (s), 730 (s), 692 (s), 652 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 314 (100), 299 (49), 271 (12), 236 (17), 221 (60), 197 (26), 178 (22), 135 (97), 121 (17), 105 (12), 43 (7); **HRMS** (EI⁺HR): calcl. for C₂₂H₂₂Si: 314.1491, found: 314.1486.

3.2.5 Hydrosilylation of diphenylacetylene (5) with methylphenylvinylsilane (3)

The product was obtained according to GP-II starting from diphenylacetylene (**5**) (178.2 mg, 1.0 mmol) and methylphenylvinylsilane (166.6 μ L, 1.1 mmol) using 2.5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (16.0 mg, 0.025 mmol) at 60 °C as a mixture of isomers 20:1. The isomers were isolated by filtration over a silica plug (petroleum ether) as a colorless oil (316.7 mg, 0.97 mmol, 97%).

Major isomer: methyl(phenyl)((E)-1,2-diphenylvinyl)(vinyl)silane (E-11)

R_f = 0.20 (petroleum ether); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.62-7.53 (m, 2H), 7.42-7.31 (m, 3H), 7.25-7.12 (m, 3H), 7.11-7.04 (m, 3H), 6.99-6.90 (m, 4H), 6.88 (s, 1H), 6.38 (dd, J = 20.0, 14.7 Hz, 1H), 6.16 (dd, J = 14.7, 3.8 Hz, 1H), 5.78 (dd, J = 20.0, 3.8 Hz, 1H), 0.42 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 143.1, 142.1, 140.7, 137.2, 136.0, 135.5, 134.9, 129.6, 129.3, 128.5, 127.9, 127.8, 127.8, 127.3, 125.8, -4.9 ppm; **IR** (film) 3050 (w), 3020 (w), 2962 (w), 1489 (m), 1427 (m), 1250 (m), 1109 (m), 952 (s), 784 (s), 728 (s), 692 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 326 (100), 311 (18), 248 (35), 233 (25), 222 (16), 207 (21), 197 (30), 178 (13), 147 (59), 121 (70), 105 (12), 43 (5); **HRMS** (EI⁺HR): calcl. for C₂₃H₂₂Si: 326.1491, found: 326.1493.

3.2.6 Hydrosilylation of diphenylacetylene (5) with triethylsilane

The product was obtained according to GP-II starting from diphenylacetylene (**5**) (178.2 mg, 1.0 mmol) and triethylsilane (159.7 μ L, 1.1 mmol) using 5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (32.0 mg, 0.05 mmol) at 60 °C as a mixture of isomers 4:1. The isomers were isolated by filtration over a silica plug (petroleum ether) as a colorless oil (265.1 mg, 0.90 mmol, 90%) and separated by semipreparative HPLC.

Major isomer: triethyl((E)-1,2-diphenylvinyl)silane (E-12)¹⁵

R_f = 0.4 (petroleum ether); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.33-7.15 (m, 3H), 7.13-7.05 (m, 3H), 7.02-6.91 (m, 4H), 6.77 (s, 1H), 0.95 (t, *J* = 7.9 Hz, 9H), 0.64 (q, *J* = 15.5, 7.9 Hz, 6H)

ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 144.1, 143.2, 138.8, 137.4, 129.5, 128.6, 127.9, 127.3, 127.0, 125.5, 7.3, 2.8 ppm; **IR** (film) 2951 (m), 2908 (w), 2873 (m), 1598 (w), 1490 (w), 1236 (w), 1004 (m), 964 (w), 946 (w), 765 (m), 717 (s), 690 (s) cm⁻¹; **MS** (EI, 70 eV): *m/z* (%) 294 (25), 265 (100), 237 (32), 207 (25), 178 (17), 163 (16), 135 (32), 107 (33), 87 (23), 59 (53).

Minor isomer: triethyl((Z)-1,2-diphenylvinyl)silane (Z-12)¹⁶

Could not be isolated. Comparison of raw ¹H-spectra with literature^[15] indicated the mixture to be 4:1. ¹H-NMR (300 MHz, CDCl₃) δ 0.80 (t, *J* = 7.9 Hz, 9H), 0.40 (q, *J* = 7.9 Hz, 6H) ppm.

3.2.7 Hydrosilylation of 1-phenyl-1-pentyne with phenylsilane (2)

The product was obtained according to GP-II starting from 1-phenyl-1-pentyne (158.5 μ L, 1.0 mmol) and phenylsilane (**2**) (135.6 μ L, 1.1 mmol) using 1 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (6.4 mg, 0.01 mmol) at 40 °C as a mixture of isomers 4:1. The isomers were isolated by filtration over a silica plug (petroleum ether) as a colorless oil (224.7 mg, 0.89 mmol, 89%) and separated by semipreparative HPLC.

Major isomer: phenyl((E)-1-phenylpent-1-enyl)silane (regio-E 13)

R_f = 0.60 (petroleum ether); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.55-7.47 (m, 2H), 7.42-7.26 (m, 5H), 7.21-7.13 (1H), 7.07-6.98 (m, 2H), 6.25 (t, *J* = 7.2 Hz, 1H), 4.67 (s, 2H), 2.07 (q, *J* = 7.2 Hz, 2H), 1.47-1.32 (m, 2H), 0.85 (t, *J* = 7.2 Hz, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 147.4, 141.2, 136.3, 135.6, 132.0, 129.6, 128.2, 128.1, 127.9, 125.9, 32.3, 22.6, 13.8 ppm; **IR** (film) 2958 (w), 2926 (w), 2134 (m), 1115 (w), 947 (m), 930 (m), 844 (s), 698 (s) cm⁻¹; **MS** (EI, 70 eV): *m/z* (%) 252 (100) [M⁺⁻], 209 (37), 196 (25), 183 (56), 174 (24), 145 (51), 132 (44), 105 (54), 91 (14), 81 (5), 53 (7); **HRMS** (EI⁺HR): calcl. for C₁₇H₂₀Si: 252.1334, found: 252.1341.

Minor isomer: phenyl((Z)-1-phenylpent-1-enyl)silane (*regio-Z* 13)

R_f = 0.60 (petroleum ether); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.60-7.53 (m, 2H), 7.41-7.26 (m, 5H), 7.25-7.15 (m, 3H), 6.56 (t, *J* = 7.5 Hz, 1H), 4.83 (s, 2H), 2.34 (q, *J* = 7.4 Hz, 2H), 1.49-S-11 1.38 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 149.7, 145.2, 135.3, 134.3, 131.8, 129.6, 128.3, 128.1, 127.2, 126.2, 35.1, 22.8, 13.8; **IR** (film) 2958 (w), 2927 (w), 2133 (m), 1595 (w), 1428 (w), 1115 (m), 1071 (m), 947 (m), 931 (m), 840 (s), 697 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 252 (100) [M⁻⁺], 209 (35), 196 (24), 183 (57), 174 (26), 145 (48), 132 (40), 105 (49), 91 (11), 81 (5), 53 (5); **HRMS** (EI⁺HR): calcl. for C₁₇H₂₀Si: 252.1334, found: 252.1339.

3.2.8 Hydrosilylation of 1-phenyl-1-pentyne with methylphenylvinylsilane (3)

The product was obtained according to GP-II starting from 1-phenyl-1-pentyne (158.5 μ L, 1.0 mmol) and methylphenylvinylsilane (**3**) (166.6 μ L, 1.1 mmol) using 5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (32.0 mg, 0.05 mmol) at 60 °C for 36 hours as a mixture of isomers 2:1. The isomers were isolated by filtration over a silica plug (petroleum ether) as a yellow oil (251.5 mg, 0.86 mmol, 86%) and separated by semipreparative HPLC.

Major isomer: methyl(phenyl)((E)-1-phenylpent-1-enyl)(vinyl)silan (regio-E 14)

R_f = 0.40 (petroleum ether); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.54-7.48 (m, 2H), 7.37-7.29 (m, 3H), 7.23-7.05 (m, 3H), 6.92-6.86 (m, 2H), 6.31 (dd, *J* = 19.7, 14.4 Hz, 1H), 6.13-6.07 (m, 1H), 6.06 (t, *J* = 7.1 Hz, 1H), 7.72 (dd, *J* = 19.7, 4.0 Hz, 1H), 1.97 (dt, *J* = 7.4, 7.2 Hz, 2H), 1.36 (tq, *J* = 14.4, 7.4, 7.2 Hz, 2H), 0.82 (t, *J* = 7.4 Hz, 3H), 0.35 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 145.3, 141.9, 140.8, 136.6, 136.1, 134.8, 134.3, 129.1, 128.3, 127.8, 127.7, 125.4, 32.2, 22.6, 13.8, -4.7 ppm; **IR** (film) 3050 (w), 2957 (m), 1593 (m), 1488 (m), 1428 (m), 1249 (m), 1110 (m), 945 (m), 786 (s), 700 (s), 632 (s) cm⁻¹; **MS** (EI, 70 eV): *m/z* (%) 292 (63), 277 (21), 249 (20), 235 (30), 214 (22), 197 (17), 147 (100), 121 (90), 105 (15), 91 (4), 43 (6); **HRMS** (EI⁺HR): calcl. for C₂₀H₂₄Si: 292.1647, found: 292.1647.

Minor isomer: methyl(phenyl)((E)-1-phenylpent-1-en-2-yl)(vinyl)silane (E 14)

R_f = 0.40 (petroleum ether); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.61-7.55 (m, 2H), 7.40-7.27 (m, 7H), 7.25-7.18 (m, 1H), 6.83 (s, 1H), 6.43 (dd, J = 20.2, 14.5 Hz, 1H), 6.16 (dd, J = 14.5, 3.8 Hz, 1H), 5.80 (dd, J = 20.3, 3.8 Hz, 1H), 2.39-2.31 (m, 2H), 1.45-1.30 (m, 2H), 0.82 (t, J = 7.2 S-12

Hz, 3H), 0.53 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 141.8, 141.0, 138.3, 136.8, 136.3, 134.7, 134.3, 129.1, 128.7, 128.1, 127.8, 126.7, 33.2, 23.3, 14.5, -4.2 ppm; **IR** (film) 3050 (w), 2957 (m), 2870 (w), 1591 (w), 1427 (w), 1249 (m), 1109 (m), 1008 (m), 787 (s), 728 (s), 695 (s), 640 (w) cm⁻¹; **GC-MS** (EI, 70 eV): *m/z* (%) 292 (46), 277 (12), 249 (15), 214 (9), 147 (100), 121 (57), 105 (9), 43 (4); **HRMS** (EI⁺HR): calcl. for C₂₀H₂₄Si: 292.1647, found: 292.1648.

3.2.9 Hydrosilylation of 5-decyne with phenylsilane (2)

The product was obtained according to GP-II starting from 5-decyne (179.8 μ L, 1.0 mmol) and phenylsilane (**2**) (135.6 μ L, 1.1 mmol) using 1 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (6.4 mg, 0.01 mmol) at 40 °C as a mixture of isomers 14:1. The isomers were isolated by filtration over a silica plug (petroleum ether) as a colorless oil (219.3 mg, 0.89 mmol, 89%).

Major isomer: ((E)-dec-5-en-5-yl)phenylsilane (E-15)

R_f = 0.90 (petroleum ether); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.59-7.54 (m, 2H), 7.41-7.31 (m, 3H), 6.00 (t, J = 6.9 Hz, 1H), 4.53 (s, 2H), 2.22-2.09 (m, 4H), 1.40-1-18 (m, 8H), 0.90 (t, J = 6.9 Hz, 3H), 0.84 (t, J = 6.9 Hz, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 146.3, 135.6, 134.0, 132.8, 129.5, 128.0, 31.8, 30.1, 28.6, 22.7, 22.5, 14.0, 13.9 ppm; **IR** (film) 2955 (m), 2925 (m), 2857 (w), 2128 (m), 1428 (w), 1114 (m), 937 (m), 838 (s), 731 (m), 696 (s), 607 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 246 (13), 203 (17), 189 (28), 175 (13), 168 (17), 161 (21), 147 (17), 133 (25), 107 (100), 98 (19), 83 (14), 55 (17); **HRMS** (EI⁺HR): calcl. for C₁₆H₂₆Si: 246.1804, found: 246.1799.

3.2.10 Hydrosilylation of 5-decyne with methylphenylvinylsilane (3)

The product was obtained according to GP-II starting from 5-decyne (179.8 μ L, 1.0 mmol) and methylphenylvinylsilane (**3**) (166.6 μ L, 1.1 mmol) using 2.5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (16.0 mg, 0.025 mmol) at 60 °C as a mixture of isomers 15:1. The isomers were isolated by filtration over a silica plug (petroleum ether) as a colorless oil (260.7 mg, 0.91 mmol, 91%).

Major isomer: ((E)-dec-5-en-5-yl)(methyl)(phenyl)(vinyl)silane (E-16)

 $\mathbf{R}_{f} = 0.90$ (petroleum ether); ¹H-NMR (300 MHz, CDCl₃) δ 7.54-7.47 (m, 2H), 7.38-7.30 (m, 3H), 6.34 (dd, J = 20.0, 14.5 Hz, 1H), 6.09 (dd, J = 14.5, 3.7 Hz, 1H), 5.82 (t, J = 6.9 Hz, 1H),

5.72 (dd, J = 20.0, 3.7 Hz, 1H), 2.18-2.05 (m, 4H), 1.41-1.11 (m, 8H), 0.90 (t, J = 6.9 Hz, 3H), 0.81 (t, J = 6.9 Hz, 3H), 0.41 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 144.3, 137.4, 137.1, 136.8, 134.6, 133.7, 128.9, 127.6, 32.3, 31.8, 29.7, 28.5, 23.0, 22.5, 14.1, 13.9, -4.4 ppm; **IR** (film) 2956 (m), 2926 (m), 2858 (w), 1464 (w), 1249 (m), 1108 (m), 1007 (w), 953 (w), 785 (s), 724 (s), 697 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 286 (30), 271 (39), 215 (19), 147 (100), 121 (95), 107 (19), 71 (7), 43 (8); **HRMS** (EI⁺HR): calcl. for C₁₉H₃₀Si: 286.2117, found: 286.2115.

4 Hydrosilylation-Desilylation-Sequences (HS-DS-sequences)

4.1 Desilylation using TBAF solution (GP-III)

After the required reaction time the reaction mixture of GP-II was transferred to a 25 mL two necked flask under nitrogen without further purification. Another 7.5 mL of THF were added and the reaction mixture cooled to 0 °C. At this point 1.5 mL TBAF-solution (1M in THF) was added and the reaction mixture stirred for 2 hours at 0 °C. Unpolar products were isolated by filtration over a plug of silica using pentane as the eluent. All other products were filtrated over a plug of silica using ethylacetate and after evaporation of the solvent purified by column chromatography on silica gel.

4.1.1 *E*-selective HS-DS-sequence starting from 1-(2-(4-methoxyphenyl)ethynyl) benzene

The product was obtained according to GP-III starting from 1-(2-(4-methoxyphenyl)ethynyl)benzene (208.3 mg, 1.0 mmol) and phenylsilane (**2**) (135.6 μ L, 1.1 mmol) using 1 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (6.4 mg, 0.01 mmol) at 40 °C as a mixture of isomers 17:1 after silica gel chromatography (petroleum ether/ethyl acetate 10:1) as a white solid (201.9 mg, 0.96 mmol, 96%).

