Supporting Information

Micellar catalysis in aqueous - ionic liquids systems

Katharina Bica,* Peter Gaertner, Phillip J. Gritsch, Anna K. Ressmann, Christian Schröder, and Ronald Zirbs

^a Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna, Austria.

Fax: +43 1 58801 16399; Tel: +43 1 58801 163601;

E-mail: kbica@ioc.tuwien.ac.at

^b Current Address: Institute of Organic Chemistry, Leibniz University of Hannover, Schneiderberg 1,30167 Hannover, Germany.

^c Institute of Computational Biological Chemistry, University of Vienna, Währingerstr. 17, 1090 Wien, Austria.

^d Institute of Nanobiotechnology (NBT), University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.

1. Materials and Methods

Commercially available reagents and solvents were used as received from Sigma Aldrich unless otherwise specified. Ionic liquids [C_8 mim]Cl, [C_{10} mimCl], [C_{12} mimCl], and [C_{14} mimCl] were prepared from freshly distilled *N*-methylimidazol and alkylchloride according to literature. Solid [C_{12} mimCl], and [C_{14} mimCl] were crystallized from THF until colorless crystals were obtained. All ionic liquids were dried for at least 24-48 h at 80 °C and 0.01 mbar before use and were stored under Argon. The purity of all ionic liquids was checked by 1 H and 13 C NMR spectroscopic analysis and was found to be >99 wt%. *N*-Benzylmaleimide was prepared as previously reported and analytical data were in accordance with literature. Based on its low solubility in water, *N*-benzylmaleimide was handled as stock solution in acetonitrile (91.17 mM). 1,3-Cylohexadiene was distilled on a weekly base and stored under Argon at -20 °C.

Doubly-distilled deionised water was obtained from a Millipore Milli-Q water purification system (Millipore, USA). All ionic liquid-aqueous solutions were left under shaking with 360 min⁻¹ at 25 °C for 24 h to equilibrate.

UV-vis spectroscopy was performed on a Shimadzu UV1800 spectrometer equipped with a thermostat at 25 °C for 60 min.

Dynamic Light Scattering was performed on Malvern Nano Zetasizer. Samples were equilibrated at 25 °C and measured in back-scattering mode for 10-15 runs with 10 seconds. At least three consistent measurements per solution and reaction were recorded.

¹H and ¹³NMR spectra were recorded on a Bruker AC 200 at 200 and 50 MHz, respectively, using the solvent peak as reference. J values are given in Hz.

GC–MS analyses were conducted on a VOYAGER Quadrupol (Thermo Finnigan) directly interfaced to a GC 8000 TOP gas chromatograph using a BGB-5 (30 m x 0.32 mm i.d., 1.0 μ m film thickness) cross-bonded dimethyl polysiloxane capillary column. The oven program temperature was 80 °C (2 min)//10 °C min⁻¹//280 °C (2 min). Source and transfer line temperatures were set at 200 and 280 °C, respectively.

2. MD simulations of 50 mM [C₁₂mim]Cl

MD simulations of 50 mM [C₁₂mim]Cl in water were done accroding to the following parameters:

	number	Force field parameter
C ₁₂ mim	10	J. Phys. Chem. B 108(2004), 2038
Cl	10	J. Chem. Phys. 100 (1994), 9050
water	11000	J. Chem. Phys. 79(1983), 926

time step 1 fs

simulation period 2 ns

simulation boxlength 69.3 Å

real space cutoff 12 Å

Ewald κ 0.41 Å $^{-1}$

thermostat 300 K $\tau = 0.1 \text{ ps}$ (normal atoms)

1 K τ = 0.005 ps (Drude particles)

Drude mass 0.2 amu

Drude force constant 500 kcal/mol Å²

 α (carbon) 1.2886 Å $^{-3}$ (J. Phys. Chem. A 102(1998), 2399)

 α (nitrogen) 0.97157 Å⁻³ (J. Phys. Chem. A 102(1998), 2399)

3. Experimental procedures

3.1. Kinetics measurement

Freshly distilled 1,3-cyclohexadiene (diene) was dissolved in an ionic liquid/aqueous solution to obtain a 24 mM solution (**Solution A**). A concentrated stock solution of *N*-benzylmaleimide (dienophil) in acetonitril was added to an ionic liquid/aqueous solution and equilibrated for 1 min (**Solution B**).

