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Experiment Section 

Materials. Iron(II) chloride tetrahydrate (FeCl2·4H2O, 99–102 %) (Merck), sodium citrate (100 %, J. T. 

Baker), benzene-1,3,5-tri-carboxylic acid (trimesic acid (TMA), 98 %) (Alfa Aesar), Sodium hydroxide 

(NaOH, 99 %0 (Riedel-de Haёn), γ-Fe2O3 nanoparticels (<50 nm, Aldrich), aminopropyl-triethoxysilane 

(APTES, 99%) (Acros), tetraethyl orthosilicate (TEOS, 98%) (Acros), and ethanol (EtOH, 99.9%, J.T. 

Baker) were purchased and used without further purification. 

Preparation of optical-activated iron oxide nanostructure: 10 mL of FeCl2·4H2O (50 mM ), 4.5 mL of 

TMA (25 mM), 18 mg of NaOH, and 0.15 g of sodium citrate were mixed by stirring and then 

immediately transferred to a 23-mL Teflon-lined stainless steel autoclave to be heated at 200 oC for 12 h. 

After reaction, the hydrothermal process was stopped by cooling the solution to room temperature to 

collect as-obtained colored precipitates by centrifugation. A centrifugation-washing process with 

deionized water was repeated three times to purify the as-synthesized iron oxide products  

Preparation of optical-activated α-Fe2O3 nanostructure: Following the aforementioned synthesis with 

γ-Fe2O3 nanoparticels as the iron(III) source, 10 mL of water, including γ-Fe2O3 nanoparticels (0.345 

mol), 4.5 mL of TMA (25 mM), 18 mg of NaOH, and 0.15 g of sodium citrate were mixed by stirring and 

then immediately transferred to a 23-mL Teflon-lined stainless steel autoclave to be heated at 200 oC for 

24 h. Washing and purification processes were followed according to the above description. 

Preparation of NIR-activated Fe3O4@mSiO2 nanostructure: The mesoporous silica-coated Fe3O4 

(Fe3O4@mSiO2) nanostructure was synthesized following our previous reports1,2 with a slight 

modification: 0.86 mL of Fe3O4 nanostructures (1800 ppm[Fe]) after 12 h of hydrothermal reaction and 

purification was dispersed in 4.575 mL of CTAB (5.46 mM) and NaOH solution (1.37 mM) in a 20 mL 

glass vial. A continuous Ar flow was applied to the vial to eliminate air. Next, 0.026 mL of TEOS was 

added into the mixture under ultrasonic treatment in a sonication bath at 55℃. The reaction glass vial was 

enclosed with a foil-lined urea screw cap in the Ar environment. After 2 h of reaction time, the resulting 

black solution was collected using centrifugation and then washed 3 times with distilled water. Using 

APTES/ethanol extraction, the CTAB were removed from the mesoporous silica shells of Fe3O4@mSiO2 
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nanostructures. 1.55 mg[Fe] of the Fe3O4@mSiO2 nanostructures was then suspended in ethanol in 

sonication bath at 80 oC in the 20 mL glass vial with continuous Ar flow. Subsequently, 84 μL of APTES 

was added to yield APTES-functionalized Fe3O4@mSiO2 nanostructures (named as NIR-activated 

nanocomposites). The reaction glass vial was enclosed with a foil-lined urea screw cap in the Ar 

environment. After the interaction (6 h) of mesoporous silica nanoshells with APTES molecules under 

ultrasonic treatment in the sonication bath at 80℃, the black product was collected by a centrifugation/re-

suspension process for more than 3 times and washed with ethanol.  

Temperature evolution at 808 nm laser irradiation: The temperature elevation of the NIR-activated 

nanocomposites was measured by placing the material solutions (400 ppm[Fe]) in 96 well plates and 

irradiating them using a 808 nm continuous wave (CW) diode laser.3 A thermalcouple was immersed in 

the material solutions to determine temperature. The CW laser had a power density of 2 W/cm2.  

Photothermal therapy of KB cancer cells: KB cancer cells were cultured in 96-well plates with MEM, 

10% FBS and penicillin-streptomycin-neomycin and maintained in an incubator under a 5% CO2 

atmosphere at 37 °C. Each well contained 8×103 cells for a culture time of 24h. NIR-activated 

nanocomposites were added to the cells and incubated for 1 h at 37 oC. To wash away the unbound NIR-

activated nanocomposites, the wells were rinsed with PBS buffer three times, and then a fresh RPMI 

medium was added to each well. The photothermal killing of cancer cells was performed by using a CW 

diode laser with a wavelength of 808 nm. After laser irradiation, another 24 h of incubation time was 

performed. Then, the cell viability was examined by using the MTT assays:1-4 the original culture medium 

was removed and replaced with 100 L of the new culture medium containing 10% MTT reagent. The 

cells were then incubated for 4 h at 37C to allow formazan dye to form. The culture medium in each well 

was then removed, and dimethyl sulfoxide (DMSO) (200 L/well) was added for an additional 10 min of 

incubation. After the cells had been centrifuged, the resulting formazan in each well was transferred to an 