Major isomer: 1-(4-methoxystyryl)benzene (E-17)¹⁷

R_f = 0.75 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.52-7.42 (m, 4H), 7.38-7.30 (m, 2H), 7.25-7.18 (m, 1H), 7.07 (d, J = 16.7 Hz, 1H), 6.97 (d, J = 16.7 Hz, 1H), 6.90 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 159.3, 137.7, 130.2, 128.7, 128.2, 127.7, 127.2, 126.6, 126.3, 114.1, 55.4 ppm; **IR** (film) 3019 (w), 2931 (w), 2837 (w), 1661 (m), 1489 (m), 1449 (m), 1248 (m), 1175 (m), 1087 (m), 1032 (m), 1000 (m), 963 (s), 862 (m), 815 (s), 749 (s), 688 (s) cm⁻¹; **MS** (EI, 70 eV): *m/z* (%) 210 (100), 195 (17), 178 (35), 165 (49), 152 (32), 139 (7), 115 (9), 89 (11), 76 (9), 63 (10), 51 (9).

4.1.2 *E*-selective HS-DS-sequence starting from 1-(2-(4-chlorophenyl)ethynyl)benzene

The product was obtained according to GP-III starting from 1-(2-(4-chlorophenyl)ethynyl)benzene (212.7 mg, 1.0 mmol) and phenylsilane (2) (135.6 μ L, 1.1 mmol) using 1 mol% FeH(CO)(NO)(PPh₃)₂ (1) (6.4 mg, 0.01 mmol) at 40 °C as a mixture of isomers 7:1 after silica gel chromatography (petroleum ether) as a white solid (199.7 mg, 0.93 mmol, 93%).

Major isomer: 1-(4-chlorostyryl)benzene (*E*-18)¹⁸

R_f = 0.50 (petroleum ether); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.54-7.48 (m, 2H), 7.46-7.41 (m, 2H), 7.39-7.24 (m, 5H), 7.06 (d, J = 1.6 Hz, 2H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 137.0, 135.9, 133.2, 129.3, 128.9, 128.8, 127.9, 127.7, 127.4, 126.6 ppm; **IR** (film) 3021 (w), 1587 (m), 1488 (m), 1448 (m), 1114 (m), 1085 (s), 1009 (m), 966 (s), 816 (s), 751 (s), 705 (s), 688 (s), 617 (m), 525 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 214 (69), 178 (100), 152 (13), 102 (6), 89 (15), 76 (17), 63 (10), 51 (12).

4.1.3 *E*-selective HS-DS-sequence starting from 4-(2-phenylethynyl)benzoate xx

The product was obtained according to GP-III starting from methyl 4-(2-phenylethynyl)benzoate (236.3 mg, 1.0 mmol) and phenylsilane (**2**) (135.6 μ L, 1.1 mmol) using 1 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (6.4 mg, 0.01 mmol) at 40 °C as a mixture of isomers 1:1 after silica gel chromatography (petroleum ether/ethyl acetate 10:1) as a white solid (119.1 mg, 0.50 mmol, 50%).

Major isomer: methyl 4-styrylbenzoate (E-19)¹⁹

R_f = 0.40 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 8.05-8.00 (m, 2H), 7.59-7.50 (m, 4H), 7.42-7.27 (m, 3H), 7.22 (d, J = 16.5 Hz, 1H), 7.12 (d, J = 16.5 Hz, 1H), 3.92 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 166.9, 141.8, 136.8, 131.2, 130.0, 128.9, 128.8, 128.3, 127.6, 126.8, 126.3, 52.1 ppm; **IR** (film) 3024 (w), 3001 (w), 2945 (w), 1708 (s), 1602 (w), 1434 (m), 1412 (m), 1277 (s), 1179 (m), 1105 (s), 963 (s), 835 (m), 771 (s), 698 (s), 670 (m), 579 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 238 (88), 207 (55), 178 (100), 152 (18), 103 (15), 89 (37), 76 (23), 51 (8).

Byproduct methyl 4-phenethylbenzoate (alk-19):²⁰

An additional 10 % of (**alk-19**) (26.4 mg, 0.1 mmol, 11%)

R_f = 0.40 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.94 (d, J = 8.4 Hz, 2H), 7.31-7.12 (m, 7H), 3.90 (s, 3H), 3.02-2.88 (m, 4H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 167.1, 147.2, 141.2, 129.7, 128.5, 128.4, 128.3, 127.9, 126.1, 52.1, 37.9, 37.5 ppm; **IR** (film) 3027 (w), 2948 (w), 2859 (w), 1716 (s), 1609 (m), 1434 (m), 1275 (s), 1178 (m), 1108 (m), 1020 (w), 841 (m), 767 (m), 745 (m), 699 (s), 632 (s), 528 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 240 (21), 209 (5), 149 (19), 121 (11), 91 (100), 65 (11), 51 (4).

4.1.4 *E*-selective HS-DS-sequence starting from 1-(4-(2-phenylethynyl)phenyl)ethanol

The product was obtained according to GP-III starting from 1-(4-(2-phenylethynyl)phenyl)ethanol (222.3 mg, 1.0 mmol) and phenylsilane (**2**) (258.9 μ L, 2.1 mmol) using 1 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (6.4 mg, 0.01 mmol) at 40 °C as a mixture of isomers 3:1 after silica gel chromatography (petroleum ether/ethyl acetate 3:1) as a white solid (56.1 mg, 0.25 mmol, 25%).

Major isomer: 1-(4-styrylphenyl)ethanol (E-20)²¹

R_f = 0.3 (petroleum ether / ethyl acetate 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.55-7.48 (m, 4H), 7.41-7.27 (m, 5H), 7.16-7.08 (m, 2H), 4.92 (q, J = 6.4 Hz, 1H), 1.77 (bs, 1H), 1.52 (d, J = 6.4 Hz, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 145.3, 137.3, 136.7, 128.7, 128.6, 128.3, 127.6, 126.7, 126.5, 125.8, 70.3, 25.2 ppm; **IR** (film) 3299 (bm), 3026 (w), 2972 (w), 2925 (w), 1447 (m), 1407 (m), 1177 (w), 1071 (s), 1018 (m), 962 (s), 895 (m), 817 (s), 750 (m), 687 (s), 550 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 224 (75), 207 (100), 178 (96), 165 (43), 152 (24), 115 (12), 103 (45), 89 (12), 77 (35), 63 (12), 51 (15).

4.1.5 *E*-selective HS-DS-sequence starting from (4-(2-phenylethynyl)phenyl)methanol

The product was obtained according to GP-III starting from (4-(2-phenylethynyl)phenyl)methanol (208.3 mg, 1.0 mmol) and phenylsilane (**2**) (258.9 μ L, 2.1 mmol) using 1 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (6.4 mg, 0.01 mmol) at 40 °C as a mixture of isomers 9:1 after silica gel chromatography (petroleum ether/ethyl acetate 3:1) as a white solid (159.8 mg, 0.76 mmol, 76%).

Major isomer: (4-styrylphenyl)methanol (E-22)²²

R_f = 0.25 (petroleum ether / ethyl acetate 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.56-7.48 (m, 4H), 7.41-7.32 (m, 4H), 7.29-7.23 (m, 1H), 7.11 (s, 2H), 1.65 (bs, 1H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 140.2, 137.3, 136.8, 128.8, 128.7, 128.2, 127.7, 127.4, 126.7, 126.5, 65.2 ppm; **IR** (film) 3285 (bm), 3022 (w), 2922 (w), 2867 (w), 14446 (m), 1418 (w), 1033 (m), 1012 (w), 970 (s), 956 (s), 812 (s), 687 (s) cm⁻¹; **GC-MS** (EI, 70 eV): m/z (%) 210 (100), 179 (80), 165 (28), 152 (15), 115 (15), 103 (23), 91 (10), 77 (26), 63 (7), 51 (9).

4.1.6 *E*-selective HS-DS-sequence starting from 4-(2-phenylethynyl)benzonitrile

The product was obtained according to GP-III starting from 4-(2-phenylethynyl)benzonitrile (203.2 mg, 1.0 mmol) and phenylsilane (**2**) (135.6 μ L, 1.1 mmol) using 1 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (6.4 mg, 0.01 mmol) at 40 °C as a mixture of isomers 3:1 after silica gel chromatography (petroleum ether/ethyl acetate 10:1) as a white solid (145.7 mg, 0.71 mmol, 71%).

Major isomer: 4-styrylbenzonitrile (E-23)²³

R_f = 0.30 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.61-7.51 (m, 6H), 7.43-7.29 (m, 3H), 7.22 (d, J = 16.3 Hz, 1H), 7.09 (d, J = 16.3 Hz, 1H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 141.9, 136.3, 132.5, 132.4, 128.9, 128.7, 126.9, 126.8, 126.7, 119.1, 110.6 ppm; **IR** (film) 3024 (w), 2224 (m), 1600 (m), 1503 (m), 1412 (w), 1174 (w), 971 (m), 871 (w), 823 (s), 757 (s), 718 (s), 690 (s), 647 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 205 (100), 190 (41), 176 (15), 165 (14), 151 (8), 102 (8), 89 (9), 76 (11), 63 (9), 51 (10).

Byproduct methyl 4-phenethylbenzonitrile (alk-23):²⁴

An additional 10 % of (alk-23) (20.7 mg, 0.1 mmol, 10%)

R_f = 0.30 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.58-7.52 (m, 2H), 7.32-7.17 (m, 5H), 7.15-7.09 (m, 2H), 3.03-2.88 (m, 4H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 147.3, 140.6, 132.1, 129.3, 128.4, 126.3, 119.1, 109.9, 37.9, 37.2 ppm; **IR** (film) 3023 (w), 2925 (w), 2860 (w), 2225 (s), 1600 (m), 1500 (w), 1490 (m), 1451 (w), 1176 (m),

1071 (m), 863 (m), 822 (s), 751 (s), 703 (s) cm⁻¹; **MS** (EI, 70 eV): *m/z* (%) 207 (18), 91 (100), 65 (15).

4.1.7 *E*-selective HS-DS-sequence starting from 4-(2-phenylethynyl)benzenamine

The product was obtained according to GP-III starting from 4-(2-phenylethynyl)benzenamine (193.2 mg, 1.0 mmol) and phenylsilane (**2**) (258.9 μ L, 2.1 mmol) using 1 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (6.4 mg, 0.01 mmol) at 40 °C as a mixture of isomers 20:1 after silica gel chromatography (petroleum ether/ethyl acetate 3:1) as a pale brown solid (179.6 mg, 0.92 mmol, 92%).

Major isomer: 4-styrylbenzenamine (E-24)²⁵

R_f = 0.25 (petroleum ether / ethyl acetate 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.50-7.44 (m, 2H), 7.37-7.29 (m, 4H), 7.24-7.17 (m, 1H), 7.03 (d, J = 16.3 Hz, 1H), 6.91 (d, J = 16.3 Hz, 1H), 6.71.6.65 (m, 2H), 3.74 (bs, 2H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 146.2, 137.9, 128.7, 128.6, 128.0, 127.8, 126.9, 126.1, 125.1, 115.2 ppm; **IR** (film) 3444 (w), 3358 (m), 3027 (w), 1613 (s), 1588 (s), 1513 (s), 1282 (m), 1268 (m), 1177 (m), 966 (s), 817 (s), 753 (m), 689 (s), 592 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 195 (100), 180 (12), 165 (12), 152 (7), 117 (5), 89 (5), 77 (4), 63 (5), 51 (5).

4.1.8 *E*-selective HS-DS-sequence starting from N-(4-(2-phenylethynyl)phenyl) acetamide

The product was obtained according to GP-III starting from N-(4-(2-phenylethynyl)phenyl)acetamide (235.3 mg, 1.0 mmol) and phenylsilane (**2**) (258.9 μ L, 2.1 mmol) using 1 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (6.4 mg, 0.01 mmol) at 40 °C as a mixture of isomers 14:1 after silica gel chromatography (petroleum ether/ethyl acetate 1:1) as a yellow solid (213.6 mg, 0.90 mmol, 90%).

Major isomer: N-(4-styrylphenyl)acetamide (E-25)²⁶

R_f = 0.20 (petroleum ether / ethyl acetate 1:1); ¹**H-NMR** (300 MHz, DMSO-d6) δ 10.07 (s, 1H), 7.68-7.55 (m, 6H), 7.43-7.36 (m, 2H), 7.31-7.24 (m, 1H), 7.22-7.13 (m, 2H), 2.10 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, DMSO-d6) δ 168.3, 138.9, 137.2, 131.8, 128.6, 128.0, 127.3, 126.9, 126.8, 126.2, 119.0, 24.0; **IR** (film) 3297 (m), 3180 (w), 3112 (w), 1661 (s), 1592 (s), 1511 (s), 1408 (m), 1320 (m), 968 (s), 823 (s), 756 (s), 715 (s), 691 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 237 (77), 207 (32), 195 (100), 180 (13), 165 (25), 152 (14), 89 (6), 51 (5);

4.1.9 E-selective HS-DS-sequence starting from 2-methoxy-5-(2-(3,4,5-trimethoxy phenyl)ethynyl)phenol (26)

The product was obtained according to GP-III starting from 2-methoxy-5-(2-(3,4,5-trimethoxyphenyl)ethynyl)phenol (**26**) (157.2 mg, 0.5 mmol) and phenylsilane (**2**) (135.6 μ L, 1.1 mmol) using 2.5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (8.0 mg, 0.0125 mmol) at 60 °C as a mixture of isomers 3:1 after silica gel chromatography (petroleum ether/ethyl acetate 3:1) as an orange oil (112.3 mg, 0.36 mmol, 71%).

Major isomer: 5-(3,4,5-trimethoxystyryl)-2-methoxyphenol (E-27)²⁷

R_f = 0.2 (petroleum ether / ethyl acetate 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.14 (d, *J* = 2.1 Hz, 1H), 6.97 (dd, *J* = 8.5, 2.1 Hz, 1H), 6.90 (d, *J* = 3.9 Hz, 2H), 6.84 (d, *J* = 8.5 Hz, 1H), 6.71 (s, 2H), 5.60 (bs, 1H), 3.92 (s, 9H), 3.86 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 153.5, 146.5, 145.9, 137.7, 133.3, 131.0, 127.8, 127.1, 119.2, 111.8, 110.7, 103.4, 61.0, 56.2, 56.0 ppm; **IR** (film) 3381 (bm), 2935 (m), 2836 (w), 1731 (w), 1685 (w), 1578 (s), 1505 (s), 1458 (s), 1417 (s), 1327 (s), 1119 (s), 1000 (m), 850 (m), 820 (m), 658 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 316 (57), 301 (39), 207 (100), 115 (5), 105 (4), 77 (4).

4.2 Desilylation using NaOH/MeOH (GP-IV)

After the required reaction time the reaction mixture of GP-II was transferred to a 10 mL microwave flask under nitrogen without further purification. After the addition of 1.5 mL THF, 1 mL MeOH and 1 mL 2 N NaOH the vial was transferred to the microwave and kept at 130 °C for 10 minutes. Unpolar products were isolated by filtration over a plug of silica using pentane as the eluent. All other products were filtrated over a plug of silica using ethylacetate and after evaporation of the solvent purified by column chromatography on silica gel.