Equal volumina of **Solution A** (0.5 ml corresponding to 0.012 mmol diene) and of **Solution B** (0.5 ml corresponding to 0.0002 mmol dienophil) were combined in a fused quartz glass cuvette of 1.00 cm path length and quickly mixed with a Pasteur pipette. The solution was immediately transferred into the photometer and followed at 298 nm for 60 min using the diene solution (**Solution A**) as reference.

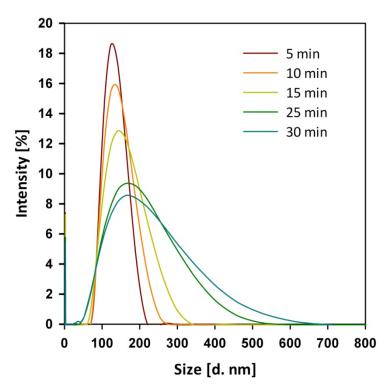
Rate constants k' were obtained according to the pseudo-first order model:

$$r = k \cdot [A] \cdot [B]$$

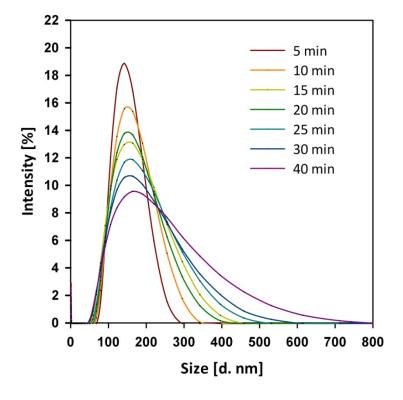
$$r = k' \cdot [A]$$

$$\frac{d([A])}{d(t)} = -k' \cdot ([A])$$

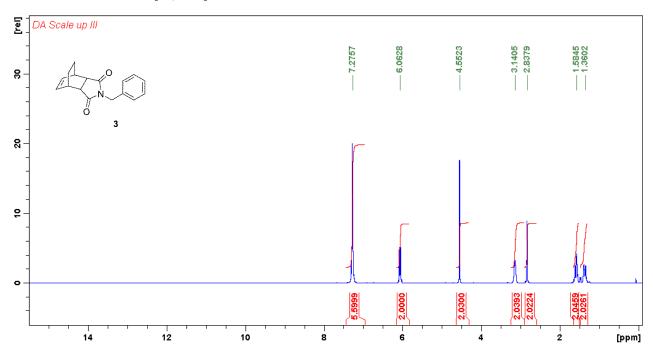
$$\frac{d([A])}{d(t)} = -k' \cdot d(t)$$

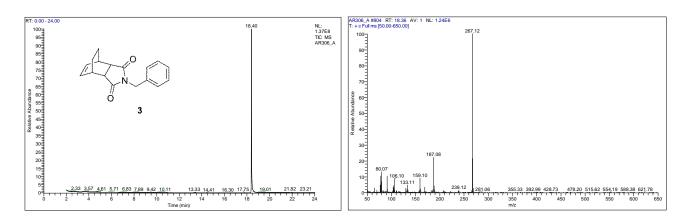

$$\ln([A]) - \ln([A]_0) = -k' \cdot t$$

$$\ln\left(\frac{[A]}{[A]_0}\right) = -k' \cdot t$$


$$[A] = [A]_0 \cdot e^{-k \cdot t}$$

All reported rate constants are the average of at least five kinetic measurements under each experimental condition.


4. Fig. S2: Size distribution by intensity in the course of the Diels-Alder reaction in a 50 mM [C₁₂mim]Cl solution


5. Fig. S3: Size distribution by intensity in the course of the Diels-Alder reaction in a 50 mM [C₁₄mim]Cl solution

6. Fig. S4: Copy of ¹H-NMR spectrum of the Diels-Alder product 3 isolated via crystallization from a 100 mM [C₁₀mim]Cl solution

7. Fig. S5: Copy of GC-MS trace of the Diels-Alder product 3 isolated via crystallization from a 100 mM [C₁₀mim]Cl solution

¹ N. Matuszak, G. G. Muccioli, G. Labar, D. M. Lambert, *J. Med. Chem.*, 2009, **52**, 7410.