ELISA plate. Quantification for determining cell viability was done using a scanning multiwell ELISA 

reader at 485 nm (SpectraMax® M2e, Molecular Devices, USA).4 

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012



4 
 

Measuring NIR-activated nanocomposites using confocal laser scanning microscopy. KB Cells were 

cultured in MEM at 37 C supplied with 5% CO2/95% air. Cells were trypsinized and seeded in 8-well 

chamber slides with 1.5  104 cells of each well. After 24 h of incubation, each well was washed twice 

with phosphate-buffered saline (PBS), and then 0.3 mL of NIR-activated nanocomposites (120 g/mL in 

MEM) were added. After 2 h of incubation, the treated cells were washed with PBS and then fixed using 

4% paraformaldehyde/PBS for 30 min at 37 C. The cytoskeleton and nucleus were stained using Alexa 

488 phalloidin (green) and DAPI (blue) for confocal laser scanning microscopy (CLSM) (Leica-SP5, 

Leica Microsystems Heidelberg GmbH, Heidelberg, Germany) 

In vitro magnetic resonance imaging (MRI) assays: The in vitro MR image contrast effect of the 

magnetite nanoparticles was evaluated using a Signa 3 T clinical MR system (GE Healthcare, USA). For 

T2-weighted imaging, the NIR-activated nanocomposites with various concentration of iron were 

dispersed in a 0.5% agarose gel solution. The samples were placed in a homemade water tank positioned 

in the 8 channel head coil. A two-dimensional T2-weighted fast-spin echo pulse sequence was applied 

(TR/TE=3017/98.9). The matrix size was 320×192, the field of view was 14×7 cm, the slice thickness 

was 1 mm with a 0.5 mm gap, and the total scan time was 2 minutes and 43 seconds at a NEX of two. 

The images were further analyzed at the image workstation provided by GE Healthcare (Advantage 

Workstation 4.207). The images were analysed by Image J provided by the NIH 

(http://rsbweb.nih.gov/ij/). The detail examinations of the proton relaxivities r1 and r2 related Fe3O4 

strcuture and surface are complicated and will be reported further in the future. 

In vivo examinations: The in vivo experimental protocols were approved by the Institutional Animal 

Care and Use Committee of National Chung Hsing University (IACUC of NCHU). Female 

BALB/cAnN.Cg-Foxn1nu/CrlNarl nude mice (4-5 weeks old, 20±2 g) were obtained from the National 

Laboratory Animal Center (Taiwan). All mice were kept in an air-conditioned facility fitted with an 

artificial light–dark cycle and were provided with standard food and filtered water. The mice were 

acclimated to this environment for at least three days prior to subcutaneous injection in the right 

hindquarter with 1 × 107 KB cells suspended in serum-free Minimum Essential Medium. The tumour 

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012



5 
 

volume was calculated using the formula 1/2(4π/3)(L/2)(W/2)H, where L is the length, W is the width, 

and H is the height of the tumour. Treatments were initiated when the tumours reached a volume of 100 

mm3. The animals were injected with 0.1 ml of H2O (control group) or NIR-activated nanocomposites 

(0.5 mg Fe/kg) via an intratumoral injection. The animals that received H2O (vehicle) were used as 

controls. MR imaging of mice was conducted using a 7 Tesla MRI (Bruker, USA) under halothane gas 

anaesthesia before and after injection. TurboRARE-T2 pulse sequences (TR/TE= 5000 ms/56 ms, Flip 

angle= 180°, matrix size 256x128) were used for T2-weighted imaging. The slice thickness was 1 mm 

with a 1 mm gap, and the field of view (FOV) was 9x 3.5 cm for coronal scanning. To evaluate the 

heating profile of NIR-activated nanocomposites plus irradiation in tumor region, KB cells xenografted 

tumor bearing mice were received NIR-activated nanocomposites (0.5 mg Fe/kg) via an intratumoral 

injection and immediately irradiated with 808 nm NIR laser (2 W/cm2) for 10 min (692 J/cm2). The whole 

process was recorded by thermographic camera (TVS-500 EX, NEX Avio infrared Technologies Co., 

Ltd.). 