4.2.1 *Z*-selective HS-DS-sequence starting from 1-(2-(4-methoxyphenyl)ethynyl) benzene

The product was obtained according to GP-IV starting from 1-(2-(4-methoxyphenyl)ethynyl)benzene (208.3 mg, 1.0 mmol) and methylphenylvinylsilane (**3**) (183.3 μ L, 1.1 mmol) using 2.5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (16.0 mg, 0.025 mmol) at 60 °C as a mixture of isomers 20:1 after silica gel chromatography (petroleum ether/ethyl acetate 10:1) as a colourless oil (195.6 mg, 0.93 mmol, 93%).

Major isomer: 1-(4-methoxystyryl)benzene (Z-17)²⁸

R_f = 0.75 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.31-7.13 (m, 7H), 6.80-6.71 (m, 2H), 6.56-6.47 (m, 2H), 3.78 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 158.7, 137.6, 130.1, 129.8, 129.7, 128.8, 128.7, 128.2, 126.9, 112.6, 55.2 ppm; **IR** (flüssigfilm) 3006 (w), 2953 (w), 2834 (w), 1605 (m), 1508 (s), 1460 (m), 1443 (m), 1247 (s), 1175 (m), 1032 (m), 829 (m), 770 (m), 695 (s), 635 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 210 (100), 195 (19), 179 (15), 165 (47), 152 (34), 139 (8), 128 (6), 115 (10), 89 (12), 63 (9), 51 (7).

4.2.2 Z-selective HS-DS-sequence starting from 1-(2-(4-chlorophenyl)ethynyl)benzene

The product was obtained according to GP-IV starting from 1-(2-(4-chlorophenyl)ethynyl)benzene (212.7 mg, 1.0 mmol) and methylphenylvinylsilane (**3**) (183.3 μ L, 1.1 mmol) using 2.5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (16.0 mg, 0.025 mmol) at 60 °C as a mixture of isomers 10:1 after silica gel chromatography (petroleum ether) as a colourless oil (204.0 mg, 0.95 mmol, 95%).

Major isomer: 1-(4-chlorostyryl)benzene (Z-18)²⁶

R_f = 0.50 (petroleum ether); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.27-7.21 (m, 7H), 6.62 (d, J = 12.3 Hz, 1H), 6.52 (d, J = 12.3 Hz, 1H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 136.9, 135.6, 132.7, 130.9, 130.2, 128.9, 128.8, 128.4, 128.3, 127.3 ppm; **IR** (film) 3013 (w), 1487 (s), 1446 (w), 1089 (s), 1013 (m), 919 (m), 872 (m), 822 (s), 726 (m), 695 (s), 599 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 214 (60), 178 (100), 152 (13), 89 (26), 76 (27), 63 (11), 51 (12).

4.2.3 Z-selective HS-DS-sequence starting from methyl 4-(2-phenylethynyl)benzoate

The product was obtained according to GP-IV starting from methyl 4-(2-phenylethynyl)benzoate (236.3 mg, 1.0 mmol) and methylphenylvinylsilane (**3**) (183.3 μ L, 1.1 mmol) using 2.5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (16.0 mg, 0.025 mmol) at 60 °C as a mixture of isomers 10:1 after silica gel chromatography (petroleum ether/ethyl acetate 10:1) as a colourless oil (181.1 mg, 0.76 mmol, 76%).

Major isomer: methyl 4-styrylbenzoate (Z-19)²³

R_f = 0.4 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.89 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.24-7.18 (m, 5H), 6.71 (d, J = 12.4 Hz, 1H), 6.61 (d, J = 12.4 Hz, 1H), 3.90 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 167.1, 142.4, 136.7, 132.3, 129.6, 129.3, 128.9, 128.6, 128.4, 127.6, 52.1 ppm; **IR** (film) 3022 (w), 2949 (w), 1717 (s), 1607 (m), 1434 (m), 1311 (w), 1275 (s), 1179 (m), 1105 (m), 1018 (w), 781 (w), 713 (m), 699 (m), 633 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 238 (81), 207 (52), 178 (100), 152 (20), 89 (18), 76 (16), 63 (8), 51 (10).

4.2.4 *Z*-selective HS-DS-sequence starting from 1-(4-(2-phenylethynyl)phenyl) ethanone

The product was obtained according to GP-IV starting from 1-(4-(2-phenylethynyl)phenyl)ethanone (220.3 mg, 1.0 mmol) and methylphenylvinylsilane (**3**) (349.9 μ L, 2.1 mmol) using 2.5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (16.0 mg, 0.025 mmol) at 60 °C as a mixture of isomers 10:1 after silica gel chromatography (petroleum ether/ethyl acetate 3:1) as a white solid (204.5 mg, 0.92 mmol, 92%).

Major isomer: 1-(4-styrylphenyl)ethanone (Z-21)²⁹

R_f = 0.65 (petroleum ether / ethyl acetate 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.84-7.78 (m, 2H), 7.35-7.30 (m, 2H), 7.25-7.15 (m, 5H), 6.73 (d, J = 12.3 Hz, 1H), 6.60 (d, J = 12.3 Hz, 1H), 2.57 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 197.6, 142.3, 136.7, 135.6, 132.5, 129.1, 129.0, 128.8, 128.4, 128.3, 127.6, 26.6 ppm; **IR** (film) 3020 (w), 1675 (s), 1599 (m), 1409 (m), 1356 (m), 1262 (s), 1178 (m), 1103 (w), 963 (s), 867 (m), 819 (s), 723 (m), 689 (s), 591 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 222 (60), 207 (100), 178 (66), 152 (15), 89 (10), 76 (8), 63 (7), 51 (8).

Minor isomer: 1-(4-styrylphenyl)ethanone (E-21)³⁰

R_f = 0.65 (petroleum ether / ethyl acetate 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 8.00-7.93 (m, 2H), 7.63-7.51 (m, 4H), 7.43-7.29 (m, 3H), 7.24 (d, J = 16.5 Hz, 1H), 7.13 (d, J = 16.5 Hz, 1H), 2.61 (s, 3H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 197.5, 142.0, 136.7, 136.0, 131.5, 128.9, 128.8, 128.3, 127.5, 126.8, 126.5, 26.6 ppm; **IR** (film) 3020 (w), 2921 (w), 1675 (s), 1599 (m), 1491 (m), 1449 (m), 1410 (m), 1262 (s), 1178 (m), 1074 (m), 963 (s), 820 (s), 754 (m), 689 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 222 (47), 207 (100), 178 (56), 152 (13), 89 (5), 76 (4), 63 (4), 51 (5).

4.2.5 *Z*-selective HS-DS-sequence starting from methyl (4-(2-phenylethynyl)phenyl) methanol

The product was obtained according to GP-IV starting from (4-(2-phenylethynyl)phenyl)methanol (208.3 mg, 1.0 mmol) and methylphenylvinylsilane (**3**) (349.9 μ L, 2.1 mmol) using 2.5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (16.0 mg, 0.025 mmol) at 60 °C as a mixture of isomers 9:1 after silica gel chromatography (petroleum ether/ethyl acetate 3:1) as a pale yellow oil (199.8 mg, 0.95 mmol, 95%).

Major isomer: (4-styrylphenyl)methanol (Z-22)³¹

R_f = 0.3 (petroleum ether / ethyl acetate 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.28-7.16 (m, 9H), 6.63-6.55 (m, 2H), 4.64 (s, 2H), 1.67 (bs, 1H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 139.6, 137.2, 136.6, 130.4, 129.8, 129.1, 128.8, 128.3, 127.1, 126.9, 65.2 ppm; **IR** (film) 3319 (bm), 3021 (w), 2871 (w), 1491 (m), 1446 (w), 1418 (m), 1211 (w), 1028 (m), 1014 (m), 820 (m), 773 (m), 732 (m), 696 (s) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 210 (100), 179 (69), 165 (28), 152 (15), 115 (14), 103 (25), 77 (26), 63 (8), 51 (10).

4.2.6 Z-selective HS-DS-sequence starting from 4-(2-phenylethynyl)benzonitrile

The product was obtained according to GP-IV starting from 4-(2-phenylethynyl)benzonitrile (203.2 mg, 1.0 mmol) and methylphenylvinylsilane (**3**) (183.3 μ L, 1.1 mmol) using 2.5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (16.0 mg, 0.025 mmol) at 60 °C as a mixture of isomers 12:1 after silica gel chromatography (petroleum ether/ethyl acetate 10:1) as a colourless oil (149.8 mg, 0.73 mmol, 73%).

R_f = 0.30 (petroleum ether / ethyl acetate 10:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.52-7.46 (m, 2H), 7.35-7.29 (m, 2H), 7.28-7.13 (m, 5H), 6.77 (d, J = 12.3 Hz, 1H), 6.57 (d, J = 12.3 Hz, 1H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 142.1, 136.2, 133.3, 132.0, 129.5, 128.8, 128.5, 128.4, 127.8, 119.0, 110.5 ppm; **IR** (film) 3023 (w), 2224 (s), 1601 (s), 1503 (s), 1447 (m), 1413 (m), 1175 (m), 966 (s), 957 (m), 873 (s), 824 (s), 756 (s), 690 (s), 600 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 205 (100), 190 (44), 176 (16), 165 (14), 152 (9), 102 (7), 89 (9), 76 (11), 63 (11), 51 (12).

4.2.7 Z-selective HS-DS-sequence starting from 4-(2-phenylethynyl)benzenamine

The product was obtained according to GP-IV starting from 4-(2-phenylethynyl)benzenamine (193.2 mg, 1.0 mmol) and methylphenylvinylsilane (**3**) (349.9 μ L, 2.1 mmol) using 2.5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (16.0 mg, 0.025 mmol) at 60 °C as a mixture of isomers 20:1 after silica gel chromatography (petroleum ether/ethyl acetate 3:1) as an orange solid (173.8 mg, 0.89 mmol, 89%).

Major isomer: 4-styrylbenzenamine (Z-24)³²

R_f = 0.25 (petroleum ether / ethyl acetate 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.38-7.13 (m, 5H), 7.10-7.04 (m, 2H), 6.57-6.51 (m, 2H), 6.48 (d, J = 12.3 Hz, 1H), 6.43 (d, J = 12.3 Hz, 1H), 3.72 (bs, 2H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 145.3, 138.0, 130.2, 130.1, 128.8, 128.2, 127.6, 127.5, 126.7, 114.8 ppm; **IR** (film) 3446 (m), 3360 (w), 3021 (w), 1615 (s), 1513 (s), 1282 (m), 1177 (m), 966 (m), 819 (s), 692 (s), 593 (m) cm⁻¹; **MS** (EI, 70 eV): *m/z* (%) 195 (100), 180 (12), 165 (12), 152 (9), 89 (5), 77 (4), 63 (5), 51 (5).

4.2.8 *Z*-selective HS-DS-sequence starting from N-(4-(2-phenylethynyl)phenyl) acetamide

The product was obtained according to GP-IV starting from N-(4-(2-phenylethynyl)phenyl)acetamide (235.3 mg, 1.0 mmol) and methylphenylvinylsilane (**3**) (349.9 μ L, 2.1 mmol) using 2.5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (16.0 mg, 0.025 mmol) at 60 °C as a mixture of isomers 20:1 after silica gel chromatography (petroleum ether/ethyl acetate 1:1) as a white solid (194.6 mg, 0.82 mmol, 82%).

Major isomer: 4-styrylbenzenamine (Z-25)³³

 \mathbf{R}_{f} = 0.20 (petroleum ether / ethyl acetate 1:1); ¹H-NMR (300 MHz, DMSO-d6) δ 10.02 (s, 1H), 7.47 (d, *J* = 8.7 Hz, 2H), 7.33-7.22 (m, 5H), 7.20-7.13 (m, 2H), 6.59 (s, 2H), 2.05 (s, 3H) ppm;

¹³**C-NMR** (125 MHz, DMSO-d6) δ 168.2, 138.4, 137.0, 131.3, 129.7, 129.0, 128.9, 128.4, 128.3, 127.1, 118.6, 24.0; **IR** (flüssig) 3436 (m), 1680 (m), 1531 (m), 1051 (s), 1023 (s), 821 (m), 758 (m) cm⁻¹; **MS** (EI, 70 eV): *m/z* (%) 237 (82), 195 (100), 180 (14), 165 (27), 152 (16), 115 (4), 89 (4).

4.2.9 *Z*-selective HS-DS-sequence starting from 2-methoxy-5-(2-(3,4,5-trimethoxy phenyl)ethynyl)phenol (26)

The product was obtained according to GP-IV starting from 2-methoxy-5-(2-(3,4,5-trimethoxyphenyl)ethynyl)phenol (**26**) (157.2 mg, 0.5 mmol) and methylphenylvinylsilane (**3**) (183.3 μ L, 1.1 mmol) using 5 mol% FeH(CO)(NO)(PPh₃)₂ (**1**) (16.0 mg, 0.025 mmol) at 80 °C as a mixture of isomers 8:1 after silica gel chromatography (petroleum ether/ethyl acetate 3:1) as an orange oil (120.2 mg, 0.76 mmol, 76%).

Major isomer: 5-(3,4,5-trimethoxystyryl)-2-methoxyphenol (Z-27)²¹

R_f = 0.2 (petroleum ether / ethyl acetate 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ 6.92 (d, J = 2.1 Hz, 1H), 6.80 (dd, J = 8.3, 2.1 Hz, 1H), 6.73 (d, J = 8.3 Hz, 1H), 6.53 (s, 2H), 6.47 (d, J = 12.3 Hz, 1H), 6.41 (d, J = 12.3 Hz, 1H), 5.51 (s, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.70 (s, 6H) ppm; ¹³**C-NMR** (125 MHz, CDCl₃) δ 152.9, 145.8, 145.2, 137.1, 132.7, 130.6, 129.5, 129.0, 121.1, 115.0, 110.3, 106.1, 60.9, 56.0, 55.9 ppm; **IR** (film) 3428 (bm), 2938 (w), 2836 (w), 1736 (m), 1578 (m), 1507 (m), 1269 (m), 1234 (s), 1122 (s), 1042 (m), 880 (w), 852 (m) cm⁻¹; **MS** (EI, 70 eV): m/z (%) 316 (100), 301 (75), 241 (8), 226 (8), 183 (7), 155 (7), 115 (12), 77 (6), 63 (6), 51 (5).

5 References

- [1] Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* **1975**, *50*, 4467.
- [2] a) Hieber, W.; Beutner, H. Z. anorg. allg. Chem. 1963, 320, 101. B) Cygler, M.;
 Ahmed, F. R.; Forgues, A.; Roustan, J. L. A. Inorg. Chem. 1983, 22, 1026.
- [3] Giancarlo, F.; *Goggiamani*, A.; Sferrazza, A.; Cacchi, S. Angew. Chem. Int. Ed. **2010**, *49*, 4067. *Angewandte Chemie* **2010**, *122*, 4161.
- [4] Elie, C.-R.; Noujeim, N.; Pardin, C.; Schmitzer, A. R. *Chem. Comm.* **2011**, *47*, 1788.
- [5] Pan, D.; Zhang, C.; Ding, S.; Jiao, N. Eur. J. Org. Chem. 2011, 25, 4751.
- [6] Wu, X.-F.; Neumann, H.; Beller, M. Chem. Comm. 2011, 47, 7959.
- [7] Zhao, D.; Gao, C.; Su, X.; He, Y.; You, J.; Xue, Y. Chem. Comm. 2010, 46, 9049.
- [8] Komaromi, A.; Novak, Z. *Chem. Comm.* **2008**, *40*, 4968.
- [9] He, C.; Qian, X.; Xu, Y.; Yang, C.; Yin, L.; Zhu, W. Dalton Trans. **2011**, *40*, 1034.
- [10] Melzig, L.; Metzger, A.; Knochel, P. Chem. Eur. J. 2011, 17, 2948.
- [11] Huang, H.; Jiang, H.; Chen, K.; Liu, H. J. Org. Chem. 2008, 73, 9061.
- [12] Lawrence, N. J.; Ghani, F. A.; Hepworth, L. A.; Hadfield, J. A.; McGown, A. T.; Pritchard, R. G. Synthesis 1999, 9, 1656.
- [13] Tillack, A.; Pulst, S.; Baumann, W.; Baudisch, H.; Kortus, K.; Rosenthal, U. J. Organomet. Chem. 1997, 532, 117.
- [14] Kuroda, S.; Dekura, F.; Sato, Y.; Mori, M. J. Am. Chem. Soc. 2001, 123, 4139.
- [15] Yong, L.; Kirleis, K.; Butenschoen, H. Adv. Synth. Catal. 2006, 348, 833.
- [16] Sudo, T.; Asao, N.; Gevorgyan, V.; Yamamoto, Y. J. Org. Chem. 1999, 64, 2494.
- [17] Alacid, E.; Najera, C. J. Org. Chem. 2009, 74, 8191.
- [18] Wang, G.-W.; Miao, T. Chem. Eur. J. 2011, 17, 5787.
- [19] Tian, J.; Moeller, K. D. Org. Lett. 2005, 7, 5381.
- [20] Dalton, A. I; Tidwell, T. T. J. Org. Chem. 1972, 37, 1504.
- [21] Bezou, P.; Hilberer, A.; Hadziioannou, G. Synthesis 1996, 4, 449.
- [22] McNulty, J.; McLeod, D. Tetrahedron Lett. 2011, 52, 5467.
- [23] Dong, D.-J.; Li, H.-H.; Tian, S.-K. J. Am. Chem. Soc. 2010, 132, 5018.
- [24] Reilly, M. K.; Rychnovsky, S. D. Synlett 2011, 16, 2392.
- [25] Du, Z.; Zhou, W.; Wang, F.; Wang, J.-X.; Bai, L. Synlett **2011**, *3*, 369.
- [26] Civicos, J. F.; Alonso, D. A.; Najera, C. Adv. Synth. Catal. 2011, 353, 1683.
- [27] Gaukroger, K.; Hadfield, J. A.; Hepworth, L. A.; Lawrence, N. J.; McGown, A. T. J. Org. Chem. 2001, 66, 8135.
- [28] Guo, X.; Wang, J.; Li, C.-J. J. Am. Chem. Soc. 2009, 131, 15092.
- [29] Li, J.; Hua, R.; Liu, T. J. Org. Chem. 2010, 75, 2966.

- [30] Alacid, E.; Najera, C. J. Org. Chem. 2009, 74, 2321.
- [31] Barrios-Francisco, R.; Garcia, J. J. Appl. Catal., A 2010, 385, 108.
- [32] Yamane, Y.; Liu, X.; Hamasaki, A.; Yokoyama, T.; Tokunaga, M.; Ishida, T.; Haruta,
 M. *Org. Lett.* 2009, *11*, 5162.
- [33] Stoermer, O. Chem. Ber. **1922**, 55, 1241.

6 X-Ray structures

6.1 FeH(CO)(NO)(PPh₃)₂^[2](1)

Table 1. Crystal data and structure refinement for s17971m.

Identification code	s1797lm
Empirical formula	C37 H31 Fe N O2 P2
Formula weight	639.42
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	orthorhombic, Pca2(1)
Unit cell dimensions	a = 23.0443(6) A $alpha = 90$ $deg.$ $b = 13.4466(4)$ A $beta = 90$ $deg.$ $c = 20.2095(6)$ A $gamma = 90$ $deg.$
Volume	6262.3(3) A^3
Z, Calculated density	8, 1.356 Mg/m^3
Absorption coefficient	0.618 mm^-1
F(000)	2656
Crystal size	0.27 x 0.25 x 0.13 mm
Theta range for data collection	1.75 to 26.38 deg.
Limiting indices	-17<=h<=28, -16<=k<=16, -24<=1<=25
Reflections collected / unique	43410 / 12626 [R(int) = 0.0344]
Completeness to theta = 26.38	99.9 %
Max. and min. transmission	0.9239 and 0.8508
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	12626 / 1 / 783
Goodness-of-fit on F^2	1.026
Final R indices [I>2sigma(I)]	R1 = 0.0324, $wR2 = 0.0689$
R indices (all data)	R1 = 0.0429, $wR2 = 0.0718$
Absolute structure parameter	0.032(9)
Largest diff. peak and hole	0.377 and -0.372 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for s17971m. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
Fe(1A)	2143(1)	4499(1)	4517(1)	21(1)
P(1A)	1320(1)	5286(1)	4487(1)	16(1)
P(2A)	3028(1)	4599(1)	4145(1)	17(1)
C(1X)	2347(1)	4866(2)	5308(1)	19(1)
O(1X)	2489(1)	5102(2)	5830(1)	41(1)
N(2X)	1893(1)	3371(2)	4293(1)	25(1)
O(2X)	1685(1)	2600(1)	4153(1)	31(1)
C(1A)	1363(1)	6638(2)	4488(1)	18(1)
C(2A)	1072(1)	7228(2)	4031(1)	27(1)
C(3A)	1137(1)	8255(2)	4034(1)	36(1)
C(4A)	1488(1)	8707(2)	4498(2)	33(1)
C(5A)	1775(1)	8134(2)	4957(2)	38(1)
C(6A)	1714(1)	7109(2)	4947(2)	33(1)
C(7A)	877(1)	4954(2)	3765(1)	19(1)
C(8A)	1126(1)	4933(2)	3142(1)	26(1)
C(9A)	810(1)	4626(2)	2595(1)	29(1)
C(10A)	250(1)	4307(2)	2670(2)	37(1)
C(11A)	5(1)	4291(3)	3286(2)	59(1)
C(12A)	315(1)	4627(3)	3834(2)	43(1)
C(13A)	825(1)	5007(2)	5170(1)	18(1)
C(14A)	842(1)	4059(2)	5444(1)	19(1)
C(15A)	431(1)	3768(2)	5906(1)	23(1)
C(16A)	6(1)	4436(2)	6101(1)	28(1)
C(17A)	-9(1)	5376(2)	5847(1)	30(1)
C(18A)	401(1)	5666(2)	5379(1)	25(1)
C(19A)	3357(1)	5803(2)	4325(1)	20(1)
C(20A)	3057(1)	6669(2)	4162(2)	37(1)
C(21A)	3276(1)	7591(2)	4316(2)	41(1)
C(22A)	3/90(1)	/684(2)	4652(2)	34(1)
C(23A)	4086(I) 2072(1)	6836(Z) E002(2)	4829(2)	35(1)
C(24A)	38/2(1)	5903(2)	46/2(1) 2250(1)	26(1)
C(25A)	31U3(1) 2011(1)	44Z9(Z) 2642(2)	323U(1) 2065(2)	22(1)
C(20A)	2011(1) 2878(1)	3440(3)	2903(2)	42(1) 55(1)
C(27A)	2070(1)	J440(J) 1025(3)	2292(2) 1914(2)	JJ(1)
C(20A)	3518(1)	4023(3)	1914(2) 2104(2)	44(1)
C(2)A)	3453(1)	5022(2)	2861(1)	$\frac{1}{33(1)}$
C(31A)	3555(1)	3693(2)	4470(1)	19(1)
C(32A)	3495(1)	3333(2)	5113(1)	27(1)
C(33A)	3891(1)	2667(2)	5372(2)	31(1)
C(34A)	4353(1)	2346(2)	4988(2)	30(1)
C(35A)	4416(1)	2692(2)	4353(1)	30(1)
C(36A)	4016(1)	3362(2)	4096(1)	26(1)
Fe(1B)	1250(1)	678(1)	2160(1)	21(1)
P(1B)	377(1)	450(1)	2561(1)	16(1)
P(2B)	2123(1)	40(1)	2187(1)	15(1)
N(2Y)	1372(1)	1896(2)	2259(1)	28(1)
O(2Y)	1472(1)	2752(2)	2268(1)	53(1)
C(1Y)	1098(1)	193(2)	1381(1)	20(1)
O(1Y)	1006(1)	-91(2)	845(1)	38(1)
C(1B)	81(1)	-803(2)	2461(1)	19(1)
C(2B)	-518(1)	-967(2)	2440(1)	29(1)

C(3B)	-732(1)	-1932(2)	2435(1)	37(1)
C(4B)	-357(1)	-2730(2)	2449(1)	35(1)
C(5B)	233(1)	-2578(2)	2444(1)	33(1)
C(6B)	452(1)	-1616(2)	2445(1)	24(1)
C(7B)	-196(1)	1250(2)	2210(1)	20(1)
C (8P)	-599(1)	1751(2)	2605(1)	24(1)
C(0B)	-1032(1)	1731(2)	2313(2)	24(1) 30(1)
C(JD)	-1063(1)	2331(2)	1638(2)	33(1)
C(10B)	-663(1)	1928(2)	1030(2) 12/19(2)	35(1)
C(12B)	-234(1)	1349(2)	1532(1)	28(1)
C(12D)	293(1)	680(2)	3451(1)	18(1)
C(14B)	5(1)	30(2)	3872(1)	22(1)
C(15B)	-60(1)	264(2)	4540(1)	26(1)
C(16B)	152(1)	1147(2)	4787(1)	26(1)
C(17B)	433(1)	1803(2)	4364(1)	27(1)
C(18B)	509(1)	1572(2)	3705(1)	25(1)
C(19B)	2543(1)	257(2)	2941(1)	18(1)
C(20B)	3092(1)	-178(2)	3030(1)	31(1)
C(21B)	3414(1)	-4(2)	3594(1)	31(1)
C(22B)	3193(1)	602(2)	4083(2)	39(1)
C(23B)	2664(2)	1016(3)	4007(2)	64(1)
C(24B)	2340(1)	845(3)	3438(2)	48(1)
C(25B)	2612(1)	493(2)	1536(1)	17(1)
C(26B)	2473(1)	1365(2)	1202(1)	22(1)
C(27B)	2849(1)	1764(2)	731(1)	27(1)
C(28B)	3366(1)	1290(2)	592(1)	28(1)
C(29B)	3506(1)	420(2)	913(1)	26(1)
C(30B)	3132(1)	10(2)	1379(1)	22(1)
C(31B)	2143(1)	-1309(2)	2085(1)	18(1)
C(32B)	2170(1)	-1936(2)	2626(1)	28(1)
C(33B)	2139(1)	-2965(2)	2542(2)	39(1)
C(34B)	2083(1)	-3366(2)	1918(1)	33(1)
C(35B)	2046(1)	-2745(2)	1379(1)	30(1)
C(36B)	2074(1)	-1725(2)	1457(1)	23(1)

Table 3. Bond lengths [A] and angles [deg] for s17971m.

- (1-) - (0-)	1
Fe(1A)-N(2X)	1.685(2)
Fe(1A)-C(1X)	1.738(3)
Fe(1A)-P(1A)	2.1722(7)
Fe(1A)-P(2A)	2.1779(7)
Fe(1A)-H(1A)	1.52(3)
P(1A)-C(1A)	1.821(2)
P(1A)-C(13A)	1.829(2)
P(1A)-C(7A)	1.836(3)
P(2A)-C(19A)	1.826(3)
P(2A)-C(25A)	1.830(3)
P(2A)-C(31A)	1.842(2)
C(1X)-O(1X)	1.148(3)
N(2X)-O(2X)	1.177(3)
C(1A)-C(6A)	1.385(4)
C(1A)-C(2A)	1.390(3)
C(2A)-C(3A)	1.390(4)
C(2A)-H(2A)	0.9500
C(3A)-C(4A)	1.379(4)
С(ЗА)-Н(ЗА)	0.9500
C(4A)-C(5A)	1.376(4)
С(4А)-Н(4А)	0.9500
C(5A)-C(6A)	1.386(4)

С(5А)-Н(5А)	0.9500
С(6А)-Н(6А)	0.9500
C(7A)-C(12A)	1.377(4)
C(7A)-C(8A)	1.383(4)
C(8A)-C(9A)	1.388(4)
С(8А)-Н(8А)	0.9500
C(9A)-C(10A)	1.368(4)
С(9А)-Н(9А)	0.9500
C(10A) - C(11A)	1.367(4)
C(10A) - H(10A)	0.9500
C(11A) - C(12A)	1.392(4)
C(11A) - H(11A)	0.9500
C(12A) - H(12A)	0.9500
C(13A) - C(18A)	1,385(3)
C(13A) - C(14A)	1,391(3)
C(14A) - C(15A)	1,387(3)
C(14A) - H(14A)	0 9500
C(15A) - C(16A)	1 385(4)
$C(15\Delta) - H(15\Delta)$	0 9500
$C(16\Delta) - C(17\Delta)$	1,365(4)
$C(16\Delta) - H(16\Delta)$	0 9500
$C(17\Delta) - C(18\Delta)$	1 393(4)
$C(17\Lambda) = H(17\Lambda)$	0 9500
$C(18\lambda) - U(18\lambda)$	0.9500
C(10A) - C(24A)	1 385(3)
C(19A) = C(29A)	1 393(3)
$C(20\lambda) = C(21\lambda)$	1.393(4) 1.375(4)
$C(20\lambda) = U(20\lambda)$	0 9500
$C(21\lambda) - C(22\lambda)$	1 370(4)
$C(21\lambda) = H(21\lambda)$	0 9500
C(22A) - C(23A)	1 376(4)
$C(22\Lambda) = H(22\Lambda)$	0 9500
$C(23\lambda) = C(24\lambda)$	1 385(4)
$C(23\Delta) - H(23\Delta)$	0 9500
$C(24\Delta) - H(24\Delta)$	0.9500
$C(25\lambda) - C(26\lambda)$	1 379 <i>(1</i>)
$C(25\Lambda) - C(30\Lambda)$	1 381(4)
$C(26\Delta) - C(27\Delta)$	1,301(4) 1,395(4)
$C(26\lambda) = H(26\lambda)$	0 9500
$C(27\lambda) - C(28\lambda)$	1 364(5)
$C(27\lambda) = H(27\lambda)$	0 9500
$C(28\lambda) - C(29\lambda)$	1 372(5)
$C(28\lambda) - H(28\lambda)$	0 9500
C(20A) = C(30A)	1 385(4)
$C(29\Delta) - H(29\Delta)$	0 9500
C(20A) - H(30A)	0.9500
$C(31\lambda) - C(36\lambda)$	1 378(3)
$C(31\lambda) - C(32\lambda)$	1 393(7)
$C(32\lambda) = C(32\lambda)$	1.393(4) 1.380(4)
C(32A) = C(33A)	1.300(4)
C(32A) = C(34A)	1 387(4)
$C(33\lambda) - H(33\lambda)$	0 9500
$C(34\Delta) - C(35\Delta)$	1 272//1
C(34A) - H(34A)	1.3/3(4) 0 9500
C(35A) - C(36A)	1,389/41
C(35A) - H(35A)	1,505(4) 0 9500
$C(36\Delta) - H(36\Delta)$	0.9500
$E_{0}(1B) = N(2V)$	1 670700
$F_{P}(1B) = C(1Y)$	1 740(2)
$F_{P}(1B) = P(2B)$	1 2 1 2 7 7 / G
$F_{P}(1B) - P(1B)$	2.10//(0
$F_{P}(1B) - H(1B)$	1 44(3)
P(1B) - C(1B)	1,828(2)
- (- L) (- L)	I.OCO(C)