Characterization:  Electron micrographs were obtained using transmission electron microscopes (JEOL 

3010 at 300 KV and Philips CM-200 at 200 KV). A UV-Vis spectrophotometer (8452A; Hewlett-Packard 

Company, Palo Alto, CA) and Hitachi U-4100 UV-vis-NIR spectrophotometer (Hitachi, Ltd., Tokyo, 

Japan) were used to record absorption characteristics of samples. X-ray photoelectron spectra (XPS) (VG 

Scientific 210) were recorded using an Mg K source (12 kV and 10 mA). The binding energy scale was 

calibrated to 284.6 eV for the main (C ls) peak. The Fe ions were quantified using an inductively coupled 

plasma atomic emission spectrometer (ICP-AES, JY138 Spectroanalyzer; Horiba Jobin Yvon, Inc., 

Edison, NJ). IR spectra were measured using a KBr plate in a Fourier transformation infrared (FTIR) 

spectrometer (200E; Jasco International Co., Ltd., Tokyo, Japan). The zeta-potential of the NIR-activated 

nanocomposites dispersed in an aqueous solution (pH = 6) were measured using a Zetasizer analyzer 

(Malvern Instruments Ltd., Malvern, Worcestershire, UK). The M-H magnetization curves at 300 K were 

measured for the NIR-activated nanocomposites using a magnetometer (MPMS-7 SQUID; Quantum 

Design, Inc., San Diego, CA). 
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Figure S3. a) TEM image, b) HR-TEM image, and c) fast Fourier transform (FFT) pattern for the 
preparation of iron oxide nanostructure (after 3 h) with FeCl2+citrate+TMA through hydrothermal 
reaction at 200 oC for 3 h. 
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Using commercial γ-Fe2O3 nanopowders as the Fe(III) source, we adapted our ligand-assisted 
hydrothermal synthesis to the fabrication of visible–NIR-activated α-Fe2O3 nanoplates (Figure S5a). The 
formation of α-Fe2O3 nanoplates appeared to occur through the dissolution of γ-Fe2O3 (<50 nm) and the 
subsequent recrystallization of α-Fe2O3 (Figure S5b). The α-Fe2O3 nanoplates are ~538 nm in diameter 
and ~46 nm in thickness (Figure S5c). The formation of an amorphous layer around the surfaces of single 
crystalline nanoplates was noticed and was similar to iron oxide nanostructure after 12 h (Figure S1 and 
S2), which implies that the surface effect was probably the predominant contributor to the enhancement 
of the NIR transitions (6A1  4T1 + 4T2).

5 

This work is the first reported development of NIR-activated Fe3O4 nanostructures (Figure S1 and S2) 
and α-Fe2O3 nanoplates. Based on the Beer–Lambert law, the molar extinction coefficient (ε) at 808 nm 
for iron oxide nanostructures (after 12 h) was 620 M-1cm-1, which is higher than the 382 M-1 cm-1 
calculated for α-Fe2O3 nanoplates. The high ε can be explained based on the synergistic effect between 
Fe(II) d–d transitions and IVCT transitions in the Fe3O4 structure. Compared with other NIR-activated 
materials used in photo-to-thermal conversion, the resulting ε value of NIR-activated Fe3O4 
nanostructures is greater than 4-120 M-1cm-1 in the NIR region of carbon materials (such as carbon black 
and carbon nanotubes)6, and it is less than 1.08 x 104 M-1 cm-1 at 778 nm of indocyanine green (NIR dye)7 
and 5.5 x 109 M-1 cm-1

 at 845 nm of Au nanorod (aspect ratio 4.5).8 What should be particularly noted is 
that carbon-based nanomaterials acting as laser-photosensitizer have been demonstrated for efficiency 
photothermalysis treatment of a tumor site in vivo.9 

 
 
 
 
 
 
 
 
 
 