6)

7)

D(1D) ((1))	1 0 2 5 7 2 1
P(IB) - C(I3B)	1.835(3)
P(1B) - C(7B)	1.846(2)
-() $-()$	1 000(0)
P(ZB) = C(3TB)	1.826(2)
P(2B)-C(19B)	1.828(2)
D(DD) = C(DED)	1 0 2 5 (2)
P(ZB) = C(ZDB)	1.835(2)
N(2Y) - O(2Y)	1.175(3)
$C(1X) \cap (1X)$	1 1 6 0 (2)
C(II) = O(II)	1.100(3)
C(1B)-C(6B)	1.388(4)
$C(1\mathbf{p}) = C(2\mathbf{p})$	1 200/21
C(IB) = C(ZB)	1.390(3)
C(2B)-C(3B)	1.388(4)
$C(2\mathbf{P}) = \mathbf{U}(2\mathbf{P})$	0 9500
	0.9500
C(3B)-C(4B)	1.377(4)
C(3B) = H(3B)	0 9500
C(JD) II(JD)	0.5500
C(4B)-C(5B)	1.376(4)
C(AB) = H(AB)	0 9500
	0.9900
C(5B)-C(6B)	1.389(4)
C(5B) - H(5B)	0 9500
	0.9500
С(6В)-Н(6В)	0.9500
C(7B) - C(12B)	1.379(4)
(1-) $(1-)$	1 200(2)
C(AB) - C(BB)	1.398(3)
C(8B) - C(9B)	1.396(4)
C(0D) U(0D)	
C(OB) = H(OB)	0.9500
C(9B)-C(10B)	1.372(4)
$C(\Omega D) = U(\Omega D)$	0 0 5 0 0
C(9B) = H(9B)	0.9500
C(10B)-C(11B)	1.379(4)
C(10B) = H(10B)	0 9500
	0.9900
C(11B) - C(12B)	1.383(4)
C(11B)-H(11B)	0.9500
C(12D) $U(12D)$	0 0 5 0 0
C(12B) = H(12B)	0.9500
C(13B)-C(14B)	1.390(4)
C(13B) - C(18B)	1,396(3)
G(14D) G(16D)	1 204(4)
C(14B)-C(15B)	1.394(4)
C(14B)-H(14B)	0.9500
C(1ED) = C(1ED)	1 270//)
C(1)D) = C(10D)	1.3/0(4)
С(15В)-Н(15В)	0.9500
C(16P) - C(17P)	1 399(1)
	1.300(4)
С(16В)-Н(16В)	0.9500
C(17B) - C(18B)	1380(4)
O(17D) O(10D)	1.000(1)
C(1/B) - H(1/B)	0.9500
C(18B)-H(18B)	0.9500
C(10D) = C(24D)	1 262(1)
C(19D) = C(24D)	1.302(4)
C(19B)-C(20B)	1.405(4)
C(20B) = C(21B)	1 381(1)
	1.301(4)
С(20В)-Н(20В)	0.9500
C(21B) - C(22B)	1.379(4)
C(21D) II(21D)	
C(ZIB) - H(ZIB)	0.9500
C(22B)-C(23B)	1.349(4)
	0 0 5 0 0
$C(22D) = \Pi(22D)$	0.9000
C(23B)-C(24B)	1.390(4)
C(23B) = H(23B)	0 9500
C(23D) $H(23D)$	0.9500
С(24В)-Н(24В)	0.9500
C(25B)-C(26B)	1.392(3)
C(25D) C(20D)	1 100(2)
C(2JD) = C(JUD)	1.400(3)
С(26В)-С(27В)	1.394(3)
C(26B) - H(26B)	0 9500
	1 0 5 0 0 0
C(Z/B)-C(28B)	1.379(4)
C(27B)-H(27B)	0.9500
C(20D) C(20D)	1 276/11
C(20B) - C(23B)	1.3/0(4)
С(28В)-Н(28В)	0.9500
C(29B) - C(30B)	1 329/11
	1.009(4)
С(29В)-Н(29В)	0.9500
	0.9500
C(30B) - H(30B)	0.9500

C(31B)-C(36B)	1.398(3)
C(32B)-C(33B)	1.397(4)
C(32B)-H(32B)	0.9500
C(33B)-C(34B)	1.378(4)
C(33B)-H(33B)	0.9500
C(34B)-C(35B)	1.374(4)
C(34B)-H(34B)	0.9500
C(35B)-C(36B)	1.381(4)
C(35B)-H(35B)	0.9500
C(36B)-H(36B)	0.9500
N(2X) -Fe(1A) -C(1X) $N(2X) -Fe(1A) -P(1A)$ $C(1X) -Fe(1A) -P(2A)$ $C(1X) -Fe(1A) -P(2A)$ $P(1A) -Fe(1A) -P(2A)$ $N(2X) -Fe(1A) -P(2A)$ $N(2X) -Fe(1A) -P(2A)$ $N(2X) -Fe(1A) -P(2A)$ $N(2X) -Fe(1A) -H(1A)$ $P(1A) -Fe(1A) -H(1A)$ $P(1A) -Fe(1A) -H(1A)$ $P(1A) -Fe(1A) -H(1A)$ $C(1A) -P(1A) -C(7A)$ $C(1A) -P(1A) -Fe(1A)$ $C(1A) -P(2A) -C(31A)$ $C(25A) -P(2A) -C(31A)$ $C(1A) -P(2A) -Fe(1A)$ $C(25A) -P(2A) -Fe(1A)$ $C(31A) -P(2A) -Fe(1A)$ $C(31A) -P(2A) -Fe(1A)$ $C(2A) -C(1A) -Fe(1A)$ $C(2A) -C(1A) -P(1A)$ $C(2A) -C(1A) -P(1A)$ $C(2A) -C(1A) -P(1A)$ $C(3A) -C(2A) -H(2A)$ $C(1A) -C(2A) -H(2A)$ $C(4A) -C(3A) -H(3A)$ $C(2A) -C(4A) -H(4A)$ $C(3A) -C(4A) -H(4A)$ $C(4A) -C(5A) -H(5A)$ $C(4A) -C(5A)$	126.60(11) 97.60(7) 97.13(8) 106.41(7) 92.68(8) 141.04(3) 114.1(11) 193(11) 71.4(10) 70.9(10) 103.76(11) 105.91(11) 105.91(11) 105.91(11) 105.57(12) 103.90(11) 105.57(12) 103.90(11) 102.03(12) 112.01(8) 115.00(8) 115.00(8) 116.98(8) 179.1(3) 175.8(2) 117.9(2) 119.3(2) 122.82(19) 122.82(19) 120.8(2) 119.6 119.6 120.3(3) 119.8 119.8 119.5(3) 120.2 120.0(3) 120.0 121.5(3)
C(1A) - C(0A) - H(0A) $C(5A) - C(6A) - H(6A)$ $C(12A) - C(7A) - C(8A)$ $C(12A) - C(7A) - P(1A)$ $C(8A) - C(7A) - P(1A)$ $C(7A) - C(8A) - C(9A)$ $C(7A) - C(8A) - H(8A)$ $C(9A) - C(8A) - H(8A)$ $C(10A) - C(9A) - C(8A)$ $C(10A) - C(9A) - H(9A)$ $C(8A) - C(9A) - H(9A)$	119.2 119.2 118.4(2) 121.4(2) 119.88(19) 120.9(2) 119.6 119.6 120.0(3) 120.0 120.0

C(11A)-C(10A)-C(9A)	119.7(3)
C(11A)-C(10A)-H(10A)	120.1
C(9A)-C(10A)-H(10A)	120.1
C(10A) - C(11A) - C(12A)	120.5(3)
$C(10\lambda) - C(11\lambda) - H(11\lambda)$	119 8
C(10A) C(11A) II(11A)	110 0
$C(12A) = C(11A) = \Pi(11A)$	119.8
C(7A) - C(12A) - C(11A)	120.5(3)
С(/А)-С(12А)-Н(12А)	119.8
С(11А)-С(12А)-Н(12А)	119.8
C(18A)-C(13A)-C(14A)	119.0(2)
C(18A)-C(13A)-P(1A)	122.6(2)
C(14A)-C(13A)-P(1A)	118.13(18)
C(15A)-C(14A)-C(13A)	120.5(2)
C(15A) - C(14A) - H(14A)	119.7
C(13A) - C(14A) - H(14A)	119.7
C(16A) - C(15A) - C(14A)	$119 \ 4(2)$
$C(16\Lambda) - C(15\Lambda) - U(15\Lambda)$	120 3
$C(10A) - C(15A) - \Pi(15A)$	120.3
C(14A) - C(15A) - H(15A)	120.3
C(1/A) - C(16A) - C(15A)	120.8(2)
C(17A)-C(16A)-H(16A)	119.6
С(15А)-С(16А)-Н(16А)	119.6
C(16A)-C(17A)-C(18A)	119.8(2)
C(16A)-C(17A)-H(17A)	120.1
С(18А)-С(17А)-Н(17А)	120.1
C(13A)-C(18A)-C(17A)	120.4(2)
C(13A)-C(18A)-H(18A)	119.8
C(17A) - C(18A) - H(18A)	119.8
C(24A) - C(19A) - C(20A)	1177(2)
C(24A) - C(19A) - P(2A)	122 9(2)
$C(20\Delta) - C(19\Delta) - P(2\Delta)$	119 13(19)
C(201) = C(201) = C(191)	121 2(2)
C(21n) C(20n) C(10n)	110 /
C(21A) - C(20A) - II(20A)	110 4
C(19A) - C(20A) - H(20A)	120 7(2)
C(22A) - C(21A) - C(20A)	120.7(3)
C(ZZA) - C(ZIA) - H(ZIA)	119.6
C(2UA) - C(2IA) - H(2IA)	119.6
C(21A) - C(22A) - C(23A)	118.9(3)
C(21A)-C(22A)-H(22A)	120.6
С(23А)-С(22А)-Н(22А)	120.6
C(22A)-C(23A)-C(24A)	121.0(2)
С(22А)-С(23А)-Н(23А)	119.5
C(24A)-C(23A)-H(23A)	119.5
C(23A)-C(24A)-C(19A)	120.5(2)
C(23A)-C(24A)-H(24A)	119.7
C(19A)-C(24A)-H(24A)	119.7
C(26A) - C(25A) - C(30A)	119.2(3)
C(26A) - C(25A) - P(2A)	117.6(2)
C(30A) - C(25A) - P(2A)	123 1(2)
C(25A) - C(26A) - C(27A)	$120 \cdot 1 (2)$
C(25A) = C(26A) = U(26A)	110 0
C(23A) - C(20A) - H(20A)	110 0
C(2/A) - C(20A) - H(20A)	119.9
C(28A) - C(27A) - C(26A)	119.9(3)
C(28A) - C(2/A) - H(2/A)	120.1
С (26А) – С (2/А) – Н (2/А)	120.1
C (27A) –C (28A) –C (29A)	120.2(3)
С(27А)-С(28А)-Н(28А)	119.9
С(29А)-С(28А)-Н(28А)	119.9
C(28A)-C(29A)-C(30A)	120.4(3)
С(28А)-С(29А)-Н(29А)	119.8
C(30A)-C(29A)-H(29A)	119.8
C(25A)-C(30A)-C(29A)	120.0(3)
C(25A)-C(30A)-H(30A)	120.0
C(29A)-C(30A)-H(30A)	120.0

$\alpha(2(\pi), \alpha(21\pi), \alpha(20\pi))$	110 1(0)
C(SDA) = C(SIA) = C(SZA)	110.4(2)
C(36A)-C(31A)-P(2A)	121.8(2)
C(32A) - C(31A) - P(2A)	119.84(19)
$C(22\pi)$ $C(22\pi)$ $C(21\pi)$	120.0(2)
C(SSA) = C(SZA) = C(STA)	120.9(3)
C(33A)-C(32A)-H(32A)	119.6
C(31A) - C(32A) - H(32A)	119.6
C(223) $C(223)$ $C(243)$	110 0(2)
C(3ZA) = C(33A) = C(34A)	119.8(3)
C(32A)-C(33A)-H(33A)	120.1
C(34A) - C(33A) - H(33A)	120.1
$C(2E_{A}) = C(2A_{A}) = C(22A)$	120 0(2)
C(35A) = C(34A) = C(33A)	120.0(3)
C(35A)-C(34A)-H(34A)	120.0
С(33А)-С(34А)-Н(34А)	120.0
$C(24\lambda) C(25\lambda) C(26\lambda)$	110 0(2)
C(34A) - C(35A) - C(30A)	119.0(3)
С(34А)-С(35А)-Н(35А)	120.1
C(36A)-C(35A)-H(35A)	120.1
$C(31\Delta) - C(36\Delta) - C(35\Delta)$	121 1(3)
	110 4
C(31A) - C(36A) - H(36A)	119.4
C(35A)-C(36A)-H(36A)	119.4
N(2Y)-Fe(1B)-C(1Y)	120.54(12)
N(2Y) = c(1D) D(2D)	102 11(7)
N(ZI) - Fe(IB) - P(ZB)	103.11(7)
C(1Y)-Fe(1B)-P(2B)	93.44(8)
N(2Y)-Fe(1B)-P(1B)	104.33(7)
$C(1Y) = F_{\Theta}(1B) = D(1B)$	95 57(8)
	55.57(0)
P(2B)-Fe(1B)-P(1B)	141.31(3)
N(2Y)-Fe(1B)-H(1B)	118.4(11)
C(1Y) - Fe(1B) - H(1B)	121 0(11)
D(2D) = (1D) H(1D)	71 1 (10)
Р(ZB)-Fe(IB)-H(IB)	$/\perp \cdot \perp (\perp \cup)$
P(1B)-Fe(1B)-H(1B)	72.1(10)
C(1B)-P(1B)-C(13B)	103.02(11)
C(1D) D(1D) C(7D)	102 11(11)
C(1B) = P(1B) = C(7B)	103.11(11)
C(13B)-P(1B)-C(7B)	101.69(12)
C(1B)-P(1B)-Fe(1B)	115.55(8)
$C(13B) = P(1B) = F_{O}(1B)$	115 79(8)
	115.75(0)
С(/В)-Р(ІВ)-Fe(ІВ)	115./0(8)
C(31B)-P(2B)-C(19B)	103.79(11)
C(31B) = P(2B) = C(25B)	103 49(11)
C(31D) T(2D) C(25D)	100.00(11)
C(19B) - P(2B) - C(25B)	102.66(11)
C(31B)-P(2B)-Fe(1B)	114.22(7)
C(19B)-P(2B)-Fe(1B)	116.41(8)
$C(25D) D(2D) E_{0}(1D)$	111 65 (0)
	114.03(0)
O(2Y)-N(2Y)-Fe(1B)	173.9(2)
O(1Y)-C(1Y)-Fe(1B)	176.8(3)
C(6B) = C(1B) = C(2B)	118 8(2)
C(CD) = C(1D) = C(2D)	110.00(2)
C(OB) - C(IB) - P(IB)	119.89(18)
C(2B)-C(1B)-P(1B)	121.1(2)
C(3B)-C(2B)-C(1B)	119.8(3)
C(3R) = C(2R) = U(2R)	120 1
	120.1
С(1В)-С(2В)-Н(2В)	120.1
C(4B)-C(3B)-C(2B)	120.4(3)
C(4B) = C(3B) = H(3B)	119 8
C(2D) C(2D) H(2D)	110 0
C(2B) - C(3B) - H(3B)	119.8
C(5B)-C(4B)-C(3B)	120.3(3)
С(5В)-С(4В)-Н(4В)	119.9
C(3B) - C(AB) - H(AB)	110 0
	110 0 (0)
U (4B) –U (5B) –U (6B)	TTA'8(3)
C(4B)-C(5B)-H(5B)	120.1
C(6B) - C(5B) - H(5B)	120.1
C(1D) C(CD) C(ED)	100 7 (0)
C(TR) - C(OR) - C(OR)	⊥∠U./(∠)
С(1В)-С(6В)-Н(6В)	119.6
С(5В)-С(6В)-Н(6В)	119.6
C(12B) = C(7B) = C(2B)	110 7/01
C(12D) = C(7D) = C(0D)	110.1(2)
C(12B)-C(7B)-P(1B)	118.86(19)
C(8B)-C(7B)-P(1B)	122.5(2)

С(9В)-С(8В)-С(7В)	120.1(3)
C(9B)-C(8B)-H(8B)	120.0
C(7B) = C(8B) = H(8B)	120 0
C(10R) C(0R) C(9R)	120.4(2)
C(10B) - C(9B) - C(0B)	120.4(3)
С(10В)-С(9В)-Н(9В)	119.8
С(8В)-С(9В)-Н(9В)	119.8
C(9B)-C(10B)-C(11B)	119.4(3)
С(9В)-С(10В)-Н(10В)	120.3
C(11B) - C(10B) - H(10B)	120 3
$C(11D) C(10D) \Pi(10D)$	120.3
C(10B) - C(11B) - C(12B)	120.7(3)
С(10В)-С(11В)-Н(11В)	119.6
С(12В)-С(11В)-Н(11В)	119.6
C(7B)-C(12B)-C(11B)	120.7(3)
C(7B) - C(12B) - H(12B)	119.7
C(11R) = C(12R) = H(12R)	119 7
$C(11D) C(12D) \Pi(12D)$	110 1(0)
C(14B) - C(13B) - C(18B)	119.1(2)
C(14B)-C(13B)-P(1B)	122.95(19)
C(18B)-C(13B)-P(1B)	117.93(19)
C(13B)-C(14B)-C(15B)	120.1(2)
C(13B) - C(14B) - H(14B)	119.9
C(15B) - C(14B) - H(14B)	119 9
$C(15D) C(14D) \Pi(14D)$	120 5(2)
C(16B) - C(15B) - C(14B)	120.5(2)
С(16В)-С(15В)-Н(15В)	119./
C(14B)-C(15B)-H(15B)	119.7
C(15B)-C(16B)-C(17B)	119.4(2)
С(15В)-С(16В)-Н(16В)	120.3
C(17B) - C(16B) - H(16B)	120.3
C(18P) - C(17P) - C(16P)	120.7(3)
C(10B) - C(17B) - C(10B)	110 7
C(18B) - C(17B) - H(17B)	119.7
С(16В)-С(1/В)-Н(1/В)	119./
C(17B)-C(18B)-C(13B)	120.2(2)
С(17В)-С(18В)-Н(18В)	119.9
С(13В)-С(18В)-Н(18В)	119.9
C(24B) - C(19B) - C(20B)	117.2(2)
C(24B) - C(19B) - P(2B)	$121 \ 7(2)$
C(20R) C(19R) D(2R)	$121 \cdot (2)$
C(20B) = C(19B) = F(2B)	$\perp \geq \perp \cdot \perp (\geq)$
C(51B) - C(50B) - C(10B)	121.3(3)
С(21В)-С(20В)-Н(20В)	119.4
С(19В)-С(20В)-Н(20В)	119.4
C(22B)-C(21B)-C(20B)	119.6(3)
С(22В)-С(21В)-Н(21В)	120.2
C(20B) = C(21B) = H(21B)	120 2
C(20D) C(21D) II(21D)	110 7(2)
C(23B) = C(22B) = C(21B)	120 1
C(23B) - C(22B) - H(22B)	120.1
С(21В)-С(22В)-Н(22В)	120.1
C(22B)-C(23B)-C(24B)	120.8(3)
С(22В)-С(23В)-Н(23В)	119.6
C(24B) - C(23B) - H(23B)	119.6
C(19B) = C(24B) = C(23B)	121 1(3)
C(10D) C(24D) C(23D)	110 2
C(19B) - C(24B) - H(24B)	119.5
С(23В)-С(24В)-Н(24В)	119.3
C(26B)-C(25B)-C(30B)	118.6(2)
C(26B)-C(25B)-P(2B)	119.06(18)
C(30B)-C(25B)-P(2B)	122.32(19)
C(25B) - C(26B) - C(27B)	120.8(2)
C(25B) = C(26B) = H(26B)	119 K
C(20D) C(20D) II(20D)	110 C
C(2 D) = C(2 D) = D(2 D)	110 0(0)
C(20B) - C(2/B) - C(20B)	119.9(2)
С(28В)-С(27В)-Н(27В)	120.1
С(26В)-С(27В)-Н(27В)	120.1
C(29B)-C(28B)-C(27B)	120.0(2)
С(29В)-С(28В)-Н(28В)	120.0
С(27В)-С(28В)-Н(28В)	120.0

C(28B)-C(29B)-C(30B)	120.7(2)
С(28В)-С(29В)-Н(29В)	119.6
С(30В)-С(29В)-Н(29В)	119.6
C(29B)-C(30B)-C(25B)	120.0(2)
С(29В)-С(30В)-Н(30В)	120.0
С(25В)-С(30В)-Н(30В)	120.0
C(32B)-C(31B)-C(36B)	118.7(2)
C(32B)-C(31B)-P(2B)	121.22(19)
C(36B)-C(31B)-P(2B)	119.80(19)
C(31B)-C(32B)-C(33B)	120.4(3)
С(31В)-С(32В)-Н(32В)	119.8
С(33В)-С(32В)-Н(32В)	119.8
C(34B)-C(33B)-C(32B)	120.2(3)
С(34В)-С(33В)-Н(33В)	119.9
С(32В)-С(33В)-Н(33В)	119.9
C(35B)-C(34B)-C(33B)	119.5(3)
С(35В)-С(34В)-Н(34В)	120.2
C(33B)-C(34B)-H(34B)	120.2
C(34B)-C(35B)-C(36B)	120.7(3)
С(34В)-С(35В)-Н(35В)	119.6
С(36В)-С(35В)-Н(35В)	119.6
C(35B)-C(36B)-C(31B)	120.4(2)
С(35В)-С(36В)-Н(36В)	119.8
С(31В)-С(36В)-Н(36В)	119.8

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for s1797lm. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
Fe(1A)	16(1)	21(1)	28(1)	7(1)	4(1)	2(1)
P(1A)	15(1)	17(1)	16(1)	0(1)	0(1)	0(1)
P(2A)	14(1)	20(1)	18(1)	2(1)	-2(1)	-1(1)
C(1X)	22(1)	16(1)	20(1)	1(1)	4(1)	0(1)
O(1X)	57(1)	37(1)	28(1)	-2(1)	0(1)	-12(1)
N(2X)	20(1)	31(1)	25(1)	2(1)	3(1)	2(1)
O(2X)	30(1)	23(1)	39(1)	-11(1)	3(1)	-8(1)
C(1A)	21(1)	17(1)	17(1)	-3(1)	3(1)	2(1)
C(2A)	34(2)	22(1)	24(2)	-1(1)	-6(1)	3(1)
C(3A)	58(2)	26(2)	25(2)	1(1)	-5(1)	14(1)
C(4A)	4/(2)	$\perp / (\perp)$	37(2)	-2(1)	8(2)	Z(1)
C(5A)	44(Z) 20(2)	28(2) 26(2)	43(Z) 26(2)	-13(1) E(1)	-14(1)	4(1) 5(1)
C(0A)	39(2)	20(2)	30(Z) 10(1)	-3(1)	-12(1)	2(1)
C(7A)	19(1)	10(1)	19(1) 21(1)	(1)	-3(1)	(1)
C(0A)	20(1)	29(2)	21(1) 18(1)	-2(1) -1(1)	0(1)	-1(1) 8(1)
C(10A)	41(2)	44(2)	26(2)	0(1)	-16(1)	-11(1)
C(11A)	31(2)	108(3)	37(2)	4(2)	-13(2)	-32(2)
C(12A)	25(2)	87(3)	18(2)	-1(2)	-3(1)	-13(2)
C(13A)	19(1)	22(1)	13(1)	-3(1)	-1(1)	-2(1)
C(14A)	19(1)	23(1)	15(1)	-5(1)	-2(1)	1(1)
C(15A)	27(1)	25(1)	17(1)	4(1)	-2(1)	-5(1)
C(16A)	22(1)	43(2)	19(1)	2(1)	5(1)	-1(1)
C(17A)	24(1)	43(2)	23(2)	5(1)	5(1)	8(1)
C(18A)	27(1)	26(2)	21(1)	6(1)	3(1)	7(1)
C(19A)	19(1)	21(1)	20(1)	5(1)	1(1)	-5(1)
C(20A)	28(2)	28(2)	55(2)	13(2)	-22(1)	-10(1)
C(21A)	34(2)	24(2)	66(2)	15(2)	-12(2)	-4(1)
C(22A)	2/(1)	25(1)	49(2)	3(1)	-4(1)	-9(1)
C(23A)	22(1)	34(Z) 22(1)	50(Z) 26(2)	3(L) 1(1)	-12(1)	-5(L)
C(24A)	19(1) 15(1)	23(1)	30(Z) 10(1)	$\perp (\perp)$	-7(1)	-1(1)
C(25A)	13(1)	33(2) 72(2)	10(1) 28(2)	-18(2)	-2(1)	-18(2)
C(20A)	20(2)	97(3)	26(2)	-31(2)	$\frac{12(1)}{2(1)}$	-8(2)
C(28A)	33(2)	80(3)	19(2)	-5(2)	-1(1)	26(2)
C(29A)	58(2)	47(2)	30(2)	16(2)	19(2)	20(2)
C(30A)	40(2)	33(2)	25(2)	10(1)	3(1)	4(1)
C(31A)	13(1)	19(1)	25(1)	0(1)	-4(1)	-2(1)
C(32A)	21(1)	32(2)	29(2)	9(1)	-3(1)	-1(1)
C(33A)	26(1)	35(2)	33(2)	14(1)	-8(1)	-2(1)
C(34A)	24(1)	20(1)	46(2)	4(1)	-13(1)	2(1)
C(35A)	25(1)	29(2)	35(2)	-4(1)	-2(1)	8(1)
C(36A)	27(1)	24(2)	27(2)	1(1)	-4(1)	4(1)
Fe(1B)	14(1)	27(1)	21(1)	5(1)	3(1)	2(1)
P(1B)	14(1)	17(1)	16(1)	-1(1)	0(1)	-1(1)
P(2B)	14(1)	$\perp / (\perp)$	15(1)	-2(1)	2(1)	$-\perp(\perp)$
$\mathbb{N}(\mathbb{Z}\mathbb{Y})$	エ / (エ) オ 5 (1)	34(⊥) 22(1)	33(1) 92(2)	-4(1) -18(1)	ŏ(⊥) 21(1)	4(1) _5(1)
$\cup (\angle I)$ C(1V)	せン(⊥) 1/(1)	∠∠(⊥) 23(1)	ンム (ム) つ A (つ)	-10(1) -2(1)	$\angle \perp (\perp)$	-5(1)
O(1Y)	+ + (+) 31 (1)	52(1)	27(2)	(\pm) -11(1)	-7(1)	9(1)
C(1R)	24(1)	22(1)	12(1)	()	(1)	-7(1)
C(2B)	26(1)	30(2)	31(2)	-9(1)	10(1)	-8(1)
C(3B)	39(2)	38(2)	34(2)	-10(1)	7(1)	-20(1)

С(4В)	58(2)	24(2)	22(1)	-5(1)	5(1)	-18(2)
C(5B)	54(2)	20(1)	24(2)	-2(1)	-9(1)	-2(1)
С(6В)	30(1)	23(1)	19(1)	-3(1)	-6(1)	-2(1)
С(7В)	15(1)	16(1)	28(1)	1(1)	-3(1)	-2(1)
C(8B)	19(1)	25(1)	27(1)	-4(1)	0(1)	-1(1)
C(9B)	20(1)	25(1)	45(2)	-8(1)	0(1)	3(1)
C(10B)	19(1)	24(2)	56(2)	8(1)	-8(1)	2(1)
C(11B)	25(1)	44(2)	35(2)	14(1)	0(1)	5(1)
C(12B)	18(1)	35(2)	31(2)	5(1)	3(1)	6(1)
C(13B)	11(1)	23(1)	20(1)	-3(1)	1(1)	3(1)
C(14B)	25(1)	20(1)	21(1)	1(1)	0(1)	0(1)
C(15B)	27(1)	28(1)	23(1)	3(1)	3(1)	4(1)
C(16B)	22(1)	37(2)	20(1)	-8(1)	-2(1)	6(1)
C(17B)	19(1)	34(2)	27(2)	-13(1)	1(1)	-4(1)
C(18B)	20(1)	28(2)	25(1)	-5(1)	3(1)	-7(1)
C(19B)	19(1)	17(1)	18(1)	2(1)	-2(1)	-4(1)
C(20B)	23(1)	44(2)	26(2)	-4(1)	2(1)	3(1)
C(21B)	20(1)	41(2)	33(2)	4(1)	-2(1)	-6(1)
C(22B)	42(2)	37(2)	37(2)	-3(1)	-21(2)	-4(1)
C(23B)	72(2)	80(3)	40(2)	-36(2)	-28(2)	46(2)
C(24B)	41(2)	63(2)	39(2)	-21(2)	-16(2)	30(2)
C(25B)	14(1)	22(1)	15(1)	-2(1)	2(1)	-3(1)
C(26B)	20(1)	24(1)	22(1)	1(1)	5(1)	2(1)
C(27B)	35(2)	21(1)	26(1)	5(1)	6(1)	1(1)
C(28B)	28(1)	32(2)	23(1)	-1(1)	10(1)	-5(1)
C(29B)	20(1)	29(2)	31(2)	-3(1)	9(1)	3(1)
C(30B)	19(1)	26(2)	23(1)	1(1)	2(1)	5(1)
C(31B)	14(1)	20(1)	20(1)	-2(1)	5(1)	-1(1)
C(32B)	43(2)	23(1)	20(1)	-4(1)	3(1)	-7(1)
C(33B)	69(2)	23(2)	24(2)	5(1)	5(2)	-8(2)
C(34B)	51(2)	19(1)	30(2)	-4(1)	7(1)	-8(1)
C(35B)	38(2)	27(2)	24(2)	-10(1)	1(1)	-1(1)
C(36B)	24(1)	21(1)	23(1)	-1(1)	3(1)	5(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for s17971m.