Figure S5. The absorption spectrum a) and XRD measurements b) detected the conversion of commercial 
γ-Fe2O3 nanopowders to α-Fe2O3 nanoplates. TEM image c) of α-Fe2O3 nanoplates and its corresponding 
HRTEM image in the inset (the amorphous layer (~ 0.8 nm) is marked with red lines). 
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Figure S6. Absorption spectra of clinical Resovist agent and commercialγ-Fe2O3 nanopodwers. 
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An additional observation was that absorption band shifting of as-synthesized iron oxides occurred by 
adjusting the ratio of Fe(II)Cl2 and Fe(III)Cl3 precursors. Following by XRD measurements, it is observed 
that a gradual phase conversion from Fe3O4  to α-Fe2O3 was generated by decreasing the ratio of Fe(II)Cl2 
and Fe(III)Cl3 precursors. Therefore, we proposed that the absorption-band shifting might have been 
caused by both surface and bulk effects (i.e. Fe3O4 (surface-ligand inducing NIR absorption)  α-Fe2O3 
(red color in nature)5). Further studies are required and underway. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S7. a) Absorption spectra, b) photograph, and c) XRD patterns for the preparation of iron oxide 
nanostructures with different FeCl2 and FeCl3 precursor ratio including citrate and TMA molecules 
through hydrothermal reaction at 200 oC for 12 h. The subscript labels f and α in Figure S7c indicate fcc-
structured Fe3O4 and  α-Fe2O4 crystal structures, respectively. 
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To better inspect the optical structure of iron oxide nanostructures (after 12 h), another UV–vis–NIR 
spectrophotometer (Hitachi U-4100) was utilized to detect longer NIR wavelengths of up to 1290 nm and 
to prevent noise interference in the NIR region. This broadened band can be split via Gaussian 
deconvolution into respective peaks i-vi (Figure S8) with the following iron d–d transitions:5,10,11 the 
ligand-field-related absorption peaks appeared for i at ~ 1200 nm (NIR) by Fe2+; ii at ~ 725 nm, including 
6A1  4T1 (NIR) + 4T2 (visible); iii at ~ 542 nm by pair excitations 2(6A1)  2(4T1) (visible); iv at ~ 415 
nm due to the 6A1  4E,4A1 + 4T2 (visible); and v at ~ 380 nm by 6A1  4E (UV). The UV band at ~ 260 
nm (peak vi) should result from ligand-to-metal charge transfer (LMCT). The contribution in the UV–
visible–NIR region must include inter-valence charge-transfer (IVCT) transitions by a process of electron 
donation from Fe(II) to Fe(III) ions because of the intrinsic Fe3O4 structure.5 In addition, peak overlap 
was not avoided because of the peaks’ broadening features.11a However, our assignments (peaks i-vi) 
were still in approximate agreement with the optical transitions of iron ions reported in the literature; 
these transitions existed not only in various types of iron oxides5 but also in iron-containing minerals10 
and Fe-doped soda-lime silicate glasses.11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S8. UV-visible-NIR spectrum using Hitachi U-4100 UV-vis-NIR spectrophotometer for iron 
oxide nanostructures (after 12 h) with contained deconvoluted analysis with Gaussian multiple-peak 
fitting in accordant with the literature.5,10,11 
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Figure S9. Absorption spectrum for the preparation of iron oxide nanostructures with FeCl2+citrate+ 
benzoic acid through hydrothermal reaction at 200 oC for 12 h.   
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The FT-IR spectra  revealed a band at 570 cm-1 at 12 h, which is consistent with Fe–O vibrations of the 
Fe3O4 structure.12a The absorptions at 1630 (u), 1558 (b), and 1396 cm-1 (s) are ascribed to carboxylate 
groups, in which the labels u and b denote νas(COO)-, and s denotes νs(COO)-.12b Based on the results of 
previous investigations, the difference (Δ) between the νas(COO)- and νs(COO)- positions is correlated 
with the varying carboxylate coordination states.13 The peak labeled f at 1730 cm-1 is attributed to free –
COOH. Following the aforementioned rule,12b,13 Δ values were estimated to be 243 cm-1 (unidentate) 
according to peak u–s and 162 cm-1 (bridging) according to peak b–s. X-ray structural determinations 
have been used to show that citrate and TMA molecules can octahedrally coordinate to Fe(II) and Fe(III) 
ions to form Fe–carboxylate complexes with distorted octahedrons.14,15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S10. FT-IR measurements for the synthesis of iron oxide nanostructure after 12 h. 
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Figure S11. TGA curves of the NIR-activated Fe3O4 nanostructures. The initial weight loss of 1.3% is 
attributed to the loss of adsorbed water at 35–210 oC, while a loss of weight of 1.12% at 210–420 oC is 
due to the elimination of carboxylate capping molecules.  
 
 
 
 
 
 
 
 
 

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012



18 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S12. Superconducting quantum interference device (SQUID) measure of iron oxide nanostructure 
after 12 h at 300 K.  
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Figure S13. MTT assays of NIR-activated nanocomposites cultured with KB cells for 24 h. 
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Figure S14. Thermographic imaged mice bearing KB tumors without a) and with c) intratumoral 
injections of NIR-activated nanocomposites (0.5 mg/kg) after 10 min exposure to 808-nm laser irradiation 
(2 W/cm2) compared with a NIR-activated nanocomposite-treated mouse without laser irradiation b). In 
vivo progressive MRI events. T2-weighted images of mice bearing KB tumors after d) and before e) 
intratumoral injections of NIR-activated nanocomposite (0.5 mg/kg). (The red arrows indicate the 
injection site in tumor region). 
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Figure S15. Digital image for an observation of a tested mouse with NIR-activated nanocomposite+NIR 
laser treatment after 4 days postinjection. 
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