х	У	Z	U(eq)
2162(11)	5250(20)	3958(14)	41 (9)
826	6924	3712	32
938	8648	3716	43
1531	9410	4499	40
2014	8441	5281	46
1919	6720	5263	40
1519	5132	3088	31
982	4637	2168	34
32	4097	2296	44
-380	4050	3341	71
136	4630	4257	52
1137	3606	5313	23
440	3116	6088	28
-278	4237	6415	33
-299	5831	5989	36
390	6320	5202	29
2695	6620	3940	44
3069	8171	4187	50
3939	8322	4760	40
	x 2162(11) 826 938 1531 2014 1919 1519 982 32 -380 136 1137 440 -278 -299 390 2695 3069 3939	x y 2162(11) 5250(20) 826 6924 938 8648 1531 9410 2014 8441 1919 6720 1519 5132 982 4637 32 4097 -380 4050 136 4630 1137 3606 440 3116 -278 4237 -299 5831 390 6320 2695 6620 3069 8171 3939 8322	xyz2162(11)5250(20)3958(14)8266924371293886483716153194104499201484415281191967205263151951323088982463721683240972296-380405033411364630425711373606531344031166088-27842376415-2995831598939063205202269566203940306981714187393983224760

H(23A)	4443	6892	5062	42
H(24A)	4081	5326	4804	31
H(26A)	2564	3237	3227	51
H(27A)	2678	2895	2097	65
H(28A)	3276	3886	1456	53
H(29A)	3764	5217	1929	54
H(30A)	3649	5574	3050	39
H(32A)	3178	3548	5377	33
H(33A)	3847	2431	5812	38
H(34A)	4625	1885	5163	36
H(35A)	4733	2475	4089	35
H(36A)	4061	3595	3656	31
H(1B)	1299(11)	40(20)	2730(14)	36(8)
Н(2В)	-778	-419	2429	35
Н(ЗВ)	-1139	-2043	2422	45
H(4B)	-507	-3387	2463	42
H(5B)	490	-3130	2439	39
Н(6В)	859	-1513	2435	29
H(8B)	-578	1698	3074	28
H(9B)	-1306	2666	2583	36
H(10B)	-1356	2815	1440	40
H(11B)	-683	1987	781	42
H(12B)	38	1016	1257	34
H(14B)	-149	-575	3704	27
H(15B)	-251	-189	4827	31
Н(16В)	107	1306	5242	32
Н(17В)	573	2419	4531	32
H(18B)	710	2020	3423	29
H(20B)	3244	-600	2695	37
H(21B)	3786	-299	3645	38
H(22B)	3412	728	4473	46
Н(23В)	2511	1430	4346	77
H(24B)	1968	1145	3395	57
Н(26В)	2117	1694	1295	26
Н(27В)	2749	2360	505	33
H(28B)	3625	1565	276	34
Н(29В)	3861	95	815	32
Н(ЗОВ)	3230	-597	1591	27
Н(З2В)	2209	-1665	3058	34
H(33B)	2158	-3391	2917	47
Н(З4В)	2069	-4067	1860	40
H(35B)	2001	-3019	949	35
Н(З6В)	2046	-1305	1080	27

Table 6. Torsion angles [deg] for s1797lm.

N(2X)-Fe(1A)-P(1A)-C(1A)	-164.88(12)
C(1X)-Fe(1A)-P(1A)-C(1A)	66.60(13)
P(2A)-Fe(1A)-P(1A)-C(1A)	-36.68(11)
N(2X)-Fe(1A)-P(1A)-C(13A)	73.77(12)
C(1X)-Fe(1A)-P(1A)-C(13A)	-54.75(12)
P(2A)-Fe(1A)-P(1A)-C(13A)	-158.03(9)
N(2X)-Fe(1A)-P(1A)-C(7A)	-42.39(12)
C(1X)-Fe(1A)-P(1A)-C(7A)	-170.92(12)
P(2A)-Fe(1A)-P(1A)-C(7A)	85.80(10)
N(2X)-Fe(1A)-P(2A)-C(19A)	178.21(12)
C(1X)-Fe(1A)-P(2A)-C(19A)	-52.30(12)
P(1A)-Fe(1A)-P(2A)-C(19A)	52.51(10)
N(2X)-Fe(1A)-P(2A)-C(25A)	57.68(12)

-172.83(13)
-68.02(11)
-62.01(12)
67.48(12)
172.29(9)
74(19)
179(100)
-39(19)
//(3)
-28(3)
-177(100)
-174 4(2)
-48.3(2)
-103.4(2)
3.3(2)
129.4(2)
0.4(4)
-177.3(2)
-0.6(4)
0.0(4)
0.7(5)
0.4(4)
178.2(2)
-0.9(5)
-106.1(3)
2.1(3)
125.9(2)
8U.J(Z)
-17.4(2)
$\frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{4}$
176.0(2)
-2.2(4)
-0.1(5)
2.0(6)
-0.5(5)
-174.0(3)
-1.7(6)
27.1(2)
-82.8(2)
154.88(19)
-159.36(19)
90.8(2)
-31.5(2)
$\pm .0(4)$
-1/2.10(10) -0.8(4)
-0.5(4)
0.9(4)
-1.2(4)
172.3(2)
-0.1(4)
-110.7(2)
-3.7(2)
123.5(2)
75.3(2)
-177.8(2)
-50.6(2)
2.6(4)
177.0(3)
-1.9(5)
0.5(5)

С	(1	Х)	-	F	е	(1	A)	-	Ρ	(2.	A) -	-0	C (2	5.	A)	
Ρ	(1	A)	_	F	е	(1	A)	_	Ρ	(2.	A) -	-0	C (2	5.	Α)	
N	(2.	Х)	_	F	e	(1	A)	_	Ρ	(2	A) -	-(2 (3	1	A)	
С	ì	1	x	ý	_	F	ē	ì	1	Α	ý	_	P	ì	2	Δ	,).	-0	1	3	1	А)	
D	ì	1	7	٬	_	-	~	ì	1	7	۰ ۱	_	- D	\hat{i}	2	7	, \	_ (- (- /	2	1	7	, \	
E NT	(1. 0	n v	.) \		E.	e	(1	л л	/	_	г С	(۲. ۱	n v) - \	-0	- (1	⊥. V	~)	
IN 	(2	Х -)	-	F.	e	(1	A -)	_	C	(1	Х) -	-()(1	Χ)		
Ρ	(1	A)	-	F,	е	(1	A)	-	С	(1	Х) -	-() (1	Х)		
Ρ	(2	A)	-	F	е	(1	A)	-	С	(1	Х) -	-0) (1	Х)		
С	(1	Х)	_	F	е	(1	A)	-	Ν	(2	Х) -	-0) (2	Х)		
Ρ	(1	A)	_	F	e	(1	A)	_	N	(2	Х) -	-0) (2	Х)		
Ρ	(2	A)	_	F	e	(1	A)	_	N	(2	Х) -	-0) (2	Х)		
С	ì	1	3	À)	_	P	ì	1	Α	ý	_	С	ì	1	Δ	,).	-0	1	6	Α	ý		
Ĉ	` '	- 7	7	1	<u>_</u>	D	-	1	т Л	1	<u>_</u>	\sim	7	\ 1	т. Л	1	, (~ `	16	7	1	'		
	(1	А 1	.) ~	、 、	Г			л 1	.) ~	、 、	C	ر م	1	А 1) ~	, – (- 1	. 0	A C) 7	、		
E (e	(1	A -)	-	Ρ	(1	A -)	_	C	(1.	A -) -	-() (6	A -)		
С	(1	3	A)	-	Ρ	(1	A)	-	С	(1.	A) -	-0	C (2	A)		
С	(7	A)	-	Ρ	(1	A)	-	С	(1	A)	-(С ((2	A)			
F٩	е	(1	A)	-	Ρ	(1	A)	_	С	(1	A) -	-0	C (2	A)		
С	(6	A)	_	С	(1	A)	_	С	(2	A)	-(С ((3	A)			
Р	(1	A)	_	С	(1	A)	_	С	(2	A)	_(2.0	.3	A)			
Ĉ	ì	1	Δ	1	_	ĉ	ì	2	Δ	1	_	Ĉ	ì	3	Δ	,)	_(\sim	Δ	Δ)			
C	(/	エ つ	71	·) \		С С	(2	71	·) \		С С	(л	71) \	Ì	\sim	(<u>–</u>	71) \			
C	(ے 2	A 7)	_		(ر ۸	А 7)	_		(4. E	А ~)	-(\sim		A 7)			
C	(3	A)	-	C	(4	A)	-	C	(5	A) ·	-(- (6	A)			
С	(2	A)	-	С	(1	A)	-	С	(6	A)	-(С ((5	A)			
Ρ	(1	A)	-	С	(1	A)	-	С	(6	A)	-(С ((5	A)			
С	(4	A)	_	С	(5	A)	_	С	(6	A)	-(С ((1	A)			
С	(1	A)	_	Ρ	(1	A)	_	С	(7	A)	-(с ((1	2	A)		
С	ì	1	3	À)	_	, P	(1	À)	_	Ċ	(7	Á) -	-0	. (1	2	À)	
ਸ ਸ	`	1	1	7	Ŷ	_	Ð	ì	1	7	ړ ۱	_	ĉ	\hat{i}	7	7	, \.		- (- /	1	2	7\) \	
т '	7	\ 1	т 7	11	'	Б	_ /	1	т л	11	'	~	7	י ר	7. 7	1	',	~ `	- (1 0	т л	<u>د</u>	11	,	
C	(1. 1	A つ)	、 、	r		1	A 1)	、 、	C	(1	А 7) ~	_(,	- 1	0	A)	、		
2	(Ţ	3	A -)	-	Ρ	(1	A -)	_	C	(1.	A -) -	-() (8	A -)		
E'	Э	(1	A)	-	Ρ	(1	A)	-	С	(1.	A) -	-(2 (8	A)		
С	(1	2	A)	-	С	(7	A)	-	С	(8.	A) -	-0	C (9	A)		
Ρ	(1	A)	_	С	(7	A)	-	С	(8	A)	-(С ((9	A)			
С	(7	A)	_	С	(8	A)	_	С	(9	A)	-(С ((1	0	A)		
С	(8	A)	_	С	(9	A)	_	С	(1	0.	A) -	-0	C (1	1	A)	
С	ì	9	Δ	ý	_	C	ì	1	0	À)	_	Ċ	(1	1	À) -	-C	(1	2	, A)	
Ĉ	ì	Q	7\	1	_	ĉ	\tilde{i}	- 7	7		<u>_</u>	C	ĩ	1	2	7	١.	, 	۲ ۲	1	1	7	۰ <i>ـ</i> /	
	(0. 1	д 7	.) \			(' 7	л л	.) \			(1	ム. つ	л л) - \	-0	- (- /	1	1.	м 7) \	
P	(1	A)	<u> </u>	C	(/	A)	_	Ç	(1	Ζ.	A) -	- (- (1	1	A)	
С	(T	0	A)	-	С	(T	T	A)	-	C	(T	21	A)	-	C	(1	A)	
С	(1	A)	-	Ρ	(1	A)	-	С	(1	3.	A) -	-0	C (1	8.	A)	
С	(7	A)	-	Ρ	(1	A)	-	С	(1	3.	A) -	-0	C (1	8.	A)	
F۹	е	(1	A)	_	Ρ	(1	A)	_	С	(1	3.	A) –	-C	(1	8	A)	
С	(1	A)	_	Ρ	(1	A)	_	С	(1	3.	A) -	-0	C (1	4	Α)	
С	ì	7	A)	_	Ρ	ì	1	A)	_	С	ì	1	3	A	,) -	-0	. (1	4	Α)	
۔ F	à	(1	Δ	١	_	è	(1	Δ	١	_	, C	(1	3	, Δ) _	- () - ()	(1	4	, Δ)	
с і	1	1	¢	7	``	_	г С	$\frac{1}{1}$	1	с Т	7 7	١	_	` C	1	1	л: Л:	, አነ	_	י ר	1	1	57) 57)	`
	(1	0 7	л 、	'	~	ç	1	1 2	ر ۳	л 、)	~	Ç	1	1	±1	, ,	~	2	1	ш. Е.) 7	2)
Р	(1	A)	-	C	(Ţ	3	A)	_	C	(Ţ	4.	А -) -	- C	(Ţ	51	A)	
С	(1	3	A)	-	С	(1	4	A)	-	С	(1	51	A)	-	С	(1	6 A	7)
С	(1	4	A)	-	С	(1	5	A)	-	С	(1	61	A)	-	С	(1	7A	7)
С	(1	5	A)	-	С	(1	6	A)	-	С	(1	71	A)	_	С	(1	8A	7)
С	(1	4	A)	_	С	(1	3	A)	_	С	(1	87	A)	_	С	(1	7A	(۱
Р	(1	A)	_	С	(1	3	A)	_	С	(1	8.	A) –	-C	(1	7	A)	
- C	ì	1	6	Δ	١	_	, C	(1	7	, A	١	_	, C	(1	8	, Δ)	_	, C	(1	, 3Δ	5
Ĉ	` '	エク	5	7	``		D	$\frac{1}{1}$	ナ つ	7	1	<i>'</i>	C	\tilde{i}	1	à	7	\	0	7	、 2	л ·	71	- /
	(ム つ	J 1	л л	,		E D	(2	л л	/	_		(1	0	~	, -	-C		2	41	⊡) ⊼\	
<u> </u>	(5	1	A -)	-	۲ -	(2	A -)	-	C	(1	9. c	A.) -	- U	(2	41	A)	
E (Э	(1	A)	-	Ρ	(2	A)	-	С	(1	9.	A) -	-C	(2	41	A)	
С	(2	5	A)	-	Ρ	(2	A)	-	С	(1	9.	A) –	-C	(2	0	A)	
С	(3	1	A)	_	Ρ	(2	A)	_	С	(1	9.	A) -	-C	(2	0	A)	
F	е	(1	A)	_	Ρ	(2	A)	_	С	(1	9.	A) –	-C	(2	0	A)	
С	(2	4	A)	_	С	(1	9	A)	_	С	(2	02	A)	_	С	(2	1A)
Ρ	(2.	A)	_	С	(1	9	A)	_	С	(2.	0	A) –	-C	(2	1	A)	Ĩ
C	ì	1	9	Á)	_	ċ	(2	0	Á)	_	è	(2	1;	, Δ)	_	ć	(2	2.A)
\sim	`	ナ つ	ñ	7	ì	_	č	1	2	1	7	1		č	\hat{i}	2	2) ∆ \	_	č	$\frac{1}{1}$	2	сγ 	
C				1		_					1	-	-			~	. 4		_					

		0. 0.	. C) (3 (5 4))		
-1	7	2. 6.	. 1 . 2	. (? (4 2))		
-1	7 8	0. 1.	. 2	5 (2 (2 2))		
-	4	6. 2.	ц) (т)	6 (6 (2 3))		
-	9 3	6. 6.	О. Э) (2))		
-1	7	1. 6.	. С . З) (; (5))		
	_	0. 0.	. 1	5 (. (5)) \		
1	-	U. 1. 5	ц. С.	- (5 (2 (с 4 2)))		
1	2	0. 6	. 0 . 9 . 5) () (; (2 4 2)))		
1	2	3. 9.	. 2	2 (5 4	2) 1	8)
-1	9 5	3. 7.	. C) (22)	Ŭ	,
-	3	1. 0.	. C) (; (2 4	,))		
-1	7	8. 0.	. 8	3 (4 (2 4))		
	_	0. 0.	(m) (m)	5 (5 (4 4))		
1	7	0. 8.	. 6 . 8	6 (8 (4 2))		
1	7	0. 4.	. 4	8	4) 1	2)
_	5	1. 1.	. 1 . 4	.9	(1	2))
1	6 7	4. 1.	. 7	'6 '4 5	(1	2)))
	6 5 6	9. 4. 0	. 1 . C	.5 8	(⊥ 1 1	0 3 2)))
-1 -1	7	9. 2. a	. 4 . C	:2)2 :3	(⊥ 9 1)) 2) \
-	5 4	7. 7. 6.	. 1	.7	(1	2 3 1)))
-1	5 7	9. 8.	3	57 .7	(1 1	2 2 2	,))
_	7 6	4. 0.	. 8	84 4	(1 1	0 2))
1	6 6	2. 5.	. С З) 3 ; 5	((1 9	2))
-	2 7	5 7	(2 (2	2) 2)				
-1	3	0. 5	. 2 (4	2 (1	9)	
- 1	9 2	2	(4 (4))	_			
- 1	9	7.	. 4	(2)		
	5	7.	. 1	. (2)		
_	5 2 7 2	7. 9. 8.	. 1 . 9 . 6) () () (2 2 2 2))))		

C(21A)-C(22A)-C(23A)-C(24A)
C(22A)-C(23A)-C(24A)-C(19A)
C(20A) - C(19A) - C(24A) - C(23A)
P(2A) = C(19A) = C(24A) = C(23A)
C(19A) - P(2A) - C(25A) - C(26A) C(31A) - P(2A) - C(25A) - C(26A)
$E_{P}(1A) - P(2A) - C(25A) - C(26A)$
C(19A) - P(2A) - C(25A) - C(30A)
C(31A) - P(2A) - C(25A) - C(30A)
Fe(1A)-P(2A)-C(25A)-C(30A)
C(30A) - C(25A) - C(26A) - C(27A)
P(2A)-C(25A)-C(26A)-C(27A)
C(25A) – C(26A) – C(27A) – C(28A)
C(26A) - C(27A) - C(28A) - C(29A)
C(27A) - C(28A) - C(29A) - C(30A)
P(2A) - C(25A) - C(30A) - C(29A)
C(28A) - C(29A) - C(30A) - C(25A)
C(19A) - P(2A) - C(31A) - C(36A)
C(25A)-P(2A)-C(31A)-C(36A)
Fe(1A)-P(2A)-C(31A)-C(36A)
C(19A)-P(2A)-C(31A)-C(32A)
C(25A)-P(2A)-C(31A)-C(32A)
Fe(1A) - P(2A) - C(31A) - C(32A)
C(36A) - C(31A) - C(32A) - C(33A)
P(2A) = C(31A) = C(32A) = C(33A)
C(32A) - C(32A) - C(34A) - C(34A)
C(33A) - C(34A) - C(35A) - C(36A)
C (32A) -C (31A) -C (36A) -C (35A)
P(2A)-C(31A)-C(36A)-C(35A)
C(34A)-C(35A)-C(36A)-C(31A)
N(2Y)-Fe(1B)-P(1B)-C(1B)
C(1Y) - Fe(1B) - P(1B) - C(1B)
P(2B) - Fe(1B) - P(1B) - C(1B)
C(1Y) = Fe(1B) = P(1B) = C(13B)
P(2B) - Fe(1B) - P(1B) - C(13B)
N(2Y)-Fe(1B)-P(1B)-C(7B)
C(1Y)-Fe(1B)-P(1B)-C(7B)
P(2B)-Fe(1B)-P(1B)-C(7B)
N(2Y)-Fe(1B)-P(2B)-C(31B)
C(1Y)-Fe(1B)-P(2B)-C(31B)
P(1B) - Fe(1B) - P(2B) - C(31B)
C(1Y) - Fe(1B) - F(2B) - C(19B)
P(1B) - Fe(1B) - P(2B) - C(19B)
N(2Y) - Fe(1B) - P(2B) - C(25B)
C(1Y)-Fe(1B)-P(2B)-C(25B)
P(1B)-Fe(1B)-P(2B)-C(25B)
C(1Y)-Fe(1B)-N(2Y)-O(2Y)
P(2B)-Fe(1B)-N(2Y)-O(2Y)
P(1B) - Fe(1B) - N(2Y) - O(2Y)
P(2B) - Fe(1B) - C(1Y) - O(1Y)
P(1B) - Fe(1B) - C(1Y) - O(1Y)
C(13B) - P(1B) - C(1B) - C(6B)
C(7B)-P(1B)-C(1B)-C(6B)
Fe(1B)-P(1B)-C(1B)-C(6B)
C(13B) -P(1B) -C(1B) -C(2B)
C(/B) - P(1B) - C(1B) - C(2B)
C(6B) = C(1B) = C(2B) = C(2B)
~~~~/~~/~~/~~/~~/~~/

-173.1(2)		
-0.2(4)		
-2  4  (4)		
$2 \cdot 1(1)$ 2 0(4)		
2.0(4)		
-3.3(4)		
1/2.8(2)		
0.8(4)		
- /9.6(2)		
173.9(2)		
47.5(2)		
99.7(2)		
-6.8(2)		
-133.16(1	8	)
0.7(4)		
-178.65(1	9	)
-0.6(4)		
0.2(4)		
0.0(4)		
-0.4(4)		
178.9(2)		
0.1(4)		
-6 1(2)		
1004(2)		
_133 27/1	Q	`
-133.27(1	0	) \
1/0.0/(1 76 7(2)	9	)
-76.7(2)		
49.6(2)		
-0.9(4)	~	
-178.00(1	8	)
1.2(4)		
-0.2(4)		
-1.1(4)		
1.4(4)		
-0.4(4)		
176.85(1	9	)
-131.1(3)		
121.4(3)		
-4.7(3)		
49.0(2)		
-58.5(2)		
175.42(1	8	)
-0.9(4)		
179.0(2)		
0.5(4)		
0.2(5)		
-0.4(6)		
0.6(5)		
-1793(3)		
1,0,0(6)		
1/2 = 6(2)		
-109.6(2)		
-109.0(2)		
$\pm / \cdot \circ (2)$		
-39.7(2)		
68.1(2)	~	,
-104./4(1	Я	)
-1.4(4)		
176.3(2)		
0.0(4)		
0.8(4)		
-0.3(4)		
-1.2(4)		
2.0(4)		
-175.7(2)		

P(IB) - C(IB) - C(ZB) - C(3B)	
C(1B) - C(2B) - C(3B) - C(4B)	
$\alpha(2D) \alpha(2D) \alpha(4D) \alpha(ED)$	
C(2B) - C(3B) - C(4B) - C(3B)	
C(3B)-C(4B)-C(5B)-C(6B)	
C(2D) C(1D) C(6D) C(5D)	
C(2B) = C(1B) = C(0B) = C(0B)	
P(1B)-C(1B)-C(6B)-C(5B)	
C(4B) = C(5B) = C(6B) = C(1B)	
C(1B) - P(1B) - C(7B) - C(12B)	
C(13B) = P(1B) = C(7B) = C(12B)	)
C(10D) $T(1D)$ $C(7D)$ $C(12D)$	,
Fe(IB)-P(IB)-C(7B)-C(I2B	)
C(1B)-P(1B)-C(7B)-C(8B)	
C(12) $C(12)$ $C(12)$ $C(12)$ $C(12)$	
C(13B) = P(1B) = C(7B) = C(0B)	
Fe(1B) - P(1B) - C(7B) - C(8B)	
C(12P) - C(7P) - C(8P) - C(9P)	
P(1B)-C(7B)-C(8B)-C(9B)	
C(7B) = C(8B) = C(9B) = C(10B)	
$C(P_{2}) = C(O_{2}) = C(O_{2}) = C(O_{2}) = C(O_{2})$	、
C(8B) - C(9B) - C(10B) - C(11B)	)
C(9B)-C(10B)-C(11B)-C(12]	B)
$\alpha(0, p) = \alpha(2, p) = \alpha(1, 2, p) = \alpha(1, 1, p)$	、 ´
C(8B) - C(7B) - C(12B) - C(11B)	)
P(1B)-C(7B)-C(12B)-C(11B	)
C(10R) = C(11R) = C(12R) = C(7)	D \
	ر ت ر
C(1B)-P(1B)-C(13B)-C(14B	)
C(7B) - P(1B) - C(13B) - C(14B)	)
	/ 
Fe(1B)-P(1B)-C(13B)-C(14	B)
C(1B) - P(1B) - C(13B) - C(18B)	)
a(12) $b(12)$ $a(122)$ $a(102)$	, `
C(18) - D(18) - C(138) - C(188)	)
Fe(1B)-P(1B)-C(13B)-C(18]	B)
C(10D) $C(12D)$ $C(14D)$ $C(1$	ς Γ Γ Ν
C(10B) - C(13B) - C(14B) - C(1	эв)
P(1B)-C(13B)-C(14B)-C(15	B)
C(13B) = C(14B) = C(15B) = C(1)	6B1
	о <b>р</b> ,
C(14B)-C(15B)-C(16B)-C(1	/B)
C(15B) - C(16B) - C(17B) - C(1)	8R)
C(10D) = C(10D) = C(10D) = C(10D)	2D)
C(10B) - C(17B) - C(18B) - C(1	3B)
C(14B)-C(13B)-C(18B)-C(1	7B)
(10) $(120)$ $(100)$ $(117)$	Ď١
P(1B) = C(15B) = C(10B) = C(17)	Б)
C(31B)-P(2B)-C(19B)-C(24]	B)
C(25B) = D(2B) = C(19B) = C(2/1)	B١
C(25D) = F(2D) = C(15D) = C(24)	5)
Fe(1B)-P(2B)-C(19B)-C(24]	B)
C(31B) - P(2B) - C(19B) - C(20)	R)
G(01D) I(2D) G(19D) G(20	
C (25B) – P (2B) – C (19B) – C (201	B)
Fe(1B)-P(2B)-C(19B)-C(20]	B)
C(24D) C(10D) C(20D) C(2)	, 1 ד ו
C(24B) - C(19B) - C(20B) - C(2	ID)
P(2B)-C(19B)-C(20B)-C(21]	B)
C(19B) - C(20B) - C(21B) - C(2)	2B)
C(20D) = C(21D) = C(21D) = C(21D)	200
C(20B) - C(21B) - C(22B) - C(2	3B)
C(21B)-C(22B)-C(23B)-C(2	4B)
C(20R) = C(10R) = C(24R) = C(2)	3 0 1
C(20D) = C(19D) = C(24D) = C(2	50)
P(2B)-C(19B)-C(24B)-C(23]	B)
C(22B) = C(23B) = C(24B) = C(1)	9R)
	, L (
C(31B)-P(2B)-C(25B)-C(26]	B)
C(19B) - P(2B) - C(25B) - C(26)	B)
$P_{2}(1D) D(2D) Q(2D) Q(2D)$	- / □ \
те(тв)-Р(Sв)-С(S2B)-С(56	в)
C(31B)-P(2B)-C(25B)-C(30)	B)
C(10D) = D(2D), C(25D), C(20)	ρ,
C(13D) - F(2D) - C(23B) - C(30)	)
Fe(1B)-P(2B)-C(25B)-C(301	B)
C(30B) = C(25B) = C(26B) = C(2)	7R۱
	ן <i>ב</i> וי הי
P(2B)-C(25B)-C(26B)-C(27]	B)
C(25B)-C(26B)-C(27B)-C(2	8B)
$(26D)  \alpha(27D)  \alpha(20D)  \alpha(27D)$	
C(20R) - C(2/R) - C(28R) - C(2)	7R)
C(27B)-C(28B)-C(29B)-C(3	0B)
C(28B) = C(29B) = C(30B)	ς _Ρ ί
	JD)
C(26B)-C(25B)-C(30B)-C(2	9B)
	,
P(2R) = C(25R) = C(30R) = C(29)	B)

C(19B)-P(2B)-C(31B)-C(32B)	31.4(2)
C(25B)-P(2B)-C(31B)-C(32B)	138.3(2)
Fe(1B)-P(2B)-C(31B)-C(32B)	-96.4(2)
C(19B)-P(2B)-C(31B)-C(36B)	-154.92(18)
C(25B)-P(2B)-C(31B)-C(36B)	-48.0(2)
Fe(1B)-P(2B)-C(31B)-C(36B)	77.31(19)
C(36B)-C(31B)-C(32B)-C(33B)	1.2(4)
P(2B)-C(31B)-C(32B)-C(33B)	175.0(2)
C(31B)-C(32B)-C(33B)-C(34B)	0.0(4)
C(32B)-C(33B)-C(34B)-C(35B)	-1.1(5)
C(33B)-C(34B)-C(35B)-C(36B)	0.9(4)
C(34B)-C(35B)-C(36B)-C(31B)	0.4(4)
C(32B)-C(31B)-C(36B)-C(35B)	-1.4(3)
P(2B)-C(31B)-C(36B)-C(35B)	-175.28(19)

Symmetry transformations used to generate equivalent atoms:

# 7 Spectra





















![](_page_51_Figure_2.jpeg)

*E*-10

![](_page_51_Figure_4.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_53_Figure_1.jpeg)

![](_page_54_Figure_1.jpeg)

![](_page_55_Figure_1.jpeg)

![](_page_55_Figure_2.jpeg)

![](_page_56_Figure_1.jpeg)

![](_page_56_Figure_2.jpeg)

![](_page_57_Figure_1.jpeg)

![](_page_58_Figure_1.jpeg)

![](_page_59_Figure_1.jpeg)

![](_page_60_Figure_1.jpeg)

![](_page_60_Figure_2.jpeg)

![](_page_61_Figure_1.jpeg)

![](_page_62_Figure_1.jpeg)

![](_page_63_Figure_1.jpeg)

![](_page_64_Figure_1.jpeg)

![](_page_65_Figure_1.jpeg)

![](_page_65_Figure_2.jpeg)

![](_page_65_Figure_3.jpeg)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

![](_page_66_Figure_1.jpeg)